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Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is
negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer
to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and
differentiating into macrophages after exuding tissues. TAMs are divided into typical
activated M1 subtype and alternately activated M2 subtype, which have different
expressions of receptors, cytokines and chemokines. M1 is characterized by
expressing a large amount of inducible nitric oxide synthase and TNF-a, and exert anti-
tumor activity by promoting pro-inflammatory and immune responses. M2 usually
expresses Arginase 1 and high levels of cytokines, growth factors and proteases to
support their carcinogenic function. Recent studies demonstrate that TAMs participate in
the process of TNBC from occurrence to metastasis, and might serve as potential
biomarkers for prognosis prediction.
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INTRODUCTION

Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR,
and HER-2 receptors, accounting for approximately 12%-17% of invasive breast cancer (1). Compared
with other breast cancer subtypes, TNBC has the highest recurrence rate and metastasis rate.
Chemotherapy is most common treatment for TNBC currently while drug resistance, non-target
characteristics and severe systemic side effects lead to ineffective prognosis for patients with metastatic
cases (2, 3). Therefore, it is necessary to discover cutting-edge and effective treatment strategies for TNBC.

In recent years, the treatment strategy based on the interference and remodeling of the tumor
microenvironment (TME) has gradually emerged (4). With the deepening of research on TME, it is
found that immune cells in TME play a complex and non-negligible role in tumor progression.
Abbreviations: TNBC, Triple negative breast cancer; ER, estrogen receptor; PR, progesterone receptor; HER-2, human
epidermal growth factor receptor 2; TME, tumor microenvironment; ClyA, Cytolysin A; LPS, Lipopolysaccharide; Arg1,
Arginase I; IFN-g, Interferon-gamma; TAMs, tumor-associated macrophages; TGF-b, Transforming growth factor beta;
VEGF, vascular endothelial growth factor; TNF-a, Tumor necrosis factor alpha; IL, Interleukin; iNOS, Inducible nitric oxide
synthase; CXCL-10:C-X-C Motif Chemokine Ligand 10 also known as Interferon g–induced protein-10 (IP-10); CXCR3, C-X-
C Motif Chemokine Receptor 3; CSF1, Colony stimulating factor 1; CCL2, Chemokine ligand 2; CCR2, chemokine receptor 2;
FPP, famesyl diphosphate; PD-1, Programmed death-1; PD-L1, Programmed death-1 receptor; ROS, reactive oxygen species;
EMT, epithelial-mesenchymal transition; MMPs, Matrix metalloproteinases.
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Among them, tumor-associated macrophages (TAMs) are such a
kind of important components (5, 6). TAMs participate in the
process of TNBC from occurrence to metastasis, and have
potential value in evaluating disease-free survival and overall
survival of TNBC (7, 8).

TAMs refer to the leukocyte infiltrating tumor, derived from
circulating blood mononuclear cells and differentiating into
macrophages after exuding tissues (9–12). Increasing evidence
indicates that macrophages are not homogeneous. They can be
divided into specific subgroups based on polarization
requirements, phenotype and function. TAMs are divided into
typical activated M1 subtype and alternately activated M2
subtype, which have different expressions of receptors,
cytokines and chemokines (13–15). M1 is characterized by
expressing a large amount of inducible nitric oxide synthase
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and TNF-a, and exert anti-tumor activity by promoting pro-
inflammatory and immune responses (5, 16, 17). M2 usually
expresses Arginase 1 and high levels of cytokines, growth factors
and proteases to support their carcinogenic function (18, 19). In
addition, M2 is involved in stimulating tumor angiogenesis,
matrix remodeling, tumor cell migration and invasion, and
promoting immune suppression (7, 8) (Figure 1).
POLARIZATION AND INDUCTION OF TAMs

