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Abstract

Background: A relationship between the increased density of tumor-associated macrophages (TAMs) and decreased
survival was recently reported in thyroid cancer patients. Among these tumors, anaplastic thyroid cancer (ATC) is one of the
most aggressive solid tumors in humans. TAMs (type M2) have been recognized as promoting tumor growth. The purpose
of our study was to analyze with immunohistochemistry the presence of TAMs in a series of 27 ATC.

Methodology/Principal Findings: Several macrophages markers such as NADPH oxidase complex NOX2-p22phox, CD163
and CD 68 were used. Immunostainings showed that TAMs represent more than 50% of nucleated cells in all ATCs.
Moreover, these markers allowed the identification of elongated thin ramified cytoplasmic extensions, bestowing a
‘‘microglia-like’’ appearance on these cells which we termed ‘‘Ramified TAMs’’ (RTAMs). In contrast, cancer cells were totally
negative. Cellular stroma was highly simplified since apart from cancer cells and blood vessels, RTAMs were the only other
cellular component. RTAMs were evenly distributed and intermingled with cancer cells, and were in direct contact with
other RTAMs via their ramifications. Moreover, RTAMs displayed strong immunostaining for connexin Cx43. Long chains of
interconnected RTAMs arose from perivascular clusters and were dispersed within the tumor parenchyma. When expressed,
the glucose transporter Glut1 was found in RTAMs and blood vessels, but rarely in cancer cells.

Conclusion: ATCs display a very dense network of interconnected RTAMs in direct contact with intermingled cancer cells. To
our knowledge this is the first time that such a network is described in a malignant tumor. This network was found in all our
studied cases and appeared specific to ATC, since it was not found in differentiated thyroid cancers specimens. Taken
together, these results suggest that RTAMs network is directly related to the aggressiveness of the disease via metabolic
and trophic functions which remain to be determined.
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Introduction

Anaplastic thyroid carcinoma (ATC) represents less than 5% of

all thyroid cancers and is one of the most aggressive malignancies

in humans [1–3]. Despite multimodality therapeutic approaches,

ATC still carries a dismal prognosis and new treatment, based on a

better knowledge of the pathogenesis and progression of this

cancer, are therefore required.

Anaplastic carcinoma arises from thyroid follicular cells and is

characterized by atypical cells with large, bizarre nuclei with numerous

atypical mitotic figures that resemble polymorphic mesenchymal

sarcoma. There is no thyroid or epithelial differentiation. This explains

why the macrophage component, termed ‘‘tumor-associated macro-

phages’’, (TAMs), which is closely mixed with cancer cells, was only

recently recognized [4,5]. Among TAMs, M1 macrophages which

display ‘‘classic’’ activation are separated from ‘‘alternative’’ M2

macrophages [6–10]. It is well established that themain function ofM1

is phagocytosis in response to bacterial stimuli and/or Th1 cytokines

while the main function of M2 is immunosuppression and trophic

activity in response to Th2 cytokines (e.g. IL10, TGFbeta) [11]. In

thyroid cancers, an increased density of TAMs was associated with

decreased survival, reflecting their M2 nature [5].

In the present study, we report on a very dense and diffuse intra-

tumor infiltration of ATC by TAMs. These TAMs organize

themselves in an interconnected network in close contact with

cancer cells and blood vessels.

Material and Methods

Clinical and Histological data
Twenty-seven patients who were treated for ATC at Institut

Gustave-Roussy from 1998 to 2007 were identified. All these
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patients died within 1 year after diagnosis. Routine histological

sections stained with hematoxylin and eosin were reviewed to

confirm the diagnosis and corresponding paraffin-embedded tissue

blocks were obtained for immunohistochemical studies. The

protocol was approved by Institutional Review Board at the

Institut Gustave-Roussy and all patients gave their written

informed consent.

Immunohistochemistry
Immunohistochemical analyses were performed on serial

5 microns thick sections prepared from selected paraffin-embed-

ded tissue with primary antibodies directed against the following

proteins: NOX2, P22phox, CD163, CD68, Cx43, Glut1, CD34,

Alpha- Smooth Muscle Actin, CD3 and Ki67.

