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Abstract

Tumor metastasis is a major contributor to the death of cancer patients. It is driven not only by the intrinsic

alterations in tumor cells, but also by the implicated cross-talk between cancer cells and their altered

microenvironment components. Tumor-associated macrophages (TAMs) are the key cells that create an

immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines, growth factors, and

triggering the inhibitory immune checkpoint proteins release in T cells. In doing so, TAMs exhibit important

functions in facilitating a metastatic cascade of cancer cells and, meanwhile, provide multiple targets of certain

checkpoint blockade immunotherapies for opposing tumor progression. In this article, we summarize the regulating

networks of TAM polarization and the mechanisms underlying TAM-facilitated metastasis. Based on the overview of

current experimental evidence dissecting the critical roles of TAMs in tumor metastasis, we discuss and prospect

the potential applications of TAM-focused therapeutic strategies in clinical cancer treatment at present and in the

future.
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Introduction
Metastasis is a process of tumor cells escaping from the

primary sites, spreading through lymphatic and/or blood

circulations and ultimately disseminating to the distant

sites. As one of the hallmarks of cancer, development of

metastasis accounts for more than 90% cancer-related

deaths [1]. Usually, the metastasis of tumor cells is a

multistep sequence mainly including (a) invasion in the

primary sites, (b) intravasation into the vasculature, (c)

survival in the circulations, (d) extravasation out of the

vasculature, and (e) adaption and growth in the meta-

static sites [2, 3]. Failure in any of those steps will pre-

vent the formation of metastasis. In addition to the

alterations of the intrinsic properties in tumor cells, the

“seed and soil” concept, firstly proposed by Stephen

Paget in 1889, has been widely accepted as a critical the-

ory to do with metastasis [4]. In this theory, tumor cells

themselves are not sufficient for the development of me-

tastasis. In fact, both the tumor cells and multiple com-

ponents of the tumor microenvironment (TME) and

their complicated cross talk are closely involved [5, 6].

Macrophages populating in the surrounding TME are

usually termed as tumor-associated macrophages

(TAMs) [7, 8]. A large volume of studies suggests that

TAMs serve as prominent metastasis promoters in the

TME, which orchestrate almost all of the 5 cascade steps

of tumor metastasis as mentioned above [9, 10]. By pro-

ducing growth factors, proteolytic enzymes, and various

inhibitory immune checkpoint proteins in T cells, TAMs

display implicated functions in regulating metastasis.

Also, targeting TAMs as therapeutic strategies to pre-

vent tumor progression and metastasis has attracted

more and more researchers’ attention in recent years. So

far, different types of molecular agents against TAMs are

emerging as potential anti-cancer approaches. This re-

view aims to provide an overview of the origin, classifi-

cation, and polarization of TAMs as well as the

mechanisms underlying the TAM-induced metastasis.

Also, we will specifically discuss the agents targeting
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TAMs for cancer therapy. It is hoped that this review

will help readers to understand the roles of TAMs in

metastasis and their potential in clinic therapeutic appli-

cations against tumor progression.

Overview: biological information and polarization
of TAMs
The definition, origin, and functions of TAMs

Macrophages are a type of versatile immunocytes, exe-

cuting a broad spectrum of functions that range from

modulating tissue homeostasis, defensing against patho-

gens, and facilitating wound healing [11]. Macrophages

infiltrating tumor tissues or populated in the microenvir-

onment of solid tumors are defined as tumor-associated

macrophages (TAMs). As a critical component of tumor

microenvironment, TAMs affect tumor growth, tumor

angiogenesis, immune regulation, metastasis, and che-

moresistance. Most of the TAMs gather in the leading

edge and avascular areas, while some others align along

the abluminal side of the vessels as well [12, 13]. It is

generally believed that the blood monocytes derived

from bone marrow hematopoietic stem cells are the pri-

mary resource of macrophages [14–16]. However, recent

evidence suggests that a majority of resident macro-

phages stem from yolk sac progenitors, which proliferate

or differentiate in situ and have progeny throughout

their life, such as alveolar macrophages, brain macro-

phages, and Kupffer cells [11, 17–19]. They are recruited

and activated by various signals in the TME and then ex-

hibit dramatic impacts on the tumor progression and

metastasis. The cellular origin of macrophages and

TAMs was shown in Fig. 1.

Like macrophages perform diverse functions in im-

mune regulation, TAMs also play multi-functional roles

in tumor progression, including cancer initiation and

promotion, immune regulation, metastasis, and angio-

genesis, as shown in Fig. 1. For example, the presence of

TAM-derived inflammatory cytokines interleukin (IL)-23

and IL-17 have been shown to trigger tumor-elicited in-

flammation, which in turn drives tumor growth [20]

(Fig. 1). Another study demonstrated that the increased

TAM-derived IL-6 exerts an amplifying effect on the in-

flammation response, thus promoting the occurrence

and development of hepatocellular carcinoma via STAT3

signaling [21]. Moreover, TAMs acquire an M2-like

phenotype, providing essential support on tumor pro-

gression and metastasis, despite their weak antigen pre-

senting ability [22].

The classification and polarization of TAMs

It is clear that macrophages are capable of displaying

very different and even opposing phenotypes, depending

on the microenvironment they embedded in. Activated

macrophages are often classified into M1 (classical-acti-

vated macrophages) and M2 (alternative-activated mac-

rophages) phenotype [23] (Fig. 2). In general, M1

macrophages foster inflammation response against in-

vading pathogens and tumor cells, whereas M2 macro-

phages tend to exert an immune suppressive phenotype,

favoring tissue repair and tumor progression. These two

types of macrophages are distinct in their different

Fig. 1 Cellular origins and functions of TAMs. As the major primary resource of macrophages, monocytes are generated from hematopoietic stem

cells (HSCs) that differentiate into granulocyte-macrophage progenitors (GMPs) and then into monocyte-dendritic cell progenitors (MDPs).

