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Tumor-associated macrophages (TAMs) represent one of the main tumor-infiltrating

immune cell types and are generally categorized into either of two functionally

contrasting subtypes, namely classical activated M1 macrophages and alternatively

activated M2 macrophages. The former typically exerts anti-tumor functions, including

directly mediate cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC)

to kill tumor cells; the latter can promote the occurrence and metastasis of tumor cells,

inhibit T cell-mediated anti-tumor immune response, promote tumor angiogenesis, and

lead to tumor progression. Both M1 and M2 macrophages have high degree of plasticity

and thus can be converted into each other upon tumor microenvironment changes or

therapeutic interventions. As the relationship between TAMs and malignant tumors

becoming clearer, TAMs have become a promising target for developing new cancer

treatment. In this review, we summarize the origin and types of TAMs, TAMs interaction

with tumors and tumor microenvironment, and up-to-date treatment strategies

targeting TAMs.
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INTRODUCTION

Macrophages play critical roles in both innate and adaptive immunity and are known for their

remarkable phenotypic heterogeneity and functional diversity. Embryonic hematopoietic stem cells

in a variety of tissues during fetal development and differentiate into tissue-specific resident

macrophages, including Kupffer cells in the liver, alveolar macrophages in the lung, and osteoclasts

in bone tissue. After birth, bone marrow-derived precursors in particular circulating monocytes can

also differentiate into macrophages in steady state or during tissue inflammation (1). Macrophages
are involved in tissue and systemic inflammation and immunity, as well as tissue reconstruction.

They have a wide range of functions, including phagocytosis, antigen presentation, defense against

microbial cytotoxicity, and secretion of cytokines, complement components, etc. (2). It is worth

noting that the broad biological activities of macrophages often have diametrically opposite

characteristics, such as inflammatory response and anti-inflammatory activity; immunogenic and

inducing immune tolerance; causing tissue destruction and repairing (3).
Tumor-associated macrophages (TAMs) are macrophages that participate in the formation of

the tumor microenvironment. TAMs are widely present in various tumors (4). TAMs can promote

tumor growth, invasion, metastasis, and drug resistance (5). It has been proposed that functional
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difference of macrophages is closely related to the plasticity of

macrophages, and its functional phenotype is regulated by

molecules in tumor microenvironments.

In this review, we discuss the origins and types of TAMs, the

interaction between tumors and the tumor microenvironment,

and review the emerging strategies for cancer treatment via
targeting TAMs.

ORIGINS AND TYPES OF TAMs

Origins
For a long period of time, it is believed that macrophages in

tumors are exclusively recruited from the periphery by chemotaxis

and generated by monocytic precursors in the local environment.

However, more recent evidence shows that at least certain tumors,

tissue-specific embryonic-derived resident macrophages infiltrate

tumor tissues and thus represent a nonnegligible input source of

TAMs (6). Although there have been studies showing that
monocytic-derived but not embryonic-derived resident

macrophages are capable in supporting the growing body of

TAMs in the inflammatory environment of tumor, the

potentially different roles of monocytic- versus embryonic-

derived TAMs on tumor development and/or progress remains

an intriguing question that is largely unanswered (2).
M-MDSCs (monocyte-related myeloid-derived suppressor

cells) are currently known as another main circulating

precursor of TAMs. MDSCs are a type of myeloid leukocytes

that is related to immunosuppression (7). Based on surface

markers Ly6C+/Ly6C- and Ly6C-/Ly6G+, MDSCs can be

divided into monocyte (M)-related and granulocyte (G)-related

MDSC. Among them, M-MDSCs are induced into TAMs by
various chemokines (8).

It is all know that macrophages derive from bone marrow-

derived monocytes. In tumors, TAMs mainly originate from

bone marrow monocytes, but recent evidence suggests that,

recruitment of circulating monocytes is essential for TAMs

accumulation. Circulating inflammatory monocytes could be
recruited by multiple chemokines (CCL2 and CCL5) and

cytokines (CSF-1 and members of the VEGF family) to tumor

(9). Tumor growth can also induce the differentiation of CCR2+

monocytes into TAMs (10).