– NOX2 is often referred to as the phagocyte NADPH oxidase

and is still widely considered to have a limited, essentially

phagocyte-specific tissue expression [12].

– P22phox forms a heterodimer with NOX2 that is located at the

cell surface membrane [12].

– CD163 is expressed on most subpopulations of mature tissue

macrophages [13] and is linked to anti-inflammatory macro-

phage functions [14].

– CD68 has long been used as a specific macrophage marker

[15], but is currently no longer considered a specific marker for

macrophages but rather an antigen indicative of lysosomes

[16].

– Cx43 (connexin 43) is expressed by several types of cells

including macrophages [17,18] and is one of 21 members of

the human connexin family. It is the most widely distributed

gap junction isoform and enables the intercellular passage of

numerous small molecules ranging from ions to much larger

metabolites [18–20]. Subcellular Cx43 immunostaining corre-

lates with protein synthesis in endoplasmic reticulum, the golgi

apparatus, cytoplasmic transport in small vesicles and finally on

cell surface membrane [21,22].

– Glut-1 is a glucose transporter that mediates cellular glucose

uptake. It is inducible in monocytes and macrophages [23].

– CD34 is a marker of vascular endothelial cells [24].

– Alpha-Smooth Muscle Actin (Alpha-SMA) is present in

‘‘activated fibroblasts’’ or myofibroblasts [25]

– CD3 recognizes lymphocyte T cells [26].

– Ki67 nuclear expression is associated with cell proliferation

[27].

The origin, characteristics and conditions of use of these

antibodies are summarized in table 1.

Determination of percentage of TAMs among nucleated
cells
TAMs were counted by surface unit of histological section on

digitalized photos with the same format and at the same original

magnification (6100) with the help of ImageJ software (National

Center for Biotechnology Information). For each case, four

microscopic fields were digitalized; two with NOX2 immuno-

staining and two with CD163 immunostaining. The number and

percentage of stained and unstained nucleated cells were

calculated. To avoid any overestimation of the number of

TAMs which could have been due to extended cytoplasmic

ramifications, we counted only cells with a visible nucleus

(Figs. 1–3, S1).

Determination of percentage of cancer cells and TAMs in
the cellular cycle by double immunostaining with Ki67
and P22phox antibodies
See Text S1.

Transmission electron microscopy
Three cases of ATC were obtained for electron microscopy

study (See Text S1).

Results

Clinical data
Gender, age at the time of the diagnosis and survival of each

patient are summarized in table 2.

NOX2, CD163 and CD68 immunostainings
TAMs displayed strong staining for NADPH oxidase NOX2,

CD163 and CD 68 which clearly contrasted with cancer cells that

were entirely negative for each of these markers. All ATC cases

displayed a high density of TAMs that were diffusely dispersed

within the tumor (Fig. 1). Furthermore TAMs and cancer cells could

also be distinguished on morphological grounds. TAMs nuclei were

small, regular and ovoid, whereas cancer cell nuclei were 5 to 10-

fold larger, irregular and dystrophic (Figs. 1, 2A and 3). At the

subcellular level, the strong staining obtained with all these markers,

allowed us to study their cytoplasmic extensions. Three types of

subcellular stainings were observed: a/ diffuse cytoplasmic staining ;

b/ granular staining with small vesicles located in the cell body and/

or in the cytoplasmic ramifications; c/ plasma membrane staining

(Figs. 1,3 and S2). All these three types of staining were found in all

the tumors according to the observed area.

P22phox immunostaining
p22phox is required for the formation of a functionally active

NADPH oxidase. Strong p22phox staining, similar to NOX2

staining, was found in all ATCs (Fig. 1D). However, in some areas

of few cases, there was strong NOX2 positivity contrasting with

weak p22phox staining. All cancer cells were negative for

p22phox.