Circulating precursors of macrophages derived from bone marrow
are recruited into the tumor microenvironment which are affected
by inflammatory mediators and chemokines to participate in the
tumor immune response (20, 21). Recruited TAMs can differentiate
FIGURE 1 | TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype. The two subtypes participate in the process of TNBC from
occurrence to metastasis of TNBC. M1 exerts anti-tumor activity by promoting pro-inflammatory and immune responses. M1 can present antigen to immune cell,
then these cells are activated and directed to kill tumor cells. M1 can also secrete cytokines to induce tumor cells apoptosis. M2 is involved in stimulating tumor
angiogenesis, matrix remodeling, tumor cell migration and invasion, it also plays a significant role in immune suppression and tissue repair.
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into macrophages with different phenotypes and functions under
diverse activation conditions. Stimulation of Lipopolysaccharide
(LPS), IFN-g, etc. is the classical pathway to activate macrophages
(M1 type); Stimulation of anti-inflammatory factors such as IL-10
and TGF-b, is a non-classical pathway to activate macrophages
(M2) (Table 1) (21–25).

M1macrophages are highly effective pro-inflammatory immune
effector cells that release superoxide anions and nitrogen free
radicals after injury or inflammatory activation (26, 27). It plays a
role of extracellular killing and present antigens to T cells triggering
anti-tumor effects. IL-1b is a cytokine, with the concentration-
dependent anti-tumor effect, secreted by macrophage. LPS can
activate macrophages to secrete IL-1b. Cytolysin A (ClyA),
secreted by Gram-negative bacteria, have been proven to induce
IL-1b secretion, which can enhance the tumoricidal activities (28).
M2 macrophages have a negative regulatory effect on tumor
immunity by repairing damaged tissues and inhibiting
inflammation (29). In the tumor environment, IL-10 and TGF-b
can transform macrophages from M1 phenotype into M2
phenotype (15–17, 26, 34) (Figure 1). Not only the specific
cytokines or factors can render the macrophage become M2,
injury or damage can also make macrophage polarize to M2. In
return, M2 secrete Arginase 1 (Arg1), VEGF and TNF-a to repair
damage through the CXCL-10/CXCR3 pathway (30).

Accumulated evidence have shown that TAMs in the tumor
tissues tend to polarize to M2 type once they affected or interact
with tumor extracellular matrix (23, 34). By co-inoculating
macrophages RAW264.7 and triple-negative breast cancer cells
4T1 into the mammary ducts of mice, process of TNBC
progression from carcinoma in situ to invasive carcinoma was
simulated (35–37). It was found that the expression level of IL-12
related to M1 macrophages in the co-inoculation group was
significantly lower than that in the macrophage alone group
during the process of cell inoculation to tumor cells and breaking
through the duct basement membrane (38, 39). The level of TGF-
b1, aM2- related cytokine, was significantly increased, accompanied
by distant lymph node and lung metastasis. In addition, an
increasing level of MMP-8 and VEGF in the peripheral blood of
mice was also observed. MMP-8 and VEGF are important M1/M2
polarization inducing factors (37). Therefore, under the induction of
tumor cells, M2 polarization of TAMs can be considered as an
alternating positive feedback process (Figure 1).
TUMOR IMMUNOSUPPRESSION
AND IMMUNE ESCAPE

Macrophages have strong phagocytic ability and antigen
presentation ability which play an important role in connecting
innate immunity and adaptive immunity (40–45). In TME, TAMs
switch fromM1 subtype with tumor killing function to M2 subtype
with tissue repair function, which greatly weakens tumor killing
ability of tumor system (18, 44, 46–49). Transformation from M1
subtype to M2 subtype can limit inherent recognition and
phagocytic abilities of macrophages and tumor-killing ability of
CD4+ T cells and CD8+ T cells that cooperate with them. It can also
Frontiers in Oncology | www.frontiersin.org 3
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activates Treg cells and helper T cells causing tumor
immunosuppression (50–58) (Figure 1).

