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Abstract

The fact that various immune cells, including macrophages, can be found in tumor tissues has long been known.
With the introduction of concept that macrophages differentiate into a classically or alternatively activated
phenotype, the role of tumor-associated macrophages (TAMs) is now beginning to be elucidated. TAMs act as
“protumoral macrophages,” contributing to disease progression. TAMs can promote initiation and metastasis of
tumor cells, inhibit antitumor immune responses mediated by T cells, and stimulate tumor angiogenesis and
subsequently tumor progression. As the relationship between TAMs and malignant tumors becomes clearer, TAMs
are beginning to be seen as potential biomarkers for diagnosis and prognosis of cancers, as well as therapeutic
targets in these cases. In this review, we will discuss the origin, polarization, and role of TAMs in human malignant
tumors, as well as how TAMs can be used as diagnostic and prognostic biomarkers and therapeutic targets of
cancer in clinics.

Keywords: Tumor-associated macrophages (TAMs), Tumor microenvironment, Protumoral activities, Biomarker,
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Background

Non-resolving inflammation in a tumor microenviron-

ment is a hallmark of cancer [1, 2]. Leukocytes, fibro-

blasts, and vascular endothelial cells together form a

tumor microenvironment, with immune cells represent-

ing its major component. These immune cells interact

with tumor cells to influence the initiation, growth, and

metastasis of tumors [3]. Tumor-associated macrophages

(TAMs), specifically, are often prominent immune cells

that orchestrate various factors in the tumor microenvir-

onment [4, 5].

In general, monocytes/macrophages can be polarized

to M1 or M2 macrophages. Classically activated macro-

phages, also known as M1-polarized macrophages, are

activated by cytokines such as interferon-γ, produce pro-

inflammatory and immunostimulatory cytokines (e.g.,

interleukin [IL]-12 and IL-23), and are involved in helper

T cell (Th) 1 responses to infection. TAMs are thought

to more closely resemble M2-polarized macrophages [6],

also known as alternatively activated macrophages,

which are activated by Th2 cytokines (e.g., interleukin

(IL)-4, IL-10, and IL-13). TAMs play an important role

in connecting inflammation with cancer. TAMs can

promote proliferation, invasion, and metastasis of tumor

cells, stimulate tumor angiogenesis, and inhibit antitu-

mor immune response mediated by T cells, followed by

the promotion of tumor progression [6].

With the unraveling of the relationship between TAMs

and malignant tumors, TAMs are now being recognized

as potential biomarkers for diagnosis and prognosis of

cancer, as well as potential therapeutic targets for cancer.

In this review, we summarize how TAMs are involved in

tumor progression and discuss the clinical significance

of TAMs in diagnosis and prognosis of cancers and their

use as therapeutic targets in these cases.

Origins of TAMs
The original understanding of tissue macrophages was

that they were solely derived from bone marrow.

However, lung alveolar and peritoneal macrophages,

Kupffer cells, epidermal Langerhans cells, and brain

microglia derived from primitive yolk sac precursors are

referred to as tissue-resident macrophages, and they are
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locally self-maintained. The contribution of locally

proliferating macrophages to the pool of TAMs was

demonstrated in a Her2/Neu-driven mammary carcin-

oma animal study [7]. Although there is evidence that

all kinds of macrophages can coexist in tumors, re-

cruited macrophages may account for the majority of

TAMs and the respective contributions of these mac-

rophages to the various stages of progression in many

different tumors cannot be currently quantified. Fur-

ther studies to characterize TAMs in different human

cancers are needed (Fig. 1).

Peripheral blood monocytes from bone marrow are

recruited locally and differentiate into TAMs in response

to chemokines and growth factors produced by stromal

and tumor cells in the tumor microenvironment.