Number and percentage of TAMs
In the 27 ATC studied, the mean proportion of TAMs was 57%

of the total number of cells with a visible nucleus (Table 2). In fact,

this percentage is likely to be a wide underestimation of the real

percentage of TAMs since TAM nuclei were 5 to 10-fold smaller

than cancer cell nuclei and the probability of cutting these nuclei

on a 2D histological section is 5 to 10 times smaller than that of

cutting cancer cell nuclei (Fig. 3).

Shape and subcellular NOX2, CD163 and CD68 staining
of TAMs
Strong NOX2, CD163 and CD 68 stainings of TAMs allowed

us to describe the following characteristics that were not visible

with the usual hematoxylin and eosin staining: 1/ TAMs displayed

very elongated cytoplasmic processes (up to 200 microns apart

from the cell body); 2/ staining in these processes was often

irregular with a moniliform pattern; 3/ these processes could

divided in several more or less thinner branches; 4/ at their

extremity, they often exhibited a small cytoplasmic ‘button

shaped’’ enlargement; 5/ these extremities were in close contact

with other TAMs, cancer cells and blood vessels; 6/ TAMs

displayed no or very few intracytoplasmic phagocytic materials

(Figs. 1, 2A, 3 and S2). Electron microscopy revealed cytoplasmic

TAMs Network
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extensions of TAMs and close association with cancer cells (Fig. 4).

We propose to call these TAMs ‘‘Ramified TAMs’’ (RTAMs).

These features are in contrast to those of ‘‘classic’’ macrophages

which present a more or less regular amoeboid round shape

without major cytoplasmic extensions (Fig. 2B). Moreover this type

of macrophages often presents intracellular phagocytized material.

RTAM network
On NOX2, P22phox, CD163 and CD68 stainings, most TAMs

displayed direct contact with other TAMs, forming networks of

connected cells which could be tracked at least partially on 2D

histological sections. These cellular networks connected TAMs to

each other, enfolding dispersed isolated cancer cells and often in

direct contact with them (Figs. 1, 3 and 4).

Connexin 43 (Cx43) immunostaining
In normal thyroid tissue, Cx43 staining was localized to

characteristic punctuate structures at sites of cell-cell apposition

(Fig. 5A). Cx43 positive staining was observed in all ATCs, in the

majority of RTAMs and blood vessels and in a lower percentage of

Table 1. Immunohistochemistry: Antibodies, origins and procedures.

Antibody Type Origin Dilution

Incubation time

(mn) Detection

CD 163 monoclonal mouse NOVOCASTRA Réf-NCL 163 1/100 60 ENV MOUSE DAKO K4007

NOX2 GP91-phox monoclonal mouse Marck Queen USA 1/300 60 ENV MOUSE DAKO K4007

P22-phox polyclonal rabbit SANTA CRUZ Ref.sc-20781 1/250 60 ENV RABBIT DAKO K4011

CX43 monoclonal rabbit CELL SIGNALING Ref.3512 1/50 overnight ENV RABBIT DAKO K4011

CD 34 monoclonal mouse DAKO Ref.M7165 1/100 60 ENV MOUSE DAKO K4007

Alpha-SMA monoclonal mouse DAKO Ref.M0851 1/50 30 ENV MOUSE DAKO K007

CD68KP1 monoclonal mouse DAKO Ref.N1577 1/400 60 ENV MOUSE DAKO K4007

CD3 monoclonal mouse DAKO Ref.M7254 1/50 60 ENV MOUSE DAKO K4007

Ki 67 monoclonal mouse DAK0 Ref.7240 1/40 30 CSA II DAKO 1497

doi:10.1371/journal.pone.0022567.t001

Figure 1. CD163, NOX2, CD68 and P22phox expressions in ATC. A) CD163. Original magnification:650. Presence of a very high density of
positive RTAMs diffusely dispersed among negative cancer cells. B) NOX2. Original magnification:6100. Positive RTAMs are deeply intermingled with
negative cancer cells. Note inside RTAMs the presence of ovoid nuclei (white arrows) that are much smaller and more regular than those of cancer
cells (black arrows). C) CD68. Original magnification:6200. Note that immunostained cytoplasmic extensions of TAMs with granular features are in
close contact with negative cancer cells (black arrows). D) P22phox. Original magnification:6400. Note that the nuclei of cancer cells (black arrows)
are five to ten-folds larger than RTAM nuclei (white arrows). All markers are strongly positive in RTAMs and negative in cancer cells and allow a clear
distinction between these two cell types. The overall picture is the one of a chequered pattern with an even repartition of TAMs and cancer cells.
doi:10.1371/journal.pone.0022567.g001