As a regulatory factor which limits killing effect of T cells, PD-1 is
widely present in a variety of T cells (59–63). PD-L1 is the receptor
of PD-1, which is mostly expressed on the surface of tumor cells and
macrophages (61, 64–66). TNBC cells can highly express PD-L1 so
that their T cell killing effect in the tumor environment is
significantly inhibited (56, 67–70). TAMs can secrete a variety of
cytokines in the TNBC environment, which mediate their
immunosuppressive and tumor-promoting activities (71–73).
Studies have found that TAMs can secrete IFN-g through JAK/
STAT3 and PI3K/AKT signaling pathways, thereby inducing the
expression of PD-L1 (74, 75). IL-6 is related to growth of TNBC and
prognosis of patients. In the absence of IL-6, expression of PD-L1 is
enhanced and the anti-PD-L1 antibody’s inhibitory activity in vivo
is more significant (76–79). IL-18 is a pleiotropic cytokine member
of the IL-1 family which has pro-inflammatory and anti-
inflammatory functions (77, 80). It is produced by a variety of cell
types including macrophages. Tumor-derived IL-18 levels are
significantly related to the low survival rate of TNBC patients
(81–83). TGF-b is a multifunctional cytokine, which participates
in the production of Treg in the mouse tumor microenvironment
and supports its suppression of effector T cells (18). TGF-b can also
increase its inhibitory activity by inducing polarization of TAM to
M2 phenotype, and induce the up-regulation of PD-L1 leading to
tumor escape (84, 85). In addition, TAMs can also promote the
development and activity of PD-1+Treg, and then participate in
TNBC tumor immune escape (55, 86). PD-1 was also reported to be
expressed on the surface of TAMs and mainly exist as type M2 (56,
87–89). Compare to CD68, a surface marker of M2, CD163 and
CD260 are major markers with more specificity to help us identify
M2 (Table 1) (90, 91).

TAMs with high expression of PD-1 have reduced phagocytic
ability, which reduce anti-tumor immune effect to a certain extent
(89). It blocks PD -1/PD-L1 binding and enhances the phagocytic
ability of macrophages to inhibit tumor growth and effectively
prolong the survival time of tumor-bearing mice (47). Under
induction of tumor cells, TAMs become important mediators and
regulatory factors for tumor immunosuppression and
immune escape.
PROMOTING TUMOR BLOOD VESSEL
AND LYMPHATIC VESSEL FORMATION

Tumor angiogenesis is an essential part of TNBC proliferation and
metastasis (14, 92, 93). TAMs plays an indispensable role in
promoting tumor angiogenesis (93). Hypoxia is a typical
characteristic of solid tumors (94). Expression of HIF-1 is up-
regulated in TNBC, which activates the HIF-CSF pathway and
recruits a large number of macrophages to the tumor area (95, 96).
This process is a key step in the recruitment of macrophages in
TME. Recruited macrophages can participate in various stages of
tumor angiogenesis. For example, matrix metalloproteinases and
proteolytic enzymes produced by macrophages can reconstruct the
extracellular matrix and provide favorable conditions for the
Frontiers in Oncology | www.frontiersin.org 4
formation of new blood vessels (93). Cytokines secreted by
macrophages can provide a connecting framework for new blood
vessels (20). Macrophages in TME can promote growth of
lymphatic endothelial cells and provide support for tumor
lymphatic metastasis. Induced by tumor cells, macrophages
overexpress b4 integrin which forces macrophages to aggregate
and adhere to the proximal end of lymphatic vessels. At the same
time, their own expression of TGF-b1 drives the contraction of
lymphatic endothelial cells (97) (Figure 1). Aggregated
macrophages undergo lymphatic remodeling by increasing
permeability and destroying surrounding tissues to achieve tumor
cell metastasis via lymphatic pathways. Macrophages’ tissue
function including renewal and remodeling of blood vessels
together with lymphatic vasculature, though it improves the
aggressiveness of tumors in the tumor environment.
TAMs AND TNBC MIGRATION AND
INVASION