Besides, tissue-resident macrophage stem from yolk sac progenitors are another key resources of macrophages, which proliferate or differentiate

in situ, such as alveolar macrophages, brain macrophages, and Kupffer cells. The mature monocytes released in the blood and tissue-resident

macrophages are recruited and activated by various signals in the TME and then exhibit dramatic impacts on the tumor initiation and promotion,

metastasis, immune regulation and angiogenesis
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markers, metabolic characteristics, and gene expression

profiles. M1 macrophages secrete proinflammatory cyto-

kines such as IL-12, tumor necrosis factor (TNF)-α,

CXCL-10, and interferon (IFN)-γ and produce high

levels of nitric oxide synthase (NOS, an enzyme metab-

olizing arginine to the “killer” molecule nitric oxide),

while M2 macrophages secrete anti-inflammatory cyto-

kines such as IL-10, IL-13, and IL-4 and express abun-

dant arginase-1, mannose receptor (MR, CD206), and

scavenger receptors [24, 25] (Fig. 2). The conversion be-

tween M1 (anti-tumorigenesis) and M2 (pro-tumorigen-

esis) is a biological process named “macrophage

polarization” in response to microenvironmental signals

[26]. Though studies found that TAMs are able to ex-

hibit either polarization phenotype, researchers tend to

consider TAMs as M2-like phenotype-acquired macro-

phages [22, 26–28]. It is consistent with these clinical

observations that the accumulation of macrophages in

the TME is largely associated with worse disease out-

come [13, 29]. However, classification and identification

of TAMs should be correlated mainly to their function

such as metastasis, angiogenesis, and immune regula-

tion. Expression of CD68, CD14, HLA-DR, and CD204

have been used for macrophage classification, and other

proteins such as MMP2/9, B7-H4, STAT-3, CD163, and

CD206 have been used for classification of TAMs [30].

We have listed these characterized biomarkers, CDs, and

cytokines for TAM identification in Table 1. To better

understand the correlation between TAMs, metastasis,

and clinical applications in cancer therapy, we will fur-

ther characterize the molecular mechanisms underlying

TAMs polarization from M1-like to M2-like in detail

below, also as shown in Fig. 2.

Polarization of TAMs is regulated by multiple micro-

environmental cytokines, chemokines, growth factors,

and other signals derived from tumor and stromal cells

[24]. Among those factors, colony stimulating factor 1

(CSF-1) and C-C motif ligand 2 (CCL2) are the most

two well-documented macrophage recruiters and M2-

stimulating factors (Fig. 2). CCL2 was earlier reported to

shape macrophage polarization toward the protumor

phenotype via the C-C chemokine receptor 2 (CCR2)

expressed on the surface of macrophages [38]. Blocking

the CCL2-CCR2 interaction either by genetic ablation or

antibodies obviously inhibits metastatic seeding and pro-

longs the survival of tumor-bearing mice along with the

diminished protumor cytokine expression [38–40].

Moreover, abundant clinicopathological data have veri-

fied the association between high concentrations of

CCL2 in tumor with increased TAM infiltration and

metastatic events [22, 39, 41]. CSF-1 is another potent

determinant factor of macrophage polarization. CSF-1

wide overexpression is observed at the invasive edge of

various tumors and correlates with a significant increase

Fig. 2 Tumor-associated macrophages (TAMs) polarization and its regulatory networks. Polarization of TAMs is regulated by multiple

microenvironmental cytokines, growth factors, epigenetic regulators, and other signals derived from tumor and stromal cells. Two types of

macrophages (M1/M2) secrete different immune markers, metabolic characteristics, and gene expression profiles to exert different functions
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in metastasis [24]. In addition, tumor graft models

showed that CSF-1 depletion led to greatly reduced

macrophage density, delayed tumor progression, and se-

verely inhibited metastasis [22, 24, 42, 43]. And the res-

toration of expression of CSF-1 in CSF-1 null mutant

mice with xenografts accelerated both tumor progres-

sion and metastasis [42]. Vascular endothelial growth

factor A (VEGF-A) has long been considered as a

powerful pro-tumor factor [44]. Other than its pro-

angiogenic effects, VEGF-A also fosters the malignant

growth of tumors by inducing TAM infiltration and M2

polarization in the presence of IL-4 and IL-10 [45]. Dir-

ect evidence came from the gain-of-function experi-

ments in the xenograft model of skin cancer, whereby

VEGF-A upregulation rescued the clodronate induced

macrophage depletion and resulted in shortened xeno-

graft survival [45–47]. Besides, the overactivation of the

epidermal growth factor receptor (EGFR) signaling path-

way by either overexpression or mutation is frequently

involved in tumor initiation, growth, and metastasis [48].

Actually, EGFR signaling not only promotes proliferation

and invasiveness of tumor cells directly, but also adjusts

the TME by regulating macrophage recruitment and

M2-like polarization [49, 50]. Disrupted EGFR signaling

by cetuximab or gene knockout resulted in less M2-

polarized TAMs and correlated with better prognosis in

colon cancer models of mice [51, 52]. Beyond those

well-investigated factors mentioned above, a number of

new homeostatic factors have been described as TAM

inducers recently. For example, prostaglandin E2 (PGE2)

synergized with CSF-1 to promote M2 polarization by

transactivating the CSF-1R, and PGE2-elicited macro-

phage infiltration was significantly halted in the absence

of CSF-1R [53]. In addition, CCN3 (also known as NOV,

nephroblastoma overexpressed) led to enhanced M2

macrophage infiltration, whereas CCN3 deficiency pro-

longed xenograft survival in prostate cancer [54]. Fur-

thermore, other chemokines such as IL-4, IL-6, IL-13,

CCL7, CCL8, CCL9, CCL18, and CXCL12 are also

highly expressed in tumors and involved in TAM re-

cruitment and polarization [9, 10, 55–57] (Fig. 2).