TAMs Network
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cancer cells (Figs. 5B, 5C, 5D and Fig. 6). Unlike in normal thyroid

tissue, the staining was localized in the cytoplasm, the golgi area,

small vesicles and/or characteristic intercellular punctuate struc-

tures suggesting a synthesis of CX43 and a more rapid turnover of

the protein in ATC than in normal differentiated thyroid tissue

[21]. Long chains of connected Cx43-positive RTAMs could be

recognized and tracked within the tumor (Fig. 6). Moreover, it was

possible to detect the Cx43 connection between positive blood

vessels and RTAMs (Fig. 5D). At electron microscopy intercellular

junctions consistent with gap junctions were found between

RTAMs and between RTAMs and cancer cells (Fig. 7).

Blood vessels
In well differentiated thyroid carcinoma immunostaining of

blood vessels by CD34 displayed vasculature in close association

with epithelial cancer cells. Almost each cancer cell is in direct

contact with a blood vessel (Fig. 8B). In contrast, in ATC,

vasculature was much more disorganized and anaplastic cancer

cells could be localized in avascular areas at a distance of more

than 150 microns from blood vessels (Fig. 8A). RTAMs were often

located in clusters around blood vessels separating these vessels

from cancer cells (Fig. 9), and long connected chains of RTAMs

were infiltrating the avascular tumor tissue (Fig. 10).

GLUT1 immunostaining
GLUT1 was positive in red blood cells and vessels. In some cases

and in some areas, RTAMs were positive for GLUT1 whereas the

great majority of cancer cells were negative for GLUT1 (Fig. 11).

Single Ki67 immunostaining
In the majority of tumors, the proportion of Ki67-positive nuclei

was around 50% (Table 2).

Double Ki67-p22phox immunostaining
This staining allowed recognizing four types of cells on the same

section: Ki672 P22phox2 and Ki67+ P22phox2 cancer cells;

Ki672 P22phox+ and Ki67+ and P22phox+ TAMs (Figs. 12 and

S3). Each type of cells was counted with the help of the ImageJ

software in the same way as for determining the whole percentage

of TAMs (see Table 2). It appears that the mean proliferative rate

of RTAMs was estimated to be 57% and the mean proliferative

rate of cancer cells was estimated to be 45%.

Alpha-SMA immunostaining
The staining was restricted to pericytes around blood vessels. All

the other cells were negative. (Data not shown).

Figure 2. Morphologic comparison between RTAM (M2) and ‘‘classic’’ macrophage (M1). A) CD163. Original magnification:6400. Positive
RTAM (M2) with irregular cytoplasmic extensions exceeding 100 microns. Note very thin cytoplasmic processes (black arrows) with filipodia-like or
nanotube-like appearances connecting RTAMs to other RTAMs or to cancer cells (K). Note the difference in the size of the RTAM nucleus (white arrow)
and the size of cancer cell nuclei (K). Note that one cancer cell displays faint cytoplasmic staining (arrow head) suggesting the passage of antigenic
material (CD163?) from the RTAM to the cancer cell. B) CD68. Original magnification:6400. ‘‘classic’’ M1 macrophage with a round shape and
amoeboid appearance, without cytoplasmic and/or filipodia extensions. Presence of phagocytosis (arrow).
doi:10.1371/journal.pone.0022567.g002

Figure 3. Topological relationship between RTAMs and cancer cells. CD163 immunostaining clearly underlines the close relations between
cytoplasmic extensions of RTAMs and large cancer cells. Note that RTAMs nuclei (arrows) are much smaller than those of cancer cells. Original
magnification:6400.
doi:10.1371/journal.pone.0022567.g003

TAMs Network
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Table 2. Percentage of RTAMs and proliferative rates of RTAMs and cancer cells.