Colony-stimulating factor (CSF) 1 is the master regula-

tor and chemotactic factor for most populations of mac-

rophages, whether they are derived from the yolk sac or

bone marrow [8]. In a polyoma middle T oncoprotein

model, the binding of chemokine (C-C motif ) ligand

(CCL) 2 to chemokine (C-C motif ) receptor (CCR) 2

directly mediated monocyte recruitment to the primary

tumor and metastases [9]. In a xenograft model, vascular

endothelial growth factor A (VEGFA) recruited mono-

cytes that differentiated into TAMs in the presence of

IL-4 and the absence of these TAMs inhibited tumor

growth, invasion, proliferation, and angiogenesis [10]. In

human breast cancer models, binding of CCL18 to its

receptor PITPNM3 mediated the recruitment of macro-

phages in collaboration with CSF2 [11]. In colon cancer

Fig. 1 The origin and polarization of TAMs in tumor microenvironments. Recruited macrophages from blood (green) and tissue-resident macrophages
from the yolk sac (purple) coexist in tumors. Recruited macrophages represent the majority of TAMs. Peripheral blood monocytes are recruited locally
and differentiate into macrophages in response to various chemokines and growth factors produced by stromal and tumor cells in the
tumor microenvironment (CCL2, CSF1, VEGFA, CCL18, CCL20, and CXCL12). Factors that promote the polarization of TAMs to a protumor
phenotype can be subdivided into those actively produced by tumor cells (microparticles, CCL2/3/4, CSF1, IL-4, IL-10), those derived from
immune system components (Treg-derived IL-10, B cell-derived Igs, Th2-derived IL-4/13, and MSC-derived MFG-E8), those secreted by
TAMs (MIF, IL-10, CXCL12), and those resulting from tissue stress (hypoxia, tumor-derived HMGB-1, ECM components) (orange). In addition,
TAMs can also be differentiated from myeloid-derived suppressor cells in the leukemic stem cell niche
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models, macrophage recruitment was mediated by CCL20

binding to its receptor CCR6 [12], the ablation of the

chemokine resulted in the loss of monocytes and/or

TAMs and inhibition of the malignancy. The accumula-

tion of TAMs in response to CXC chemokine receptor

type (CXCR) 4/CXC motif chemokine ligand (CXCL) 12

has been shown to contribute to B16 melanoma progres-

sion [13] (Fig. 1).

Polarization of TAMs
Based on their functions within the tumor microenviron-

ment, TAMs are generally characterized as M2-like macro-

phages, which express higher levels of anti-inflammatory

cytokines, scavenging receptors, angiogenic factors, and

proteases than that in M1-type macrophages. These anti-

inflammatory cytokines can reprogram the immuno-

suppressive microenvironment and then promote tumor

progression with TAM-derived angiogenic factors, and

proteases by multiple ways described in “TAMs promote

cancer progression.” TAMs do not become polarized by

virtue of their location per se but instead receive signals

from the particular microenvironment in which they reside.

Currently, a variety of long non-coding RNAs has been

demonstrated to impair the function and development

of monocyte-macrophages [14]. Moreover, the factors

affecting the polarization of TAMs are discussed in

detail below (Fig. 1).

Tumor-derived factors

Several factors produced by tumor cells can reduce

macrophage polarization (Fig. 1). Colon cancer cell-

derived CSF1 has been shown to drive the recruitment

and reeducation of macrophages [15]. Chemokines

CCL2, 3, and 14 stimulate macrophage proliferation and

polarization in multiple myelomas [16]. IL-10 inhibits

the production of pro-inflammatory cytokines and che-

mokines in macrophages [17]. IL-4 also works in synergy

with CSF1 to induce M2-polarized macrophages [18].

Recent evidence indicates that tumor cell-derived micro-

particles mediate the polarization of TAMs for tumor

progression [19]. In addition, prostate cancer-derived

cathelicidin-related antimicrobial peptide reeducates

macrophages to M2-like phenotype [20]. Hypoxic cancer

cell-derived Oncostatin M and Eotaxin differentiate

macrophages into M2-polarized phenotype [21]. Soluble

MHC I chain-related molecule skews macrophages to

immune suppressive alternative phenotype through

activation of STAT3 [22].

Tumor microenvironment

Once monocytes in peripheral blood are recruited to the

tumor, the tumor environment rapidly promotes their

differentiation into TAMs (Fig. 1). Consistent with the

original description of alternative activation, the type 2

cytokine IL-4 secreted from Th2-polarized CD4+ cells

[23], IL-10 derived from regulatory T cells (Tregs) [24],

and immunoglobulin (Ig) from B cells [25] regulate

macrophage polarization to the protumor phenotype. IL-

13 from Th2 cells may have similar effects on TAM

polarization because of overlapping IL-13 and IL-4

signaling cascades that lead to signal transduction and

transcription (STAT) 6 activation, although this is yet to

be proven in vivo [26]. In addition, mesenchymal stro-

mal cell-derived milk fat globule-epithelial growth factor

8 protein (MFG-E8) [27] has been shown to enhance

M2 polarization of macrophages.