Hypoxia, which resulted from tumor cells with a status

of vigorous metabolism and rapid growth but poorly or-

ganized vasculature, is a common feature occurring in

the majority of solid tumors [58]. Hypoxia promotes the

malignant tumor behaviors by various mechanisms, such

as inducing immune escape, promoting glycolysis, antag-

onizing apoptosis, promoting cell dedifferentiation, and

reducing therapeutic effectiveness [59–61]. It is worth

noting here that hypoxia also roles as a vital regulator of

macrophages, which helps tumor cells overcome nutri-

tive deprivation and convert the TME into more hospit-

able sites [28]. The gradients of chemokines induced by

hypoxia, such as CCL2, CCL5, CSF-1, VEGF, semaphorin

3A (SEMA3A), endothelial cell monocyte-activating

polypeptide-II (EMAP-II), endothelin, stromal cell-

derived factor 1α (SDF1α), eotaxin, and oncostatin M,

are responsible for the migration of TAMs into the hyp-

oxic areas [28]. Hypoxia further traps the seeding mac-

rophages by downregulating the chemokine receptors

expressed on macrophages [62, 63]. Besides, hypoxia

modulates the TAM phenotype toward a pro-tumoral

profile by various factors. Lactate, massively produced

by anaerobic glycolysis of tumor cells in oxygen-

deprived areas, is one of the key inducers of M2 pheno-

type. It can be sensed by G protein-coupled receptor

132 (Gpr132), a membrane receptor on macrophages,

which subsequently activates downstream signals and

Table 1 Biomarkers associated with tumor-associated macrophages

Characteristics Function Expression Detection Ref.

M1 M2 In situ In vitro

Biomarkers MMP2/9 Matrix metalloproteinase − + IHC Digestion [31]

B7-H4 Inhibiting costimulatory molecule − + IHC Flowcytometry [32]

STAT-3 Transcription factor − + IHC Flowcytometry [33]

iNOS Nitric oxide synthase + − IHC N/A [34]

HLA-DR Antigen presentation molecule + + IHC Flowcytometry [35]

CDs CD68 Glycoprotein for adherence + + IHC Flowcytometry [30]

CD14 LPS co-receptor + + IHC Flowcytometry [30]

CD163 Scavenger receptor hemoglobulin − ++ IHC Flowcytometry [30]

CD206 Mannose receptor + ++ N/A Flowcytometry [30]

CD204 Macrophage scavenger receptor 1 + + IHC N/A [36]

Cytokines IL-12p70 Interleukin ++ − IHC ELISA [37]

IL-10 Interleukin + ++ IHC ELISA [37]

Marked with “−”: no expression; “+”: present on cell subset; “++”: highly expressed or produced

IHC immunohistochemical staining
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modulates the expression of polarization-associated

genes [64]. And it has been shown that the enhanced ex-

pression of Gpr132 relates to the worse outcome of

breast cancer patients, which was further verified by the

positive association between the Gpr132 level and M2

macrophages infiltration, metastasis, and poor prognosis

in breast cancer models in mice [64]. Similar stimulatory

functions on macrophage accumulation and polarization

can also be achieved by angiopoietin-2 (Ang-2), which is

generally accepted as a regulator of vessel stabilization

and growth in accompany with VEGF, Ang-1, via specif-

ically binding to the receptor Tie-2 [65, 66] (Fig. 2).

Ang-2 can also be dramatically upregulated by hypoxia

[65]. However, there exists opposed evidence claiming

that hypoxia is not the major driver of M1-M2 skewing

[28, 67]. Instead of a direct effect on M2 transforming,

hypoxia only fine-tunes hypoxia-regulated genes expres-

sion without influencing their M2 markers expression or

the relative abundance of TAM subsets [67].

Epigenetic derangements is another universal feature

in cancer. Epigenetic regulators reshape chromatin

structures, pack the genome, and change gene expres-

sion patterns without altering the genome itself [68, 69].

More recently, a growing number of publications focus

on the epigenetic participation in macrophage pheno-

typic switch [70, 71] (Fig. 2). Usually, most of the key

points of epigenetic regulators are enzymes, which are

druggable and easy to be translated into clinical applica-

tions for tumor intervention. For example, protein argin-

ine methyltransferase 1 (PRMT1), SET and MYND

domain-containing protein 3 (SMYD3), Jumonji

domain-containing protein 3 (JMJD3), NAD-dependent

protein deacetylase sirtuin-2 (SIRT), and bromodomain

and extraterminal (BET) proteins positively regulate M2

polarization by upregulating M2 markers, while DNA

methyltransferase 3b (DNMT3b), Jumonji domain-

containing protein 1A (JMJD1A), histone deacetylase 3

(HDAC3), and HDAC 9 do the opposite effect [70, 71].

Interfering these epigenetic enzymes with pharmacologic

modulators was able to prevent these macrophages from

polarizing to M2 s and control the malignant progres-

sion of tumors.

As another type of epigenetic regulator, microRNAs

(miRNAs) are also in control of macrophage polarization

(Fig. 2). To date, miR-125, miR-155, miR-378, miR-9,

miR-21, miR-146, miR-147, miR-187, miR-222, and miR-

let7b have been reported as dominant TAM modulators

[72]. For example, miR-222-3p, implicated as a tumor

promoter in diverse tumor types, activates macrophages

to the M2 phenotype by downregulating suppressor of

cytokine signaling-3 (SOCS3) which is a negative feed-

back regulator of the JAK/STAT signaling pathway [73].

What is more, let-7b, enriched in prostatic TAMs, is

drawing attention along the same line. Prostatic TAMs

treated with let-7b inhibitors displayed characteristics of

M1, with a significantly higher expression of pro-

inflammatory cytokines (such as IL-10, IL-12, and IL-

23), and downregulated pro-tumoral cytokines such as

TNF-α [74].

Taken together, the polarization of TAMs is regulated

by complicated biological networks (Fig. 2), which clinic-

ally correlates with cancer metastasis and progression.

Mechanisms underlying TAM-facilitated
metastasis
As mentioned above, TAMs display lots of important

biological functions in tumor progression from different

aspects. Here, we mainly focus on the correlation be-

tween TAMs and tumor metastasis. In fact, how TAMs

contribute to tumor metastasis is a puzzling question

which enables researchers to pursue the answers for

dozens of years, though the existing studies demonstrate

that TAMs implicate in almost every step of metastasis

as described below, also shown in Fig. 3.