Furthermore, complement components, particularly C5a, are

an important mediator of the recruitment and functional

polarization of TAMs (11). Indeed, such chemokines do more
than attractants do because they activate transcription programs

that help macrophages tilt toward the functional of a particular

phenotype (12). At the same time, CSF-1 is a monocyte attractant,

as well as macrophage survival and polarization signals, which

drive TAM to immunosuppressive differentiation M2

macrophages (13). Unlike CSF-1, GM-CSF activates macrophage
function associated with antitumor activity (14).

Types
Macrophages undergo specific differentiation in different

tissue environments, and can be divided into two different

polarization states: M1 type macrophages (M1) and M2 type

macrophages (M2).

M1 can respond to dangerous signals transmitted by bacterial

products or IFN-g, which attracting and activating cells of the

adaptive immune system; an important feature of M1 is that it

can express nitric oxide synthase (iNOS) and reactive oxygen
species (ROS) (15–17) and cytokine IL-12 (18). M1 also has the

function of engulfing and killing target cells.

M2 expresses a large number of scavenger receptors, which is

related to the high-intensity expression of IL-10, IL-1b, VEGF
and matrix metalloprotein (MMP) (19, 20). M2 has the function

of removing debris, promoting angiogenesis , t issue
reconstruction and injury repairments, as well as promoting

tumorigenesis and development (4).

It is worth noting that the polarization of macrophages into

M2 appears to be oversimplified. Some people have classified M2

macrophages into M2a (induced by IL-4 or IL-13), M2b

(induced by immune complexes combined with IL-1b or LPS)
and M2c (induced by IL-10, TGFb, or glucocorticoid), and M2d

(conventional M2 macrophages that exert immunosuppression)

(21, 22).

THE ROLE OF TAMs IN TUMOR

PROGRESS

Current studies have shown that TAM population is in a state of

constant transition between the two forms of M1 and M2 type.
The proportion of each form is determined by the type and

concentration of different signals in the tumor environment

(Figure 1).

M1 Macrophages and Tumor Suppression
M1-type macrophages have anti-tumor effects, which can

distinguish tumor cells from normal cells. By identifying tumor

cells and ultimately killing tumor cells, studies have found that
M1 type macrophages have two different effects on killing tumor

cells mechanism. M1 type macrophages directly mediate

cytotoxicity to kill tumor cells: macrophage-mediated

cytotoxicity is a slow process (generally requires 1 to 3 days)

and involves multiple mechanisms. For example, macrophages

release tumor killing molecules such as ROS and NO, which have
cytotoxic effects on tumor cells (23). The other is antibody-

dependent cell-mediated cytotoxicity (ADCC) killing tumor

cells: ADCC requires less time to kill tumor cells (generally

within a few hours) and requires the participation of anti-tumor

antibodies (24).

M2 Macrophages Promote Tumor Cell
Proliferation and Invasion
TAM infiltration is closely related to tumor cell proliferation.

Many studies have shown that TAMs can express a variety of

cytokines that stimulate tumor cell proliferation and survival,

including epithelial growth factor (EGF), platelet-derived growth
factor (PDGF), TGF-b1, hepatocyte growth factor (HGF), and

epithelial growth ligands of the factor receptor (EGFR) family
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FIGURE 1 | A schematic representation of the roles of tumor-associated macrophages (TAMs) in tumor progression. TAMs can mediate immune response, tumor cell proliferation and invasion, angiogenesis and

metastasis. MMP, matrix metalloprotein; M-MDSCs, monocyte-related myeloid-derived suppressor cells; CSF1, macrophage colony-stimulating factor; VEGF, vascular endothelial growth factor; ROS, reactive

oxygen species; INOS, nitric oxide synthases; LIF, leukocytosis induced factor.
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and basic fibroblast growth factor (BFGF) (25). The ligands of