Self-secretion

Recently, migration inhibitory factor (MIF) from macro-

phages was reported to be an important determinant of

TAM polarization in melanoma-bearing mice [28]. MIF

deficiency or treatment with an MIF antagonist was

shown to attenuate tumor-induced TAM polarization

and reduce the expression of proangiogenic genes in

TAMs. In addition, tumor-infiltrated macrophages could

produce IL-10 to promote TAMs self-polarization [29].

Another study found that autocrine CXCL12 production

modulated differentiation of monocytes toward a distinct

program with proangiogenic and immunosuppressive

functions [30] (Fig. 1).

Homeostatic imbalance

Hypoxia seems to promote malignant conversion and

metastasis, which is mediated primarily through hypoxia-

inducible factor (HIF)-1α and HIF-2α. Both of these

factors can also regulate macrophage function [31]. The

presence of high-mobility group box 1 protein (HMGB1),

extracellular ATP, and other normally intracellular mole-

cules is detected by a class of receptors on the surface of

macrophages called Toll-like receptors (TLRs). Both TLR2

and TLR6 signaling can promote lung cancer progression

by inducing tumor necrosis factor-α (TNF-α) production

of macrophages [32]. Tumor-derived extracellular matrix

(ECM) components, including biglycan and hyaluronan,

are potentially important factors in directing TAM

polarization via TLR2 and TLR4 [33]. Crucially, these

ECM components do not bind to TLRs in non-inflamed

tissue but become TLR ligands following protease cleavage

or interaction with reactive oxygen or nitrogen species,

thereby forming putative sensory pathways for the

detection of inflammation and tissue disruption. In

addition, TAMs can also be differentiated from myeloid-

derived suppressor cells (MDSCs) in the leukemic stem

cell niche [34] (Fig. 1).

TAMs promote cancer progression
TAMs play particular functional roles in tumor progres-

sion, including cancer initiation and promotion, immune
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suppression, metastasis, establishing a premalignant niche,

and angiogenesis. Each of these functions is described

below (Fig. 2).

Cancer initiation and promotion

TAMs connect inflammation and cancer. In 2009, cancer-

related inflammation was first defined as a hallmark of

cancer. Activated macrophages work in concert with other

immune cells in this type of immune response. Evidences

suggest that an inflammatory microenvironment promotes

genetic instability within developing tumor epithelial

cells and infiltrating or resident immune cells such as

macrophages in inflammatory microenvironments. Recently,

the presence of TAM-derived inflammatory cytokines IL-23

and IL-17 has been shown to be closely associated with

cancer progression [35]. Kupffer cells can provide essential

mitogens for the promotion of hepatocellular carcinoma

through a nuclear factor κB (NF-κB)-dependent signaling

mechanism, because its ablation reduced tumor burden

[36]. Recent data indicates that TAM-derived IL-6 promotes

the occurrence and development of hepatocellular carcin-

oma via STAT3 signaling [37]. These results suggest that

tumor-infiltrated macrophages play an important role in

cancer initiation and promotion (Fig. 2).

Fig. 2 The effects of TAMs on tumor progression. The protumor functions of TAMs include cancer initiation and promotion (blue), immune
suppression (green), metastasis, establishment of a premalignant niche (orange), and promotion of angiogenesis (purple). (1) TAMs can produce
cytokines such as IL-6/IL-17/IL-23 or mitogens to induce the initiation and progression of cancer via the NF-κB or STAT3 signaling pathway in
tumor cells. (2) Suppression of CTL proliferation by TAMs is at least partly dependent on metabolism of L-arginine via iNOS or arginase I, which
results in ROS production. TAMs inhibit CTL responses via PD1/PD-L1 signaling pathway. TAM-derived PGE2 and IL-10 promote the induction
of Tregs, and TAM-derived CCL17/18/22 recruit Tregs, which results in CTL suppression. (3) Neoplastic cell invasion of ectopic tissue can be
promoted through protease-dependent ECM remodeling that may directly affect neoplastic migration or the premalignant niche. TAM-derived
CCL18 promotes tumor metastasis by triggering integrin clustering and enhancing their adherence to extracellular matrix (EM) in tumor cells.
TAM-derived TGF-β plays important roles in initiation and progression of the EMT. TAMs-derived TNF-α, VEGF, and TGF-β can transport through
the bloodstream to destination organs, where they induce macrophages to produce S100A8, which further recruits tumor cells to these organs
and promotes the formation of metastatic foci. (4) Hypoxia induces HIF-1α expression in TAMs and further regulates the transcription of many
genes associated with angiogenesis. Subsets of Tie2+ TAMs can interact with mural cells/pericytes to regulate vascular structure
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Immune suppression