TAMs promote invasion of tumor cells

Metastasis begins with tumor cells obtaining the ability

of invasiveness and escaping from the confines of the

basement membrane into the surrounding stroma [5,

75]. Highly invasive tumor cells always share the charac-

teristics of loss of intrinsic polarity and loosely attach-

ment to the surrounding tissue structures [76].

Epithelial-mesenchymal transition (EMT) is a predomin-

ant event in this morphological transformation, which

contributes to malignant biological properties including

invasion and metastasis [76]. During EMT process,

tumor cells lose cell-cell junctions and apical-basal po-

larity as a result of E-cadherin repression and acquire a

motile mesenchymal cell phenotype [77, 78].

Recently, a number of studies suggested that TAMs in-

volve in the regulation of EMT process [79–81]. Immu-

nostaining of clinical hepatocellular carcinoma (HC)

samples revealed that the EMT hotpots, such as the edge

of tumor nests, are also the sites where TAMs infiltrate

in abundance [80]. Moreover, co-cultured HC cell lines

with TAMs enhanced the expression of N-cadherin and

Snail, both of which are hallmarks of mesenchymal phe-

notypes. Meanwhile, E-cadherin was observed to be

downregulated. This phenomena also occurred in gastric

cancer and pancreatic ductal adenocarcinoma (PDAC)

[82]. Biologically, macrophages participate in the EMT

process via secreting various soluble factors, such as IL-

1β, IL-8, TNF-α, and transforming growth factor-β

(TGF-β) [80, 83, 84]. Extracellular matrix (ECM) serves

as a scaffold as well as a barrier for tumor cell migration

[85], of which degradation is a focal event in metastasis.

It has been identified that TAMs are capable of secreting

a number of proteolytic enzymes, including cathepsins,
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matrix metalloproteinases (MMPs, such as MMP7,

MMP2, and MMP9), and serine proteases, which are im-

portant components mediating ECM degradation and

cell-ECM interactions [86–88]. In addition, an earlier

study demonstrated that M2 macrophage promotes the

invasiveness of gastric and breast cancer cells by produ-

cing chitinase 3-like protein 1 (CHI3L1). CHI3L1 upre-

gulates MMP expression via interacting with

interleukin-13 receptor α2 (IL-13Rα2) chain which trig-

gers the activation of the mitogen-activated protein kin-

ase (MAPK) signaling pathway [89]. Once the tumor

cells break away from the constraint of ECM networks,

they would move toward the stimuli along with the

ECM fiber by interacting with other ECM components,

such as fibronectin and vitronectin [90, 91]. Further-

more, secreted protein acidic and rich in cysteine

(SPARC) synthesized by TAMs were shown to be neces-

sary for the migration of tumor cells, aside from its role

as an ECM deposition regulator. According to the earlier

studies, SPARC favors fibronectin and vitronectin inter-

action with tumor cells through integrins, generating a

traction force along ECM fibers [92, 93]. The traction

force pulls tumor cells to rapidly travel through the

stroma like tram lines and guarantees the rapid motiv-

ation of cells within stroma as well as toward tumor vas-

culature since many of those ECM fibers terminally

converge on blood vessels [90]. Genetic ablation of

SPARC led to attenuated metastasis by decreased ECM

deposition and impaired tumor cell-ECM interaction

[90, 92, 93].

TAMs promote vascularization of tumor cells

Tumor vasculature serves as a major route for the me-

tastasis of malignant tumors. When solid tumors grow

up to a certain size, a process termed as “ angiogenic

switch” will be turned on by various mechanisms to trig-

ger a high-density vasculature for nutrients supply and

wastes removal [94, 95]. TAMs are critical players in the

regulation of “angiogenic switch.” They form clusters in

the intra-tumoral regions and the invasive fronts, both

of which are the hotspots of angiogenesis and metastasis.

In contrast, the absence of TAMs significantly reduced

the vessel density by 40% [96, 97]. In addition to affect-

ing the formation of new tumor vessels, TAMs also

stimulate the remodeling of the established vasculature

to a more tortuous and leaky form in favor of tumor dis-

semination [96, 97]. In fact, researches strongly argue

the important roles for VEGF and MMP-9 (plays a char-

acter in releasing VEGF from matrix) in regulating

TAM-driven angiogenesis. Also, there are some other

proangiogenic molecules involved as well, such as fibro-

blast growth factor (FGF)-2, CXCL8, IL-1, IL-8, cycloox-

ygenase (COX)-2, nitric oxides (iNOS), and MMP7 [96–

99]. Furthermore, there is a novel subset of TAMs

Fig. 3 Mechanisms of tumor-associated macrophages (TAMs) in tumor metastasis. TAMs affect virtually almost every step of tumor cells

metastasis, including invasion, vascularization, intravasation, extravasation, establishing pre-metastatic niches, and protecting circulating tumor

cells survival

Lin et al. Journal of Hematology & Oncology           (2019) 12:76 Page 6 of 16



expressing tyrosine-protein kinase receptor Tie-2 (also

known as angiopoietin-1 receptor) termed as TEMs [65,

100]. Experiments in a variety of tumor models clarify

that TEMs were endowed with dramatic proangiogenic

activity, since Tie-2 is capable of binding with all the

known angiopoietins (Angs, including Ang-1, Ang-2,

Ang-3, and Ang-4) [12, 65, 66]. Therefore, selective

elimination of TEMs by a suicide gene strategy may be

another promising option for preventing angiogenesis

and tumor progression [66].

Besides, TAMs also account for lymphangiogenesis, an

important route for tumor cells disseminating to re-

gional lymph nodes and distant metastasis, in a VEGF-C

(a ligand overexpressed by tumors)/VEGFR-3 (a receptor

of VEGF-C expressed on the TAMs) axis-dependent

manner. VEGF-C/VEGFR-3 axis fosters lymph angiogen-

esis either by directly affecting the lymphatic endothelial

cells (LECs) activity or indirectly elevating the cathepsins

secretion whose downstream molecular heparanase is a

robust inducer of lymphangiogenesis [101–103]. From

the mouse models, treatment with antibodies against

VEGF-C/VEGFR-3 or genetic ablation of heparanase sig-

nificantly altered the lymphatic vessel phenotype and

subsequently impaired the primary tumor growth and

metastasis [101].