It has been found that TAMs can enhance tumor cell stemness and
increase tumor cell invasiveness by participating in epithelial-
mesenchymal transition (EMT) (7, 98–100). Matrix
metalloproteinases (MMPs), cysteine cathepsin and serine
proteases secreted by TAMs can hydrolyze the extracellular
matrix, which is conducive to invasion of tumor cells to
surroundings (Figure 1). After co-incubating macrophages with
different phenotypes with breast cancer cells, it was found that those
co-incubated with M1 macrophages appeared as cobblestone-like
epithelial-like cells under microscope. Compared with M2
macrophages, co-incubators appear as slenderer mesenchymal-like
cells. In addition, E-cadherin in co-incubated with M2 group was
significantly higher in co-incubated with M1 macrophages (7, 98,
100–104). It shows that M1 TAMs have the potential to reverse
EMT, which can reduce the invasiveness of tumor cells to a
certain extent.
TAMs AND PROGNOSIS PREDICTION

High density of TAMs in TNBC is associated with poor prognosis
and indicates a higher risk of metastasis (105). TAMs
immunohistochemical staining of tumor tissues found that
patients with higher pathological grades were often accompanied
by higher TAMs level. Compared with patients with low TAMs
infiltration, the overall survival and disease-free survival of patients
with higher group was significantly shortened (39, 51, 106). CD163
and CD204 are relatively specific markers for M2, the breast cancer
infiltration of CD163 positive and CD204 positive TAMs tends to
have a poor prognosis as these TAMs are associated with fast
proliferation, poor differentiation (31–33). In addition, infiltrating
TAMs also have a certain impact on the efficacy of chemotherapy.
Common TNBC chemotherapeutic drugs can activate TAMs, and
activated TAMs can promote the repair of damaged tumor tissues,
thereby inducing chemotherapy tolerance (107, 108). Not only that,
TAMs can produce a large amount of IL-10, which can inhibit the
February 2022 | Volume 12 | Article 772615
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production of IL-12 by dendritic cells and limit the immune killing
of tumors with CD8+ T cells (39). Further research found that
compared with the number of TAMs, the phenotype of TAMs is
more suitable for predicting efficacy of TNBC anthracycline
chemotherapeutics (109).
TAMs-BASED TARGETED THERAPY

In recent years, the targeted therapy of TAMs mainly focuses on
inhibiting TAMs recruitment, TAMs depletion, and reversing the
polarization of TAMs (110). Blocking the effect of chemokines is an
important method to inhibit the recruitment of TAMs, and the
current research targets are mostly CCL2/CCR2 (52, 111). The
inhibition of the CCL2/CCR2 axis can reduce the mobilization of
bone marrowmononuclear cells, thereby reducing the infiltration of
macrophages in the breast (112, 113). Studies have shown that
trabectedine and bortezomib can inhibit the recruitment of
macrophages by reducing the content of CCL2 in plasma (114).
CCL5 can induce the recurrence of breast cancer by recruiting
macrophages in residual tumors. CCL5 may become an important
target for adjuvant chemotherapy and curbing recurrence of TNBC
(39, 115, 116). Cytokines can effectively regulate the polarization
direction of TAMs. For instance, when TAMs are exposed to
cytokines secreted by CD4+Th1 cells (such as TNF, IL-12, etc.),
TAMs tend to be polarized as M1 type. The NF-kB pathway is an
important pathway that regulates the transcription of CD4+Th1
cytokines. Activating the NF-kB pathway can promote the
polarization of TAMs to M1 type, thereby inhibiting the progress
of TNBC (18, 117).