TAMs are the major immunoregulatory cells in tumors,

and they participate in inhibiting cytotoxic T lymphocyte

(CTL) responses in tumor microenvironments (Fig. 2). In

murine tumor models, suppression of CD8+ T cell prolif-

eration by TAMs is at least partly dependent on metabol-

ism of L-arginine via inducible nitric oxide synthase

(iNOS) or arginase I, which results in the production of

reactive oxygen species (ROS) [38]. IL-10 produced by

TAMs can induce the expression of costimulatory mol-

ecule PD-L1 in monocytes, which can inhibit CTL re-

sponses [39]. In addition, TAM-derived prostaglandin E2

(PGE2), IL-10, and indoleamine 2,3-dioxygenase play im-

portant roles in the induction of Tregs and TAM-derived

CCL17, CCL18, and CCL22 are chemotactic factors for

Tregs [40], which results in the suppression of T cells in

the tumor microenvironment.

Metastasis and premalignant niche

The most comprehensively described mechanism by

which TAMs promote solid tumor development is to pro-

vide factors that enhance metastasis and the establishment

of a premalignant niche of malignant cells (Fig. 2).

In human xenograft models, CCL18 is also required for

tumor cell invasion and metastasis, playing a role in integrin

clustering [41]. Migration on and through the ECM is ne-

cessary for tumor cells metastasis, and TAMs are believed

to promote tumor cell migration/invasion through the ECM

[42]. TAMs can produce proteases, including cathepsin B,

matrix metallopeptidase (MMP) 2, MMP7, and MMP9, and

cleave the ECM, thereby providing conduits for tumor cells.

The epithelial-mesenchymal transition (EMT) is an im-

portant result of the interaction between TAMs and

tumor cells. EMT plays a fundamental role in tumor pro-

gression and metastasis; therefore, clarifying the regulation

of EMT will greatly enhance our understanding of tumor

migration and invasion. Accumulating evidence suggests

that TAMs play a critical role in the regulation of EMT in

cancers. TAM-derived factors play important roles in initi-

ation and progression of the EMT [43].

Also of interest, based on results of studies on animal

models, TAMs may play a role in forming premetastatic

niches in organs to which the tumor will eventually

metastasize. Specifically, TNF-α, VEGF, and transforming

growing factor-β (TGF-β), which are derived from TAMs

in cancer tissues, are believed to be transported through

the bloodstream to destination organs, where they induce

macrophages to produce S100A8 and serum amyloid A3.

Both S100A8 and serum amyloid A3 can recruit macro-

phages and tumor cells to these organs and promote the

formation of metastatic foci [44]. Thus, TAMs are believed

to not only influence their local environments but also to

influence macrophages throughout the body and thereby

contribute to disease progression.

Angiogenesis

A few studies have shown that the levels of TAMs are

closely associated with the number of vessels in human

cancers. Hypoxia is a major driver of tumor angiogen-

esis. Accumulated macrophages can be found in hypoxic

areas of tumor, and particularly in necrotic tissue. HIF-

1α, which is expressed in macrophages, regulates the

transcription of many genes such as VEGF associated

with angiogenesis at hypoxic sites. Genetic analysis has

revealed that TAMs can produce VEGF, TNF-α, IL-1β,

IL-8 (CXCL8), platelet-derived growth factor (PDGF),

basic fibroblast growth factor (bFGF), thymidine phos-

phorylase, MMPs, and other molecules that are involved

in tumor angiogenesis, indicating that TAMs promote

the formation of intratumoral blood vessels that provide

nutrition for tumor growth [45]. Tie2+ TAMs are closely

associated with tumor vasculature and have been found

crucial for angiogenesis in orthotopic and transgenic

tumor models [46], which depend on endothelial cell-

produced angiopoietin-2 (ANG2) and Tie2 receptors on

TAMs along the vasculature (Fig. 2).