Taken together, these evidences demonstrate that

TAMs function in the way of promoting the

vascularization of tumors via different pathways and

thus are closely involved in tumor metastasis.

TAMs promote intravasation of tumor cells

Tumor cells squeezing through small pores in vascular

endothelium to gain access to the host vasculature is an-

other critical step in metastasis [104]. An experiment

utilizing intravital multiphoton imaging gave a direct

and kinetical visualization of intravasation. According to

this experiment, an intravasating tumor cell is always vi-

sualized to be accompanied by a macrophage within one

cell diameter, showing a direct evidence of TAMs involv-

ing in tumor cell intravasation [105, 106]. Consistently,

clinical observations have identified the tripartite ar-

rangement of TAMs, tumor cells, and endothelial cells

as the tumor microenvironment of metastasis (TMEM).

The TMEM is a predictor of increased hematogenous

metastasis and poor prognosis, at least in breast cancer

[107]. The mechanisms underlying this synergistic inter-

action are complicated. On the one hand, macrophages

break down the ECM around the endothelium by a

number of proteolytic enzymes such as cathepsins,

matrix metalloproteinases, and serine proteases [86–88].

On the other hand, TAMs hijack tumor cells into the

circulation by a positive feedback loop consisting of

tumor cell-produced CSF-1 and TAM-produced EGF

[108]. The former cytokine stimulates macrophage’s

motility as well as EGF production, which in turn signals

to tumor cells and mediates chemotactic migration to-

ward blood vessels [108, 109]. Therefore, inhibition of

either CSF-1 or EGF signaling pathway perturbs the mi-

gration of both cell types and reduces the numbers of

circulating tumor cells as well.

TAMs promote tumor cell survival in the circulation

Once penetrated into the vasculature, the tumor cells

have to be primed for survival and egress from the circu-

lation. Clots packed around the tumor cells alleviate sur-

vival stress from such as natural killer (NK) cells in a

tissue factor (TF)-dependent manner in the general cir-

culation and capillaries [110, 111]. In fact, a strategy dis-

rupting macrophage functions by genetic methods

diminished the tumor cells survival in pulmonary capil-

laries and abrogated tumor invasion into the lung, des-

pite clot formation, indicating an essential role of

macrophages in this aspect [112]. Two plausible mecha-

nisms might account for this phenomenon. In part, a re-

cent study discovered that the recruited macrophages

triggered the PI3K/Akt survival signaling pathway in

newly disseminated breast cancer cells by engaging vas-

cular cell adhesion molecule-1 (VCAM-1) via α4 integ-

rins [113, 114]. The activation of the PI3K/Akt survival

pathway subsequently saved cancer cells from proapop-

totic cytokines such as TNF-related apoptosis-inducing

ligand (TRAIL) [113]. In another part, many of the

tumor cells survive which are protected by macrophages

due to their secreted chemokines or cytokines directly

secreted [112].

TAMs promote extravasation of tumor cells

Once the tumor cells settle in the capillaries of the tar-

geted organs, they would try to attach and extrude

through the vessel walls with the assistant of macro-

phages. The intimate contacts between tumor cells and

macrophages during extravasation were visualized and

quantitatively analyzed within an intact lung imaging

system [115]. Of particular importance, the researchers

found that the extravasation rate was dramatically de-

clined after the loss of macrophages together with a co-

incident failure of metastasis [115].

TAMs prepare sites for tumor cells: pre-metastatic niches

(PMN)

It is believed that metastasis is not necessary to be a late

event in tumor progression [116]. The primary tumors

are smart enough to “prime” the secondary organs and

dictate organ-specific dissemination before the arrival of

tumor cells. Those “primed” sites are predisposed to me-

tastasis and introduced as the concept of pre-metastatic

niches (PMNs) [116]. Studies clarified that macrophages

were one of the key determinants for the formation of
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PMNs. They were mobilized to the bloodstream and

then clustered in the pre-metastatic sites by a variety of

tumor-secreted factors, such as CCL2, CSF-1, VEGF,

PLGF, TNF-α, TGF-β, tissue inhibitor of metallopepti-

dase (TIMP)-1, and exosomes [116–118]. Besides, the

tissue-resident macrophages, such as liver Kupffer cells,

pulmonary alveolar macrophages, and osteoclasts, were

also involved in orchestrating PMN formation upon

stimulation [119, 120]. The presence of those macro-

phages provide a road map for the homing of circulating

tumor cells (CTCs) into the PMNs with enhanced ex-

pression of chemokines such as stromal derived factor

(SDF)-1 and Ang-1 and remodel the ECM to the tumor

cell-favoring direction by secreting ECM-shaping en-

zymes like MMPs, integrins, and lysyl oxidase (LOX),

most of which have been mentioned above as critical in-

ducers of angiogenesis, EMT, and extravasation [118–

121]. Furthermore, macrophages also establish metabolic

cross talk with immune cells like T helper 1 (TH1) cells

and dendritic cells and attenuate their tumoricidal and

tumor antigen-presenting behaviors, ultimately promot-

ing the prosperity of those newly lodged tumor cells in a

way of immunosuppression.

Potential strategies targeting macrophages
Cancer is one of the most life-threatening diseases as a

major public health problem with extremely high inci-

dence and mortality all over the world. The progression

in anti-tumor research never stops. While most of the

therapeutic approaches nowadays mainly focus on ma-

lignant cells themselves, only limited efficiency has been

achieved. However, in-depth knowledge of the cross talk

between tumor cells and TME has reoriented our ap-

proaches to strategies against pro-metastatic non-tumor

components in the TME. As described above, TAMs are

one of the most essential accessory cells promoting the

tumor progression and metastasis by various mecha-

nisms. More importantly, TAMs are subject to the regu-

lation of complicated molecular signals/factors,

including lots of druggable enzymes and immune check-

point proteins. As such, therapeutic approaches target-

ing TAMs are anticipated to be feasible and promising.

Overall, the TAM-targeted therapeutic solutions would

mainly focus on strategies to eliminate TAMs, impairing

macrophages infiltration and suppressing phenotype

conversion of M2 from M1 [82]. Next, we will discuss

the current agents based on different mechanisms in-

cluding inhibiting TAMs survival, suppressing M2

polarization and inhibiting macrophages recruitment as

below, and we list these related agents in Table 2.