Bisphosphonate-based macrophage apoptosis inducers have
been widely used in TAMs depletion (118). Bisphosphonate is
easily captured by macrophages through endocytosis. The
internalized Bisphosphonate can inhibit the activity of famesyl
diphosphate (FPP) synthase and induce macrophage apoptosis
by limiting the prenylation of RAS-related proteins. Continuous
administration of zoledronic acid in a mouse spontaneous breast
cancer model can significantly reduce angiogenesis, reduce the
density of TAMs, and improve survival. Many clinical trials have
shown that bisphosphonate therapy in post-menopausal women
with breast cancer have a significant benefit (119). However, it is
not applied to the menopausal women (120).

CSF1 and CCL2 play a key role in the generation of TAM and
are related to the growth of TNBC tumors (61, 121, 122).
Inhibition of CSF1 in vivo can reduce TAM infiltration and
tumor growth and progression. Blocking CSF-1 can affect the
osteoclast production of cancer cells in the co-culture system
(123). Similarly, inhibiting CCL2 can block tumor stem cell
Frontiers in Oncology | www.frontiersin.org 5
renewal and M2 recruitment, thereby inhibiting the
progression of TNBC (124, 125). This indicates that inhibiting
CSF1 and CCL2 may be an effective strategy to reduce the
accumulation of TAM. The transcription factor NF-kB can
regulate the expression of tumor-promoting genes (IL-6 and
TNF-a). By activating the activity of NF-kB through the IKKb
pathway, TAM can be re-cultured to the M1 phenotype (126).
Therefore, converting M2 to the anti-tumor M1 phenotype may
be a potentially effective strategy for cancer patients.

In addition, regulating the expression of PD-1/PD-L1 by
regulating various cytokines secreted by TAMs is also a
potential therapeutic strategy (56). For example, JAK/STAT3
signal is related to PD-L1 overexpression induced by IFN-g.
Inhibition of STAT3 signal byWP1066 can reduce tumor-related
endothelial angiogenesis and invasion, thereby reducing the
incidence of brain metastasis (56). TGF-b is related to M2
polarization and PD-L1 overexpression (48). Therefore, the
combination of TGF-b inhibitors and anti-PD-1/PD-L1
specific antibodies is reasonable in clinical practice, and related
clinical trials are also underway.

Application of nanoparticle targeted drug delivery systems to
traditional TAMs is currently a hot research topic (109, 127).
Nanoparticles can carry drugs, metal materials, and miRNAs,
which can work together to interfere with TAMs through a
variety of mechanisms of action. Studies have found that
dextran-coated iron oxide nanoparticles can generate reactive
oxygen species (ROS) through the Fenton reaction mediated by
iron oxide, which mediates the repolarization of TAMs to M1
macrophages, thereby inhibiting breast cancer progression (128).
Incorporation chemotherapy with macrophage-related
treatment can enhance the antitumor effect by recruiting
macrophage to TAM and induce M2 polarize to M1 (22, 129).
CONCLUSION AND PERSPECTIVES

TAMs are an important component of the tumormicroenvironment
and occupy a high proportion of immune cells (45). They participate
in whole process of TNBC occurrence, development and metastasis
by regulating tumor cell immune evasion, tumor blood vessel and
lymphangiogenesis (130). The phenotypic transition of TAMs in
TME promotes the tumor immune microenvironment to change
from an anti-tumor state to an immunosuppressive state. This
dynamic change makes TAMs an important part of regulating
tumor behavior and feedback on efficacy evaluation. In view of the
important role of TAMs in tumor progression, treatment strategies
based on TAMs have emerged. Due to the high heterogeneity of
TNBC, targeted therapy for a single TAMs-related pathway often
TABLE 2 | Treatment of triple negative breast cancer.