N6patient Age at diagnosis Survival (months) % RTAMs/Total

% RTAMs

Ki67+/RTAMS

% Cancer cells

Ki67+/cancer cells

1 79 4 56% 52% 50%

2 49 10 68% 41% 49%

3 73 0.2 21% 55% 57%

4 74 1 64% 38% 40%

5 85 0.5 57% 55% 58%

6 73 8 53% 22% 25%

7 82 2 57% 55% 52%

8 69 11 50% 29% 21%

9 55 2 58% 55% 58%

10 81 3 45% 43% 48%

11 82 1 52% 58% 51%

12 60 6 63% 49% 45%

13 93 3 62% 55% 58%

14 65 9 61% 50% 46%

15 74 1 60% 35% 45%

16 51 1 56% 37% 44%

17 72 0.3 66% 46% 49%

18 68 3 69% 23% 34%

19 59 8 52% 53% 58%

20 93 2 57% 40% 42%

21 61 3 55% 33% 27%

22 74 2 58% 44% 39%

23 84 4 68% 51% 48%

24 58 2 65% 53% 39%

25 70 11 50% 30% 22%

26 79 1 56% 53% 56%

27 56 4 65% 51% 49%

doi:10.1371/journal.pone.0022567.t002

Figure 4. RTAMs and cancer cells at the ultrastructural level. A). Note the close relationship of RTAM and cancer cell. RTAM wraps its
cytoplasmic processes (arrows) almost entirely around cancer cells (K). Original magnification: 63000. B) Detail of RTAM cytoplasmic processes
showing contacts with other processes (arrows) and their relations with cancer cell (K). Original magnification:612000.
doi:10.1371/journal.pone.0022567.g004

TAMs Network
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CD3 immunostaining
This staining demonstrated an absence or very rare presence of

CD3+ T lymphocytes (less than 0, 01%) (Data not shown).

18F-FDG PET/CT
All the patients suffering of ATC and studied at the institute

Gustave-Roussy showed high to very intense FDG uptake. [28](Fig

S4).

Discussion

Nowadays, TAMs are classified in several subcategories

according to different phenotypes that are dependent upon the

type of tumors and microenvironments [29,30]. In this study, we

used NOX2, P22phox, CD163, CD68 and CD34 immunostain-

ings to reveal and to characterize TAMs in ATC. With the use of

these well recognized markers, it appeared that ATC tissue

harbored only three types of cells: NOX2+ P22phox+ CD163+

CD68+ CD342 macrophages; NOX22 P22phox2 CD1632

CD682 CD342 cancer cells and NOX22 CD1632 CD682

CD34+ blood vessel endothelium. Other cell types, such as

lymphoid cells, fibroblasts and/or myofibroblasts were absent or

very rare. Moreover ATC cancer cells were totally negative for all

of these markers. This study confirms the presence of a high

number of TAMs in most ATC that represent the majority of

intra-tumor nucleated cells. Furthermore immunohistochemistry

allowed us to accurately describe the morphology and the

organization of TAMs.

Then we studied the ramified morphology of these TAMs and

CX43 expression: TAMs in ATC displayed long and thin

cytoplasmic processes which could extend up to 150 microns from

the cell body. More often, these elongated processes were irregular

and moniliform containing small stained vesicles, and were usually

divided into several branches conferring a ‘‘microglia-like’’