Agents against TAMs survival

Trabectedin is an agent with such cytotoxic efficacy to

TAMs in TME; it has been approved for the treatment

of patients with soft tissue sarcoma in Europe [136].

And it is also under clinical evaluation for other cancer

types, including breast, prostate, and ovarian cancer

[136]. Specifically, trabectedin is accepted as the cyto-

toxic agent directly killing tumor cells by interfering

with several transcription factors, DNA-binding pro-

teins, and DNA repair pathways [137]. Besides, its effects

on the tumor microenvironment by selective mono-

nuclear phagocyte depletion has been claimed as another

key component of its antitumor activity [136]. Mechan-

ically, trabectedin selectively induces rapid apoptosis in

macrophages via TRAIL receptors and blocks their pro-

duction of some pro-metastatic cytokines like CCL2,

CXCL8, IL-6, and VEGF [136, 138]. The pro-apoptotic

efficiency of trabectedin has been evaluated in a pro-

spective study in which 56% (19 in 34) of soft tissue sar-

coma patients experienced monocyte reduction with the

extent ranging from 30~77% [136, 138]. Likewise, lurbi-

nectedin (PM01183) is another novel anticancer agent

structurally related to trabectedin. It functions by both

directly killing tumor cells and affecting TAM-based

immunomodulation [139]. As an analog of trabectedin,

lurbinectedin exhibits potent apoptotic capacity upon

macrophages, and by doing so, it dramatically decreases

the number of macrophages both in circulation and

TME in mice models [139]. Moreover, in the cancer cells

resistant to chemotherapeutic agents, angiogenesis and

distant dissemination were impaired due to

lurbinectedin-caused macrophage depletion [139]. For

clinical trials, various types of solid tumors in different

programs are being conducted to evaluate the clinical

benefits of lurbinectedin [122–124, 140–142]. However,

both trabectedin and lurbinectedin cannot avoid the side

effects arisen by unselectively macrophage consumption

since macrophages closely participated in host defense

and homeostatic regulation [140]. Thus, developing

agents preferentially targeting M2-like macrophages is

the “Holy Grail” to minimize potential toxic side effects.

M2 macrophage-targeting peptide (M2pep), just as im-

plied by the name, is such a construct discovered re-

cently [143]. Researchers found that M2pep was able to

exert selective toxicity to both tumor cells and M2 mac-

rophages without influence on M1 macrophages both

in vitro and in mice models [144, 145]. Based on these

studies, M2pep has been turned out to be a promising

adjuvant strategy for anticancer therapies, though it is

still in the initial stage and needs a long way to go for

substantial clinical applications.

Agents suppressing M2 polarization and enhancing M1

activity of macrophages

As described above, it is widely believed that M2 and

M1 macrophages play opposite roles in tumor growth

and metastasis. Therefore, proposing therapeutic
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strategies re-educating the pro-tumor M2 phenotype

into tumoricidal M1 phenotype and thus inhibiting

TAMs’ supportive roles in tumors is feasible [146]. Zole-

dronic acid (ZA) is an eligible agent of this kind, which

has been FDA-approved as the third generation of

amino-bisphosphonate agent for treating skeletal-related

events (SREs) and pain caused by bone metastasis. Be-

yond the skeleton, plenty of studies have generated new

insights into its potent role in modulating macrophages

phenotypes [147]. According to those studies, ZA was

able to reverse the polarity of TAMs from M2-like to

M1-like by attenuating IL-10, VEGF, and MMP-9 pro-

duction and recovering iNOS expression [99, 148]. Fur-

thermore, ZA was also capable of reducing the total

number of macrophages in the TME by halting TAM re-

cruitment and infiltration [149]. Based on this evidence,

Table 2 Clinical trials of agents targeting TAMs for cancer treatment

Compound Target Combination partner Tumor type Phase Status/results Ref. or trial no.

Agents that inhibit TAM survival

Trabectedin Pan-macrophages Durvalumab Solid tumors 1 Not yet recruiting NCT03496519

Monotherapy Mesothelioma 2 Recruiting NCT02194231

Lurbinectedin (PM01183) Pan-macrophages Monotherapy Solid tumors 1 No clinical consequences [122]

Monotherapy Ovarian cancer 1 Active, not recruiting [123]

Gemcitabine Solid tumors 1 CR, 3%
PR, 21%
PFS, 4.2 m

[124]

Agents that polarize TAMs to M1 type

Zoledronic acid (ZA) N/A Monotherapy Breast cancer 3 Prolonged survival [125]

Monotherapy Breast cancer 2 Recruiting NCT02347163

CP-870, 893 CD40 Monotherapy Solid tumors 1 PR, 14% [126]

Gemcitabine Pancreatic cancer 1 ORR, 19%
PFS, 5.6%
OS, 7.4%

[127]

Agents that inhibit TAM recruitment

Emactuzumab (RG7155) CSF-1R Monotherapy Solid tumors 1 PMR, 11%
ORR, 0%
CBR, 24%

[128]

Monotherapy Dt-GCT 1 CR + PR, 86%
SD, 11%

[129]

Atezolizumab Solid tumors 1 Recruiting NCT02323191

Paclitaxel Ovarian cancer
Breast cancer

1 Not yet reported NCT01494688

Paclitaxel Ovarian cancer 2 Active, not recruiting NCT02923739

Pexidartinib (PLX3397) CSF-1R Monotherapy Dt-GCT 2 PR, 52%
SD, 30%
PD, 4%

[130]

Paclitaxel Solid tumors 1 Not yet reported NCT01525602

Durvalumab Colorectal cancer
Pancreatic cancer

1 Recruiting NCT02777710

Monotherapy Melanoma 1/2 Active, not recruiting NCT02975700

Monotherapy Dt-GCT
GCT-TS

3 Active, not recruiting NCT02371369

ARRY-382 CSF-1R Monotherapy Solid tumors 1 ORR, 0%
SD, 15%

[131]