the EGFR family play an important role in tumorigenesis,

especially breast and lung cancers. Members of this family can

form homo- or heterodimers on the cell surface, mediating the

transduction of cell proliferation signals. In all, TAMs are an

important cell source for EGF secretion in tumor tissues (25).
As for invasion, in glioma cells, extracellular adenosine

deaminase protein cat eye syndrome critical region protein 1

(CECR1) has been shown to regulate the maturation of

macrophages. CECR1 is induced by M2-like TAM secretory

effects activate MAPK signaling and stimulate the proliferation

and migration of glioma cells (26). Another investigation shows
that a positive feedback loop of CCL5 and CCL18 between TAMs

and myofibroblast is constituted to drive the malignant invasion

of phyllodes tumor (PT). CCL5 binds to CCR5, and activates the

AKT signal to recruit and repolarize TAMs. TAMs release

CCL18 to further induce the invasion of malignant PTs by

differentiating the mesenchymal fibroblasts to myofibroblast,
causing the malignancy of PTs (27).

TAMs Promote Tumor Metastasis
Tumor metastasis is an important feature of poor prognosis after

tumor therapy. The main reason for tumor cell migration and

metastasis is the degradation and damage of tumor tissue

endothelial cell basement membrane. It has been reported that

activated TAMs exert a direct effect on promoting metastasis via
directly producing soluble factors (28). M2 macrophages can

destroy matrix membrane of endothelial cells by secreting matrix

metalloproteinases (MMPs), serine proteases, cathepsins, and

decompose various collagen and other components of

extracellular matrix, thereby helping the migration of tumor

cells and tumor stromal cells (19, 20). Epithelial-mesenchymal

transition (EMT) is the basis of tumor metastasis (29). This
process enables tumor cells to acquire the ability to migrate and

endows them with the properties of stem cells (30). Besides,

cytokines produced by tumor cells also promote the

differentiation process of TAMs, thus forming a positive

feedback loop between TAMs and EMT (31).

M2 Macrophages Promoting Angiogenesis
TAMs are enriched in hypoxic areas with poor blood supply (1).

Proangiogenic effects by TAMs involves the coordinated

regulation of a wide range of cytokines, including BFGF,

VEGF, IL-1, IL-8, TNF-a, MMP-9, MMP-2, and nitric oxide

(NO). The coordinated expression of these molecules promotes

the proliferation of endothelial cells, matrix remodeling and

vascularization in time and space. Macrophages can release the
angiogenic molecules and express a series of enzymes involved in

the regulation of angiogenesis, including MMP-2, MMP-7,

MMP-9, MMP-12, and cyclooxygenase-2 (20, 32).

However, metabolism still exists in angiogenesis, and it is still

unknown whether changes in metabolism affect these functions.

Hypoxic TAM strongly up-regulates the expression of mTOR’s
negative regulator REDD1. REDD1-mediated mTOR inhibition

can hinder glycolysis in TAM and reduce its excessive angiogenic

response, thereby forming abnormal blood vessels (33).

Immune Regulation by TAMs
TAM can regulate the killing effect of T cells and NK cells on

tumor cells. M1 macrophages increased the number of total and
activated natural killer (NK) cells in fibrotic liver, released TNF-

related apoptosis-inducing ligand (TRAIL), and induced HSC

apoptosis (34). HCC-derived exosomes induced macrophages to

upregulate the expression of IFN-g and TNF-a in T cells, while

the expression of inhibitory receptors PD-1 and CTLA-4 was

upregulated (35). In mesothelioma, the macrophages isolated

from pleural effusion showed the M2 phenotype were negatively
correlated with T cells in vivo, which emphasized the use of

macrophages as treatments in mesothelioma Target

potential (36).

In addition to these functions, TAMs can also directly inhibit

CD8+ T-cell proliferation through metabolism of L-arginine via

arginase 1, iNOS, oxygen radicals or nitrogen species (37–39).
Besides, TAMs recruit Tregs through CCL22 (40), which further

suppress the antitumor immune response of T-cells. Conditional

TAM ablation blocks Treg cell recruitment and inhibits tumor

growth by lowering the CCL20 level of xenograft mice (41).