Diagnostic biomarker of cancer

As the relationship between TAMs and malignant tu-

mors becomes clearer, TAMs have begun to be used

from bench to bedside, including as potential biomarkers

for diagnosis and prognosis of cancer and as therapeutic

targets for cancer. First, we will explain how TAMs can

be served as potential diagnostic biomarkers of cancer

(Fig. 3). Human TAMs are commonly identified by ex-

pression of CD163, CD204, or CD206; these biomarkers

are not specific for a particular type of cancer.

In our previous study, CD163+CD14+ macrophages

were determined to be potential immune diagnostic

markers for malignant pleural effusion (MPE) and have

better assay sensitivity than that of cytological analysis

[47]. In addition, a serum CD163 value of 1.8 mg/L was

set as a cutoff concentration in a survival analysis of

patients with multiple myeloma and should be validated

in future studies [48]. Tang reviewed the relationship

between TAMs and clinicopathological parameters in

human breast cancers and addressed the potential value

of TAMs as diagnostic biomarkers [49].

Using precision microfilters under low-flow conditions,

circulating cancer-associated macrophage-like cells were

isolated from the peripheral blood of patients with breast,

pancreatic, or prostate cancer. These cells, which are not

found in healthy individuals, were found to express epi-

thelial, monocytic, and endothelial protein markers and

were observed bound to circulating tumor cells in circula-

tion [50]. These data support the hypothesis that dissemi-

nated TAMs can be used as a biomarker of advanced

disease, suggesting that TAMs play a participatory role in

tumor cell migration.
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Prognostic biomarker of cancer
Due to TAMs’ important role in tumor progression, the

level of infiltrated TAMs may be used as a prognostic fac-

tor in cancers (Fig. 3). Over 80% of immunohistochemical

studies using various human tumor tissues have shown

that higher numbers of TAMs are associated with worse

clinical prognosis. Recently, we showed that the accumu-

lation of CD163+ TAMs in MPE caused by lung cancer

was closely correlated with poor prognosis [51]. The

results of a study indicate that CD204+ TAMs are an inde-

pendent prognostic factor in esophageal squamous cell

carcinoma [52]. A high density of infiltrated TAMs is

associated with aggressive features of gastric cancer and is

an independent prognostic marker in gastric cancer

patients [53]. Macrophage phenotypes (CD68, MAC387,

and CLEVER-1/Stabilin-1) provide significant independ-

ent prognostic information, particularly in bladder cancers

following transurethral resection [54]. Moreover, evidence

suggests the expression of inflammation-related genes,

especially genes related to polarization of TAMs, contrib-

utes to prognosis and is associated with poor clinical

outcomes. Therefore, TAMs can be used as a potential

biomarker for prognosis of cancers in clinics.

Therapeutic targets in cancer
As discussed above, there is strong evidence of tumor

promotion by TAMs in different cancer models and an

increased TAM prevalence correlates with low survival

rates in many human cancers. Therefore, targeting

TAMs is a novel strategy for the treatment of cancers.

Therapeutic strategies directed at TAMs can be grouped

into four areas described as below (Fig. 3).

Limiting monocyte recruitment

One strategy for targeting TAMs is to block monocyte

recruitment into tumor tissues. Targeting the CCL2-

CCR2 axis is promising due to its important role in

monocyte recruitment in tumors. A CCL2-blocking

agent (carlumab, CNTO88) has been shown to inhibit

the growth of several cancers in animal models. A phase

II study of carlumab in metastatic castration-resistant

prostate cancer patients showed that this antibody was

well tolerated, but that neither blocked the CCL2/CCR2

axis nor showed antitumor activity as a single agent in

these metastatic cancer patients [55] (NCT00992186,

Table 1). Similar results of Brana et al. showed that car-

lumab in combination with four chemotherapy regimens

for the treatment of patients with solid tumors was well

tolerated, although no long-term suppression of serum

CCL2 or significant tumor responses were observed [56]

(NCT01204996, Table 1). However, according to the re-

sults of other study, carlumab was well tolerated, with

evidence of transient CCL2 suppression and preliminary

antitumor activity [57] (NCT00537368, Table 1).