appearance (Figs. 2A,3,4,S2). We propose to call them ‘‘Ramified

TAMs’’ or ‘‘RTAMs’’. RTAMs were in direct contact with other

RTAMs, with cancer cells and with blood vessel endothelium. We

suggest that these ramifications correspond to specific functions of

Figure 5. CX43 expression in normal thyroid tissue and in ATC. A) Normal thyroid tissue: characteristic CX43 positive punctuate gap
junctions at the intercellular basolateral membranes of thyrocytes and absence of staining at the apical border. Note a faint diffuse or vesicular
staining in the cytoplasm which could correspond to the synthesis and/or transport of the protein to the membrane. Original magnification:6400.
B) Strong CX43 immunostaining in ATC (on the right part of the photo). Non-tumor fibrotic tissue is seen on the left part. Original magnification:650.
C). Characteristic CX43-positive punctuate junctions localized where the RTAMs and cancer cells (K) come into contact. Original magnification:61000.
D) CX43 immunostaining of RTAMs and endothelial cells (BV: Blood Vessel). Note a CX43-positive ‘‘button’’ at the junction between the endothelial
blood vessel and RTAM (black arrow). Original magnification:6400.
doi:10.1371/journal.pone.0022567.g005

TAMs Network
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type M2 TAMs and contrast to the absence of ramifications and the

amoeboid shape of classic type M1 macrophages (Fig. 2B). Our

hypothesis is that these cytoplasmic extensions of RTAMs may

permit ‘‘cross talk’’ and molecular transfers between RTAMs and

cancer cells. This ‘‘symbiotic’’ feature has been considered as a

requirement for tumor aggressiveness [31].

Although differently expressed, CX43 was observed in the three

cell types and at their interfaces. The great majority of RTAMs

displayed CX43 positivity in the cytosol, in small vesicles either

located in the cell body or along cytoplasmic processes and at

appositional membrane areas with characteristic ‘‘punctuate’’ gap

junction appearances, corresponding to the different phases of

synthesis and processing of the protein [21].

As CX43 allows the intercellular passage of numerous small

molecules ranging from ions to larger metabolites, these findings

support our hypothesis that gap junctions between TAMs allow an

efficient metabolic support by coordinating intercellular signaling

and connections to cancer and endothelial cells.

Figure 6. CX43 expression in ATC. CX43 immunostaining is mainly located in RTAMs. However, some cancer cells (k) display CX43 staining (black
arrowheads). At the junction with cancer cells (small black arrows), presence of the characteristic punctuate pattern of gap junctions, as depicted in
Fig. 4A. CX43-positive RTAMs interconnect to form an elongated network (green asterisks *). Original magnification:6200.
doi:10.1371/journal.pone.0022567.g006

Figure 7. Demonstration of gap junctions at the ultrastructural level. A) Gap junctions between RTAM and cancer cell at low power (arrow).
Original magnification:63000. B) The same gap junctions at high power (arrows). Original magnification:620 000.
doi:10.1371/journal.pone.0022567.g007

TAMs Network
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We have schematically represented TAMs network on

figure 13. A biological network structure is much more robust

and resistant to diverse types of aggression or dysfunction than

a non-interconnected structure [32–34]. This could give to

ATC a definitive advantage on the neighboring non-tumor

tissues

The vasculature could be considered the basis for the unique

physiology of solid tumors in comparison with normal tissue [35–

37]. In well-differentiated thyroid cancer, tumor cells appear in

close contact with blood vessels like thyrocytes in normal thyroid

tissue. In contrast, many cancer cells in ATC were located at a

distance of more than 150 microns from blood vessels (Fig. 8A).

This distance is considered to be the maximum distance of oxygen

diffusion in tissues from blood vessels [38,39]. However, these

cancer cells, in direct contact with RTAMs did not show any sign

of necrosis or apoptosis. Moreover, RTAMs were strikingly

clustered around blood vessels and from these cell clusters, long

chains of connected RTAMs extended to avascular areas, as

attempting to establish contact with distant cancer cells (Fig. 9 and

10).