Pembrolizumab Solid tumors 1b/2 Recruiting NCT02880371

CCX872 CCR2 FOLFIRINOX Pancreatic cancer 1b 18 m OS, 29% [132, 133]

PF-04136309 CCR2 FOLFIRINOX Pancreatic cancer 1b ORR, 49% [134]

Carlumab CCL2 Monotherapy Solid tumors 1b Antitumor activity [135]

Monotherapy Prostate cancer 2 No antitumor activity [135]
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zoledronic acid has been added into the adjuvant endocrine

therapy for premenopausal women with early-stage breast

cancer in ABCSG-12 trial [125]. Data of 62months’ follow-

up [125] showed that the addition of ZA at clinically

achievable doses delayed tumor recurrence and significantly

prolonged disease-free survival, which provides a solid clin-

ical evidence for ZA to be a promising agent for cancer pre-

vention [147, 148]. Another agent capable of repolarizing

TAMs to M1 phenotype is CP-870,893, which is an agonist

monoclonal antibody (mAb) of CD40 [150, 151]. CD40 be-

longs to the tumor necrosis factor (TNF) family and it is

broadly expressed in immune cells, including macrophages.

CD40-activated macrophages are indicative of M1 pheno-

type correlating with reinforced proinflammatory cytokines

release as well as upregulated expression of antigen presen-

tation molecules such as major histocompatibility complex

(MHC)-II [152]. According to Robert H.’s study, the

administration of CD40 mAb in mice was able to induce

macrophage-dependent tumor regression [146]. The toler-

ance and activity of CP-870,893 either as a single agent or

in combination with chemotherapy have been tested in

several clinical trials. In the first-in-human study, a single

infusion of CP-870,893 was well tolerated at the 0.2 mg/

kg. Partial responses (PR) were achieved in four patients

with metastatic melanoma, and one of those four patients

remained in partial remission even at the 14th month

[126]. What is more, in patients with advanced PDAC,

CP-870,893 administration with gemcitabine was revealed

to induce an objective response rate (ORR) of 19% (4 in

23 patients developed a partial response), a median

progression-free survival (mPFS) of 5.6 months, and a me-

dian overall survival (OS) of 7.4 months, which are super-

ior to the historical efficacy of single gemcitabine in

PDAC (ORR of 5.4%, mPFS of 2.3 months, and mOS of

5.7 months) [127, 146]. Anyway, those clinical trials are

still at an early stage with small sample size [126, 127, 146,

153]. Further randomized clinical studies with larger sam-

ple size are definitely warranted to validate their potential

in clinical applications.

Agents inhibiting macrophages recruitment

As mentioned above, most of the TAMs originate from

the bone marrow monocyte procurers. Recruitment of

TAMs to the tumor sites or PMNs is a consequence of

the continuous presence of tumor-derived chemoattrac-

tants. Therefore, cutting off those attracting signals for

the macrophage recruitment appeals to be another

promising solution for TAMs targeting anti-cancer

therapeutic approach.

In addition to their roles in educating macrophages

into M2 phenotype, both CSF-1 and CCL2 are respon-

sible for recruiting TAMs into TME. It was reported that

both small molecular inhibitors and antibodies targeting

either CCL2/CCR2 or CSF-1/CSF-1R signaling axis

obviously inhibited the mobilization of monocytes and

macrophages accumulation in tumor sites. As a matter

of fact, several inhibitors and antibodies targeting the

TAM recruiting factors are being evaluated in early clin-

ical trials across various types of tumor [132, 133, 154,

155]. For example, emactuzumab (RG7155) is a novel

humanized antibody targeting CSF-1R in both ligand-

dependent and ligand-independent manners [154]. Re-

searchers found that administration of RG7155 signifi-

cantly lowered the amount of CSF-1R expressing TAMs

in on-treatment biopsies from tumor lesions [154]. A

similar promising result has also been reported from

clinical achievements in diffuse-type giant cell tumor

(Dt-GCT), a neoplastic disorder characterized by CSF-1

overexpression and CSF-1R-positive TAM accumulation.

In this study, among the 28 patients totally enrolled, 24

cases (86%) achieved complete response (CR) or PR, and

three patients (11%) had stable disease (SD), with the

average duration of response over 1.9 years [129]. How-

ever, whether this inspiring result in Dt-GCT could be

carried over to other solid tumors remains a question

and requires further investigation. What is more, pexi-

dartinib (also known as PLX3397), an oral tyrosine kin-

ase inhibitor of CSF-1R, exhibited similar efficiency (PR

52%, SD 30%, progressive disease 4%) in Dt-GCT pa-

tients as what RG7155 exhibits [130]. However, the

phase II clinical trial showed no benefit from the admin-

istration of pexidartinib in 38 recurrent GBM patients

[130]. But it is still worth looking forward to the results

of many other ongoing clinical trials, which are con-

ducted in c-kit-mutated melanoma, prostate cancer, sar-

coma, and etc. [130]. Encouragingly, preliminary clinical

benefit has been observed in a phase Ib trial evaluating

the safety and effectiveness of CCX872, an orally admin-

istered CCR2 inhibitor, in patients with advanced pan-

creatic cancer. According to the data announced in

January 2018, 29% patients receiving CCX872 and FOL-

FIRINOX combination therapy survived at the 18th

month, more favorable than previously published OS

rates of 18.6% at 18th month using FOLFIRINOX alone

[132, 133]. Furthermore, a number of agents, such as

CCL2 inhibitor bindarit, anti-CCL2 mAb carlumab,

CSF1 inhibitor GW2580, and dequalinium-14, have been

confirmed of potent and sustained anti-tumor activities

via declining macrophages infiltration in a battery of cell

lines and xenograft models [156–160]. It is conceivable

that some of these agents will enter clinical trials in the

near future to be further evaluated for their safety pro-

files and benefits in patient cohorts [155].