Sanford et al. demonstrate that a CCR2 antagonist

(PF-04136309) can block the mobilization of CCR2+

monocytes from bone marrow to tumors in a mouse

model of pancreatic cancer and can lead to TAM depletion,

causing the inhibition of tumor growth and distant metas-

tasis [58]. PF-04136309, in combination with FOLFIRINOX

Fig. 3 The clinical application of TAMs. As the relationship between TAMs and malignant tumors becomes clearer, TAMs are beginning to be
seen as potential biomarkers for diagnosis and prognosis of cancers and as therapeutic targets in cancers. Therapeutic strategies directed at TAMs
can be grouped into four areas: limiting monocyte recruitment, targeting the activation of TAMs, reprogramming TAMs to antitumor
macrophages, and targeting TAMs in combination with standard therapies
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chemotherapy, was used in a phase Ib trial (NCT01413022,

Table 1). This therapy was found safe and tolerable with

an objective tumor response [59]. Moreover, the effi-

ciency of the humanized antibody specific for CCR2

(MLN1202) was determined in a clinical investigation

(NCT01015560, Table 1).

Treatment with systemic CD11b-neutralizing mono-

clonal antibodies has been shown to prevent the recruit-

ment of myeloid cells to tumors. It has been shown that

the use of Mac-1 (CD11b/CD18) antibodies leads to an

improved response to radiation therapy in squamous cell

carcinoma xenografts of mice, which is accompanied by

reduced infiltration of myeloid cells expressing MMP-9

and S100A8 inside tumors [60].

Because targeting monocytes, prior to being re-

cruited to tumors, has been effective in various cancer

models and partial clinical trials, TAMs can be directly

targeted as well by other approaches once they invade

tumors.

Targeting the activation of TAMs

TAMs can be targeted at the level of activation using

various strategies. CSF1/CSF1 receptor (CSF1R) signal-

ing is critical for the generation of monocyte progenitors

in bone marrow and TAM polarization in tumor tissues.

For these reasons, CSF1/CSF1R signaling is an attractive

target for cancer treatment. Genetic loss of CSF1 results

in significantly reduced metastasis and delayed tumor

progression in breast and neuroendocrine tumor models

[61]. miR-26a expression reduces CSF1 expression in

hepatocellular carcinoma [62]. Based on these results,

several clinical trials of CSF1/CSF1R inhibitors have

been completed or are ongoing (Table 1).

Macrophage surface markers can act as useful thera-

peutic targets. Mannose receptor CD206 can be exploited

as a macrophage-specific target. A single-chain peptide

bound to the CD206 receptor was attached to nanobodies

that can selectively target CD206+ TAMs [63]. Legumain,

a stress protein and a member of the asparagine endopep-

tidase family, can serve as an efficient therapeutic target

when overexpressed in TAMs [64]. Targeting surface

markers such as scavenger receptor A and CD52 by using

immunotoxin-conjugated monoclonal antibodies (mAbs)

has been investigated in ovarian cancer [65]. Moreover,

the efficiency of alemtuzumab (anti-CD52 antibody) as a

tumor treatment in ongoing clinical trials is under investi-

gation (NCT00637390, NCT00073879, Table 1).

Trabectedin (ET743, Yondelis®) was shown to decrease

the number of TAMs in tumor tissues by inducing apop-

tosis of monocytes and macrophages [66, 67]. Based on

the favorable results of several phase I, II, and III clinical

trials, trabectedin has gained full marketing approval

from the European Commission for use in the treatment

of ovarian cancer and soft tissue sarcomas and FDA

approval in 2015 for use in unresectable or metastatic

liposarcoma or leiomyosarcoma [68].

Reprogramming TAMs to antitumor macrophages

As discussed above, one of the key features of macro-

phages is their plasticity, which enables them to change

their phenotype in the tumor microenvironment. Thus,

reprogramming TAMs to an antitumor phenotype is an

attractive therapeutic strategy. Antitumor macrophages

are good at scavenging and destroying phagocytosed

tumor cells [69]. The results of our previous study

showed that pseudomonas aeruginosa mannose-sensitive

hemagglutinin, which is used in MPE treatment, re-

educated CD163+ TAMs to M1 macrophages in MPE,

suggesting that reprogramming CD163+ TAMs can be

served as a potential therapeutic strategy of MPE [51].

Nanoparticles are gradually used in polarization of

TAMs into antitumor macrophages. Recently, Zanganeh

et al. found that ferumoxytol significantly inhibited growth

of subcutaneous adenocarcinomas in mice, and this tumor

growth inhibition was accompanied by an increase in pro-

inflammatory M1 macrophages in tumor tissues [70].