Several mechanisms other than tumor vasculature can provide

the tumor with oxygen and nutrients [40]. Monocytes/macro-

Figure 8. CD34 blood vessel immunostaining. A) Blood vessels display heterogeneous and unorganized distribution in ATC. Cancer cells could
be located at a distance exceeding 150 microns from blood vessels (scale bar: 150 microns). Original magnification:6100. B) CD34 immunostaining in
a well-differentiated papillary thyroid carcinoma. Original magnification:6200. Stained blood vessels follow the epithelial architecture and appear in
close contact with cancer cells.
doi:10.1371/journal.pone.0022567.g008

Figure 9. Cluster of RTAMs surrounding blood vessel. Original magnification:6200. Cluster of CD163-positive RTAMs closely surround large
blood vessel (B.V.) and small capillary (cap) and ‘‘stick together’’. From this cluster, interconnected chains of RTAMs extend to within the tumor.
Connections between RTAMs and cancer cells can be thick or very thin. (Long arrows show thin connections between RTAMS. Arrowheads show thin
connections between RTAMs and cancer cells).
doi:10.1371/journal.pone.0022567.g009

TAMs Network
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phages may have the capacity to mimick blood vessels [41], in the

in vitro formation of cord-like structures or branched cell columns

in matrigel under angiogenic conditions [42–44] and in the in vivo

transformation of monocytes into blood vessels [45,46]. Besides

morphological features, lineage markers were found to be co-

expressed by both endothelial cells and monocytes [42] [47,48].

However, in our study RTAMs and blood vessels were constantly

clearly distinct since RTAMs were CD163+, CD342 and blood

vessels CD1632, CD34+. Glod et al. underlined [46] that ‘‘the

continued expression of myeloid proteins implies that the cells do

not trans-differentiate into mature endothelial cells, but rather take

on specific endothelial characteristics while remaining inherently

monocytic cells.’’ Therefore, it is tempting to speculate that the

interconnected RTAM network plays a vessel-like role in

supplying nutrients from the blood to cancer cells.

Staining of Ki67 showed that the majority of cells were in a

proliferative state and the double immunostaining for Ki67 and

P22phox showed that the proliferation rates of RTAMs and

cancer cells were roughly similar (Table 2). Thus these rapidly

growing tumors display apparently the same RTAMs/cancer cells

ratio during their evolution in accordance with the ‘‘symbiotic’’

hypothesis.

GLUT1 protein has been recognized as the main isoform of

glucose transporters in malignant tumors [49]. Stimulation of

glycolysis is an activation signal of macrophages [50]. In ATC, the

fact that the majority of cancer cells were negative for GLUT1 and

that only blood vessels and a subset of RTAMs were positive,

supports the notion that glucose uptake from the blood takes place

mainly in RTAMs and not or to a far lesser degree in cancer cells.

Indeed GLUT1 has also been recognized as the main transporter

for the glucose analogue 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)

in positron-emission tomography (PET) [49,51] and ATC displays

an intense uptake of 18FDG [28,52] (Fig S4). Furthermore Kubota

et al. [53] showed that 18FDG uptake was 2–4 times higher in

tumor-associated macrophages tissues than in tumor cells.

These data suggest that the high uptake of FDG in ATC could

be mostly related to the high number of RTAMs and that RTAMs

network is related to glucose metabolism in the tumor.

TAMs displayed strong staining for NOX2 and its partner

p22phox. NOX2 is the catalytic subunit of NADPH oxidase

which produces reactive oxygen species (O2
2 and H202) in

activated macrophages in order to kill bacteria. Thus, this pro-

inflammatory activity appears to be related more to ‘‘classic’’ M1

macrophages than to that of anti-inflammatory M2 macrophages.