Substantial evidence indicates that the inflammatory reaction

at a tumor site can promote tumor growth and progression.

Inflammation and immune evasion are considered as hallmarks
of cancer. It has been reported that TAMs can also contribute to

cancer-related inflammation that leads to tumorigenesis by

generation of inflammatory Th subset such as TFH (42). Toll-

like receptor 4 (TLR4)-induced monocyte inflammation is

important for induction of IL21+ TFH-like cells, which operate

in IL21-IFNg-dependent pathways to induce plasma cell
differentiation and thereby create ideal conditions for M2b

macrophage and cancer progression (42) (Figure 1). These

suggest that strategies to influence functional activities of

inflammatory cells may benefit anticancer therapy.

FACTORS REGULATING

TAMs FUNCTIONS

TAMs are a collection of multiple cell types with a wide range of
functional effects under steady state and pathological conditions.

This diversity is regulated by many different factors, such as the

tumor cell-derived soluble molecules, tumor metabolic

alterations, other immune cells and other factors (Figure 2).

Tumor Cell-Derived Soluble Molecules
TAMs can be activated and polarized by tumor cell-derived

soluble molecules, thereby promoting tumor progression and
metastasis. Tumor cells secrete the sonic hedgehog (SHH), and

tumor-derived SHH drives TAM M2 polarization. Hh-

dependent polarization of TAM suppresses the recruitment of

CD8+ T cells to TME via inhibiting CXCL9 and CXCL10,

mediating TAM immunosuppression mechanism (43). In

addition, kynurenine produced by glioblastoma cells can
activate the aromatic hydrocarbon receptor (AHR) in TAMs,

and AHR can drive KLF4 expression and inhibit NF-kB
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activation in TAMs, which regulate TAM function and T cell

immunity (44). Cancer cells can also release succinate into their

microenvironment and activate the succinate receptor

(SUCNR1) signal, thereby polarizing macrophages to TAMs

(45). Meanwhile, there is a positive correlation between the
expression of osteopontin (OPN) in tumor cells and TAMs

infiltration. OPN promotes chemotaxis migration and

activation of TAMs (46). Also, when mucin MUC1 is

expressed on cancer cells and is decorated with multiple short,

sialylated O-linked glycans (MUC1-ST), which will induce TAM

to express M2-like phenotype (47).

Tumor Metabolic Alterations
It is worth noting that macrophage polarization is correlated

with distinct metabolic characteristics pertaining to glucose

metabolism (48, 49), lipid metabolism (50), and glutamine

metabolism (51). Such metabolic alterations can also determine

the phenotype and function of TAMs in promoting the cancer

progression (52).
Cancer cells can utilize metabolic byproducts to take the

control of tumor-infiltrating immune cells to their own benefit.

For example, lactate secreted by glycolysis in cancer cells, which

transfers the polarization of TAMs from a pro-inflammatory

(M1-like) to an anti-inflammatory (M2-like) phenotype (53, 54).

Another research shows that membrane cholesterol efflux drives
TAM reprogramming and tumor progression. Ovarian cancer

cells promote membrane cholesterol efflux, and increased

cholesterol efflux promotes IL-4 mediated signaling in TAMs,

which will promote tumor invasion and metastasis (55). In

addition, glutamate-ammonia ligase (GLUL) favors M2-like

TAMs polarization by catalyzing the conversion of glutamate

into glutamine, and GLUL inhibition can transfer M2-like TAMs
into M1-like phenotype by increasing glycolytic flux and

succinate availability (51).

Regulated by Immune Cells
TAMs can be regulated by other immune cells, such as Treg cells,

MDSCs and B cells. IFN-g is the main cytokines responsible for

inhibiting M2-like TAM. Treg cells can inhibit IFN-g secreted by
CD8+ T cells, which will prevent the activation of fatty acid

synthesis that mediated by sterol regulatory element binding

protein 1 (SREBP1) in immunosuppressive M2-like TAM.