Chemotherapy Taxus, gemcitabine, capecitabine, vinorelbine and platinum

immunotherapy PD1 inhibitor, PD-L1 inhibitor, PARP inhibitor
anti-VEGF Bevacizumab
macrophage-targeted therapy PI3K suppressors, interleukin therapy, suppression of hypoxia, inhibition of CCL2/CCR2, activation of NF-kB, CSF1 inhibitor
adjuvant therapy bisphosphate, nanoparticle delivery therapy
February 2022 | Volume 12 | Article 772615
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comes to failure. In the future, cooperation macrophage-targeted
therapy with conventional chemotherapy, immunotherapy and
adjuvant therapy maybe a promising choice for TNBC (Table 2),
and multimodal targeted therapy based on TAMs may become a
research hotspot (131).
Frontiers in Oncology | www.frontiersin.org 6
AUTHOR CONTRIBUTIONS

RQ, RL, XQ, and ZL contributed to the conception of the study
and wrote the manuscript. All authors contributed to the article
and approved the submitted version.
REFERENCES

1. Bergin ART, Loi S. Triple-Negative Breast Cancer: Recent Treatment
Advances. F1000Res (2019) 8:F1000 Faculty Rev-1342. doi: 10.12688/
f1000research.18888.1

2. Costa RLB, Gradishar WJ. Triple-Negative Breast Cancer: Current Practice
and Future Directions. J Oncol Pract (2017) 13(5):301–3. doi: 10.1200/
jop.2017.023333
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84. Rabinovich GA, Conejo-Garcıá JR. Shaping the Immune Landscape in
Cancer by Galectin-Driven Regulatory Pathways. J Mol Biol (2016) 428
(16):3266–81. doi: 10.1016/j.jmb.2016.03.021

85. Lucas CL, Workman CJ, Beyaz S, LoCascio S, Zhao G, Vignali DA, et al.
LAG-3, TGF-b, and Cell-Intrinsic PD-1 Inhibitory Pathways Contribute
to CD8 But Not CD4 T-Cell Tolerance Induced by Allogeneic BMT With
Anti-CD40L. Blood (2011) 117(20):5532–40. doi: 10.1182/blood-2010-11-
318675

86. Koh J, Hur JY, Lee KY, Kim MS, Heo JY, Ku BM, et al. Regulatory (FoxP3
(+)) T Cells and TGF-b Predict the Response to Anti-PD-1 Immunotherapy
in Patients With non-Small Cell Lung Cancer. Sci Rep (2020) 10(1):18994.
doi: 10.1038/s41598-020-76130-1

87. Hensler M, Kasikova L, Fiser K, Rakova J, Skapa P, Laco J, et al. M2-Like
Macrophages Dictate Clinically Relevant Immunosuppression in Metastatic
Ovarian Cancer. J Immunother Cancer (2020) 8(2):e000979. doi: 10.1136/
jitc-2020-000979

88. Jiang LR, Zhang N, Chen ST, He J, Liu YH, Han YQ, et al. PD-1-Positive
Tumor-Associated Macrophages Define Poor Clinical Outcomes in Patients
With Muscle Invasive Bladder Cancer Through Potential CD68/PD-1
Complex Interactions. Front Oncol (2021) 11:679928. doi: 10.3389/
fonc.2021.679928

89. Lu D, Ni Z, Liu X, Feng S, Dong X, Shi X, et al. Beyond T Cells:
Understanding the Role of PD-1/PD-L1 in Tumor-Associated
Macrophages. J Immunol Res (2019) 2019:1919082. doi: 10.1155/2019/
1919082
Frontiers in Oncology | www.frontiersin.org 8
90. Rebelo SP, Pinto C, Martins TR, Harrer N, Estrada MF, Loza-Alvarez P, et al.
3D-3-Culture: A Tool to Unveil Macrophage Plasticity in the Tumour
Microenvironment. Biomaterials (2018) 163:185–97. doi: 10.1016/
j.biomaterials.2018.02.030

91. Tedesco S, Bolego C, Toniolo A, Nassi A, Fadini GP, Locati M, et al.
Phenotypic Activation and Pharmacological Outcomes of Spontaneously
Differentiated Human Monocyte-Derived Macrophages. Immunobiology
(2015) 220(5):545–54. doi: 10.1016/j.imbio.2014.12.008

92. Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-Associated
Macrophages: An Accomplice in Solid Tumor Progression. J Biomed Sci
(2019) 26(1):78. doi: 10.1186/s12929-019-0568-z

93. Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The Roles of Tumor-
Associated Macrophages in Tumor Angiogenesis and Metastasis. Cell
Immunol (2020) 353:104119. doi: 10.1016/j.cellimm.2020.104119

94. Henze AT, Mazzone M. The Impact of Hypoxia on Tumor-Associated
Macrophages. J Clin Invest (2016) 126(10):3672–9. doi: 10.1172/jci84427

95. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A,
et al. The Inflammatory Microenvironment in Hepatocellular Carcinoma: A
Pivotal Role for Tumor-Associated Macrophages. BioMed Res Int (2013)
2013:187204. doi: 10.1155/2013/187204

96. Szebeni GJ, Vizler C, Kitajka K, Puskas LG. Inflammation and Cancer:
Extra- and Intracellular Determinants of Tumor-Associated Macrophages as
Tumor Promoters. Mediators Inflamm (2017) 2017:9294018. doi: 10.1155/
2017/9294018

97. Evans R, Flores-Borja F, Nassiri S, Miranda E, Lawler K, Grigoriadis A, et al.
Integrin-Mediated Macrophage Adhesion Promotes Lymphovascular
Dissemination in Breast Cancer. Cell Rep (2019) 27(7):1967–1978.e4.
doi: 10.1016/j.celrep.2019.04.076

98. Bao X, Shi R, Zhao T, Wang Y, Anastasov N, Rosemann M, et al. Integrated
Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Unravels Tumour
Heterogeneity Plus M2-Like Tumour-Associated Macrophage Infiltration
and Aggressiveness in TNBC. Cancer Immunol Immunother: CII (2021) 70
(1):189–202. doi: 10.1007/s00262-020-02669-7

99. Cheng Z, Wang L, Wu C, Huang L, Ruan Y, Xue W. Tumor-Derived
Exosomes Induced M2 Macrophage Polarization and Promoted the
Metastasis of Osteosarcoma Cells Through Tim-3. Arch Med Res (2021)
52(2):200–10. doi: 10.1016/j.arcmed.2020.10.018

100. Song W, Mazzieri R, Yang T, Gobe GC. Translational Significance for
Tumor Metastasis of Tumor-Associated Macrophages and Epithelial-
Mesenchymal Transition. Front Immunol (2017) 8:1106. doi: 10.3389/
fimmu.2017.01106

101. Lin L, Luo X, Wang L, Xu F, He Y, Wang Q, et al. BML-111 Inhibits EMT,
Migration and Metastasis of TAMs-Stimulated Triple-Negative Breast
Cancer Cells via ILK Pathway. Int Immunopharmacol (2020) 85:106625.
doi: 10.1016/j.intimp.2020.106625

102. Vakili-Ghartavol R, Mombeiny R, Salmaninejad A, Sorkhabadi SMR, Faridi-
Majidi R, Jaafari MR, et al. Tumor-Associated Macrophages and Epithelial-
Mesenchymal Transition in Cancer: Nanotechnology Comes Into View.
J Cell Physiol (2018) 233(12):9223–36. doi: 10.1002/jcp.27027

103. Zeng X-Y, Xie H, Yuan J, Jiang X-Y, Yong J-H, Zeng D, et al. M2-Like
Tumor-Associated Macrophages-Secreted EGF Promotes Epithelial Ovarian
Cancer Metastasis via Activating EGFR-ERK Signaling and Suppressing
lncRNA LIMT Expression. Cancer Biol Ther (2019) 20(7):956–66.
doi: 10.1080/15384047.2018.1564567

104. Zhang J, Yao H, Song G, Liao X, Xian Y, Li W. Regulation of Epithelial-
Mesenchymal Transition by Tumor-Associated Macrophages in Cancer. Am
J Trans Res (2015) 7(10):1699–711. doi: 10.1038/1943-8141/AJTR0012104
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