Conclusions and perspectives
Cancer is more of a systemic disease since metastasis oc-

curs in the majority of patients. Effectiveness achieved

by existing therapeutics is far from satisfactory, since

Lin et al. Journal of Hematology & Oncology           (2019) 12:76 Page 10 of 16

https://en.wikipedia.org/wiki/Major_histocompatibility_complex
https://en.wikipedia.org/wiki/Major_histocompatibility_complex


most of the current paradigms are designed to eliminate

or interdict tumor cells themselves while the successful

outgrowth of metastases is largely influenced by non-

malignant cells of the tumor microenvironment (TME)

[5, 6, 82]. As the major orchesters of the TME, TAMs

tightly regulate tumor metastasis in all of the steps in-

volved. In this review, we discussed the implicated regula-

tion factors participating in recruitment and polarization

of TAMs. In specific, we detailedly described the under-

lying mechanisms for TAM-involved tumor metastasis.

When we get a better understanding of the correlation be-

tween TAMs and metastasis, the potential therapeutic

strategies targeting TAMs would display a promising pic-

ture for cancer intervention. Indeed, we believe that tar-

geting the pro-metastatic components of TME and

rebuilding a healthier microenvironment with a reborn

capacity to hamper tumor growth will definitely hold

promise for cancer therapy.

In the past decades, our mechanistic investigations of

TAMs never ceased and several TAM-targeted agents

are available nowadays. Although TAM-targeted therapy

based on modulation of TAM survival, polarization, and

recruitment is attracting more and more attention in

cancer prevention and treatment, there are many funda-

mental hurdles lying ahead before the findings of those

researches finally transmitted into clinical benefits.

Firstly, TAMs are endowed with remarkably

heterogenous roles in modulating metastasis. On the

one hand, while TAMs are conventionally acknowledged

as M2-like, they can, in fact, exhibit phenotypes any-

where in between tumoricidal M1 type and pro-tumoral

M2 type. How phenotypes switch over the course of

tumor progression is not fully known. On the other

hand, molecular and cell-biological details involved in

promoting metastasis might be more complicated than

what we expect. Various major points of regulation net-

works remain elusive. Therefore, it is of great necessity

for us to explore the unknown mechanisms underlying

TAM-facilitated metastasis and figure out more detailed

TAM characterizations as well as associated molecular

profiles in TME.

Secondly, in spite of inspiring preclinical data obtained

from numerous laboratories, the translational benefits of

agents targeting TAMs are somewhat not that satisfac-

tory in clinical studies. No agent has received official ap-

proval for clinical use of cancer treatment so far [161,

162]. There is an intriguing possibility that tumors with

different histological types and gradings, different gen-

etic background, as well as diverse local inflammatory

profiles, might have heterogenous responses to the same

treatment. Therefore, there arises the tip of a far larger

iceberg: what histology types or what cellular and mo-

lecular features in TME would benefit from TAM-

targeted therapy? The answer is pending. Further

explorations in both preclinical and clinical studies are

in desperate need. In clinical practice, pathology reports

do not routinely describe TAM features in tumor sam-

ples, making it difficult to identify potential TAM-target

beneficiaries and creating a gap in knowledge between

the clinic and tumor immunology research. Hence, figur-

ing out TAM-related features, such as amount, pheno-

types, and cytokine profiles on the pathology reports, or

even assessing circulating M2 macrophage numbers as

well as systemic CSF1, CCL2 levels might provide a tool

for better predicting cancer metastasis and stratifying

patients [158]. Furthermore, TAM-targeting therapies,

either by blocking their infiltration into TME or by

impairing pro-tumoral functions, are insufficient to

achieve satisfying metastasis control without a direct at-

tack on tumor cells. Approaches combining TAM-

targeting agents with chemotherapeutics, irradiation,

antiangiogenic agents, and immune checkpoint inhibi-

tors may pave the way for augmented control of progres-

sion and metastasis [163, 164]. But most of these

concerns have not been realized in a clinically significant

way. Further studies are warranted to evaluate their

therapeutic effectiveness both as a single agent or as part

of a combination therapy.

When we come to talk about the immune checkpoint

based therapy, it is worth noting that targeting immune

checkpoint pathways, such as the innate anti-phagocytic

axis of CD47-SIRPα (signal-regulatory protein alpha)

pathway and LILRB receptor pathway, is emerged as one

of most attractive strategy for cancer therapy. For ex-

ample, CD47 expressed in tumor cells can interact with

signal-regulatory protein alpha (SIRPα) which is a trans-

membrane protein on macrophage and the main receptor

of CD47, thereby delivering the “do not eat me” signals to

macrophages [165]. Studies found that the expression of

CD47 increases in various tumors to evade immune attack

[166]. Therefore, CD47-SIRPα interaction blockade by

anti-CD47 blocking antibody increased the infiltration of

macrophages in the TME, thus promoting phagocytosis of

CD47+ tumor cells to exert antitumor efficacy [167, 168].

Besides, the leukocyte immunoglobulin-like receptor B

(LILRB) family members are negative regulators of mye-

loid cell activation [169, 170]. Studies found that LILRB2

blockade by LILRB2-specific monoclonal antibodies ef-

fectively polarized macrophage cells toward an inflamma-

tory phenotype and enhanced pro-inflammatory

responses, thus acting as a myeloid immune checkpoint

by reprogramming TAMs and provoking antitumor im-

munity [171, 172].

Thirdly, noting that TAMs do not exert functions in

isolation, the TME is a complex system consists of a

plethora of cells other than TAMs, such as fibroblasts,

epitheliums, neutrophils, mesenchymal stem cells, mye-

loid cell-derived suppressor cells, and mast cells. They
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and their stroma around are tightly linked and interacted

with each other constantly alongside the formation of

metastasis [117]. Preclinical experiments targeting

TAMs without the consideration of intricacy and versa-

tility in their interactions are prone to fail in arising ef-

fective therapeutic approaches in the clinic. Hence,

digging into the respective roles of those components of

TME and modeling their intricate interactions evolving

along with the metastasis by system biology approaches

may be the avenues for future research [162].

In conclusion, this review provides an overview of our

current understanding of the cross talk between TAMs

and tumor cells during tumor progression, particularly

in metastasis. As stated above, TAM represents a novel

and attractive target that may alter the landscape of fu-

ture cancer therapy, although many critical obstacles are

still lying ahead and more endeavors in this aspect are

needed to be done.
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