Therefore, Treg cells indirectly but selectively maintain M2-like

TAM metabolic adaptability, mitochondrial integrity and

survival rate (56). In addition, MDSCs also regulate TAM

differentiation and promote tumor proliferation by
downregulation of STAT3 (57). Besides, B cells are the key

factors determining the tumor promoting function of TAMs. B

cells can induce M2b macrophage polarization in human HCC

(58), as well as suppress other immune cells, such as CD8+ T

cells and M1 macrophages in the tumor microenvironment and

promote the proliferation of cancer cell (59). Depletion of B cells
prevented generation of M2b, increased the activity of anti-

tumor T cell response, and reduced tumor growth.

FIGURE 2 | Overview of the factors regulating TAMs functions and the targets of TAMs for cancer treatment. TAMs are a collection of multiple cell types with a wide

range of functional effects, which are regulated by many different factors, such as the tumor cell-derived soluble molecules, tumor metabolic alterations, and other

immune cells. Targeting TAMs is a new cancer treatment strategy, including limiting monocytes recruitment, targeting TAMs activation, and targeting TAMs specific

markers. AHR, aromatic hydrocarbon receptor; SUCNR1, succinate Receptor 1; EGF, epidermal cell growth factor; SIRPa, signal regulatory protein alpha.
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Regulation by Other Factors
There are also some other factors of tumor microenvironment

that can regulate TAMs function. Autophagy in the tumor
microenvironment can provide essential nutrients, nucleotides,

and amino acids to the tumor cells, facilitating tumor growth

(60). Autophagy proteins in myeloid cells in the tumor

microenvironment help to activate TAM by influencing LAP

and mediate immunosuppression of T lymphocytes (61). In non-

alcoholic fatty liver disease (NAFLD), NLRC4 contributes to the

polarization of TAM to M2 type and the production of IL-1b and
VEGF, thereby promoting the growth of tumor (62). Moreover,

C-Maf transcription factor is the main regulator of cancer-

promoting TAM polarization. C-Maf can promote the

immunosuppressive activity of TAMs and control its metabolic

process (63).

TARGETING TAMs FOR CANCER

TREATMENT

TAMs are one of the most important components of the tumor

immunosuppression microenvironment with high degree of

plasticity. TAMs have both M1 and M2 type and have the

potential ability of repolarization to M1 type macrophages.

Therefore, targeting TAMs is a new cancer treatment strategy,

including limiting monocytes recruitment, targeting TAMs
activation, reprogramming TAMs into anti-tumor activity, and

targeting TAMs specific markers (Figure 2).

Limiting Monocyte Recruitment
One of the strategies for targeting TAMs is to block monocyte

recruit to tumor tissue. Tumor cells recruit CCR2-expressing

monocytes from the peripheral blood to the tumor site by
releasing CCL2 and these recruit CCR2-expressing monocytes

will finally mature into TAMs, which accelerate the tumor

progress. Thus, targeting CCL2-CCR2 axis is a very effective

method of cancer therapy. Blocking the CCL2-CCR2 axis could

greatly reduce the incidence of tumors by preventing TAMs

recruitment and enhance the anti-tumor efficacy of CD8+ T cells

in the tumor microenvironment (64).
CSF1 signaling pathway plays a key role in the production of

bone marrow monocytes and the polarization of TAMs in tumor

tissues. CSF1 produced by tumor cells caused down-regulation of

granulocyte-specific chemokine expression in HDAC2-mediated

cancer-associated fibroblasts (CAF), thereby limiting the

migration of monocytes to tumors. The combination of CSF1R
inhibitor and CXCR2 antagonist can prevent granulocytes from

infiltrating the tumor, showing a strong anti-tumor effect (65).

Also, combination of anti-PD-1 and anti-CSF1R antibodies

induces melanoma regression in mice (66).

Targeting TAM Activation
Targeted activation of TAMs is an effective tumor treatment

method. One of them is inhibiting TAMs from promoting tumor
cell activation. Epidermal cell growth factor (EGF) secreted by

TAM activates EGFR on tumor cells, which in turn upregulates

VEGF (vascular endothelial growth factor)/VEGFR signaling in

surrounding tumor cells, thereby promoting the proliferation

and migration of tumor cells. EGFR blockade or ICAM-1

(intercellular adhesion molecule) antibody neutralization in

TAM reduced the occurrence of ovarian cancer in mice (25).