Recent data suggest that bioconjugated manganese diox-

ide nanoparticles enhance the responses of chemotherapy

by inducing TAM toward M1-like phenotype [71]. Synthe-

sized nanoparticles with IL-12 payload can reverse macro-

phages to antitumor function [72].

CD40 is a surface marker of macrophages that can be

used to inhibit cytotoxic functions. The combination of a

CD40 agonist with gemcitabine in unresectable pancreatic

cancer resulted in regression of tumors by promoting anti-

tumor macrophages [73]. ChiLob 7/4 is an intermediate

CD40 agonist and chimeric IgG1, which was also shown

to induce pro-inflammatory cytokines, with promising re-

sults in CD40-expressing solid tumors and diffuse large B

cell lymphoma resistant to conventional therapy in a phase

I clinical trial [74] (NCT01561911, Table 1). Other clinical

trials of molecules targeting CD40 for cancer treatment are

ongoing (NCT01433172, NCT01103635, Table 1).

Activation of the NF-κB pathway also plays an import-

ant role in polarization of TAMs to an antitumor pheno-

type using TLR agonists, anti-CD40 mAbs, and IL-10

mAbs [75]. In addition, regulation of STAT1 activity is

an attractive strategy to induce an antitumor phenotype

in macrophages because of the increase production of

IL-12 in a murine carcinoma model. A small molecule

inhibitor of STAT3 (WP1066) was found to reverse im-

mune tolerance in patients with malignant gliomas and

to selectively induce the expression of costimulatory

molecules CD80, CD86, and IL-12 on peripheral and

tumor-infiltrating macrophages [76]. An investigation of

this agent to treat recurrent malignant gliomas and brain

metastasis is ongoing (NCT01904123, Table 1).
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Thymosin-α is an immunomodulating hormone that

can reeducate TAMs into dendritic cells, which participate

in antitumor host responses and produce high level of

pro-inflammatory cytokines. Nanodelivery of thymosin-α

is a feasible approach to increase immune activity in

cancer patients. Moreover, several clinical trials have con-

firmed that thymosin-α prolongs survival in patients with

metastatic melanomas and advanced non-small cell lung

cancers [77].

β-glucan, a yeast-derived polysaccharide, has been shown

to differentiate TAMs into an M1 phenotype and is a

potent immunomodulator with anticancer properties [78].

The use of β-glucan is currently under investigation in

a phase I clinical trial of patients with neuroblastoma

[79] (NCT00911560, Table 1). In another clinical trial, a

β-glucan polymer (PGG) showed compelling but mod-

est activity in a phase II multi-cancer study [80]

(NCT00912327, Table 1). Furthermore, the efficiency of

β-glucan is currently under phase I clinical investiga-

tion (NCT00492167, Table 1).

Targeting TAMs in combination with standard therapies

Radiotherapy and chemotherapy are useful treatments in

many cancers, and studies have shown that infiltrated

myeloid increases after irradiation. However, the inter-

action between tumor cells and stroma after these ther-

apies remains poorly defined. DNA damage, cell death,

and increased hypoxia have been observed in tumors

after radiotherapy, which has been shown to lead to

macrophage recruitment and promote tumor progres-

sion in animal models [81]. Therefore, it is essential to

combine TAM targeting with standard therapies for

effective tumor treatment.

The HIF-1 pathway is stimulated by radiation-induced

tumor hypoxia, and the HIF-1 inhibitor can result in

decreased infiltration of myeloid cells into tumors [82].

Even more strikingly, blocking CSF1R signaling appears to

enhance the efficacy of several other standard therapies.

As such, CSF1R blockade has been shown to increase the

efficacy of chemotherapy for pancreatic tumors [83].

Conclusions

In this review, we discussed the origin, polarization,

function, and clinical application of TAMs. TAMs

play critical roles in the development and progression

of human cancers. Therefore, it will be critical to ob-

tain a better understanding of TAMs to apply clinic-

ally, especially as a diagnosis and prognosis marker

and a therapeutic target as well. Targeting TAMs is a

promising strategy for cancer treatment. Recent on-

going experimental, preclinical, and clinical studies of

TAMs have shown encouraging progress. We believe

that TAM-targeted therapies will be applied in cancer

patients in the future.
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