Another effective tumor treatment method is blocking
inhibitory receptor signals on TAMs that promote phagocytosis

and antigen presentation function. Tumor cells highly express

CD47, which restricts the ability of macrophages to engulf tumor

cells through the signal regulatory protein alpha (SIRPa) -CD47
signal. The destruction of the SIRPa-CD47 signal axis is effective

against various brain tumors including glioblastoma multiforme
(GBM) by inducing tumor phagocytosis (67). Leukocyte

immunoglobulin-like receptor subfamily B (LILRB) family is a

class of inhibitory receptors expressed by myeloid cells, and its

ligands are MHCI-like molecules (68). LILRB1 is up-regulated on

the surface of TAM, and the MHCI-like component b2-
microglobulin expressed by cancer cells can directly protect it
from being engulfed. Therefore, blocking MHC I molecules or

LILRB1 can enhance TAM phagocytosis (69).

Targeting pre-tumor myeloid cells at the metabolic level is

another therapeutic strategy. Immunosuppressive phenotype of

TAMs is controlled by long-chain fatty acid metabolism

(especially unsaturated fatty acids), which makes BMDMs

polarized into M2 phenotypes with strong inhibitory ability.
Therefore, chemical inhibitors can effectively block TAM

polarization in vitro and tumor growth in vivo (70).

Reprogramming TAMs Into
Anti-Tumor Activity
One of the key characteristics of macrophages is their plasticity,

which allows them to change the phenotype according to the

tumor microenvironment. Therefore, reprogramming TAMs

into an anti-tumor phenotype is a very promising tumor

treatment strategy. Anti-tumor macrophages (M1 type) have

abilities to clear and destroy tumor cells. RP-182 can selectively

induce conformational switching of the mannose receptor
CD206 expressed on TAM expressing the M2 phenotype,

reprogramming M2-like TAM into anti-tumor M1-like TAM

phenotype (71). Another finding shows that serine/threonine

protein kinase 1 (RIP1) interacting with receptors in TAMs in

pancreatic ductal adenocarcinoma (PDA) is up-regulated.

Targeting RIP1, which act as a checkpoint kinase, reprogram
TAM toward MHCIIhi TNFa+ IFNg+ phenotype (72).

Targeting Immune Inhibitory Molecules
on TAMs
Targeting immune inhibitory molecules on TAMs is also an

effective method. Blocking of MerTK leads to the accumulation

of apoptotic cells in tumor cells and triggers a type I interferon

response. MerTK blockade increases tumor immunogenicity and

enhances anti-tumor immunity. Treatment of tumor-bearing
mice with anti-MerTK antibodies can stimulate T cell

activation and synergize with anti-PD-1 or anti-PD-L1 therapy

(73). PD-1-PD-L1 therapy can also work by direct action on

macrophages. Both mouse and human TAM express PD-1. The
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expression of TAM PD-1 is negatively correlated with the

phagocytic ability against tumor cells, and blocking PD-1-PD-

L1 in vivo will increase the phagocytosis of macrophages, reduce

tumor growth, and rely on macrophage-dependent ways to

prolong the survival of mice in cancer models (74).

CONCLUDING REMARKS

Under the effect of the tumor microenvironment, TAMs are

tamed by tumor cells and has become a promoter of tumor

growth. Studies have shown that TAMs have a significant role in

promoting the development and progress of tumors. Therefore,

how to inhibit the tumor-promoting roles of TAMs will provide

new clues for future tumor therapy. However, a number of key

questions remain to be answered, including mechanisms of TAM

development, key factors that drive phenotypic changes of TAMs

in the tumor microenvironment. Recent pre-clinical and clinical

studies aiming at targeting TAMs for cancer treatment have

shown inspiring results. TAM-targeting therapy represents a
promising treatment of cancer patients in the future.
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