However, recent studies have revealed other functions of the

NADPH oxidase systems [12]. In this context, macrophages in

rats could highly potentiate the invasive capacity of hepatoma

tumor cells, both in vitro and in vivo [54,55] and this was inhibited

by superoxide dismutase and catalase, This indicates a role for

superoxide (O2-) and H2O2, both of which are generated by

Figure 10. Extensions of interconnected RTAMs from blood vessel to avascular tumor areas. On the left, in case nu3 in which the number
of RTAMs was relatively low and this allowed us to distinguish RTAMs along the blood vessel (B.V.) and the contiguous chain extension of RTAMs
from the blood vessel to within the tumor cells. Original magnification:6200. On the right, a drawing underlining the structure and the relationships
between the different components was obtained by copying the photo in transparent digital layer with Adobe Photoshop and adding false colors;
RTAMs in brown, cancer cells clear pink and blue; endothelial cells in green, neutrophils and/or monocytes in vessel lumen in violet and lymphocytes
in red.
doi:10.1371/journal.pone.0022567.g010
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NADPH oxydase. Moreover, these studies argued in favor of

direct contact between macrophages and tumor cells. Further-

more, the immunosuppressive properties of NOX2 and H2O2

have been demonstrated [56,57] and reactive oxygen species

(ROS) generated by NADPH oxidase are necessary for

invadopodia and podosome formation which facilitates invasive

behavior [58–60]. ROS can also modulate cell proliferation and

the continuous generation of H2O2 is required for these

mitogenic effects [61].

In ATC, cancer cells were negative for both NOX2 and

p22phox. p22phox is also the functional partner of other NOX

isoforms such as NOX1, NOX3 and NOX4 [12], and its lack of

expression indicates that ATC cancer cells do not express these

NADPH oxidase systems and consequently do not produce

superoxide and H2O2 on their own. ROS within cells act as

secondary messengers in intracellular signaling cascades which

induce and maintain the survival and oncogenic phenotype of

cancer cells [62,63]. Numerous types of cancer cells display innate

H2O2 overproduction, and this has been correlated with increased

malignant potential [56–58] [64,65]. Given the absence of the

H2O2 generator in ATC cancer cells and the symbiotic function of

RTAMs, it may be hypothesized that H2O2 produced by RTAMs

could fuel cancer cells through interconnecting mechanisms such

as Cx43. Moreover, beyond its role as a gap junction on the

plasma membrane, Cx43 induces resistance to H2O2-mediated

apoptosis, thus conferring an advantage for tumor growth [66].

Although essentially descriptive, our study demonstrates the

presence in ATC of a dense and diffuse interconnected TAMs

Figure 11. GLUT1 expression in RTAMs. Original magnification:6200. GLUT1 positivity is more or less restricted to RTAMs (black arrows). Some
rare cancer cells (k) are positive for GLUT1 (white arrows).
doi:10.1371/journal.pone.0022567.g011

Figure 12. Double Ki67/P22 immunostainings. A) Original magnification:6100; B) Original magnification:6400. Ki67+ was revealed in brown-
black color in the cell nuclei and P22phox in red in cytoplasm. Double immunostaining allowed distinguishing on the same section RTAMS Ki67+P22+
cells (red arrow-heads); RTAMs Ki672P22+ cells (small red arrows); cancer cells Ki67+P222 (black arrow-heads) and Ki672P222 (small black arrows).
doi:10.1371/journal.pone.0022567.g012
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network. To our knowledge this is the first time that such a

network is described in a malignant tumor. This network found

in all of our studied ATC cases appears related to the

anaplastic nature of the proliferation since it was not present in

more differentiated thyroid carcinomas and implies that the

cancer cells were isolated by TAMs ramifications. We

proposed some hypotheses concerning its possible functions

given the aggressiveness of the disease and its need in a great

amount of energy. Further studies using experimental models

are now warranted to investigate the role of such intercon-

nected macrophage network. Finally, TAMs were recently

manipulated in vivo and in situ with pharmacological agents or

cytokines to induce cytotoxic activity against cancer cells [67–

69]. Given its dismal prognosis, ATC appears to be a

candidate for such therapeutic approaches.

Supporting Information

Text S1 Supplemental material and methods.
(DOC)

Figure S1 Count of nuclei RTAMs and nuclei cancer
cells. On the left original NOX2 immunostaining. Original

magnification 6100. On the right nuclei are stained in false

colors. The count is made with the help of Imagej software.

TAMs nuclei are type 1 and are colored in green and cancer cells

nuclei are type 2 and are colored in blue. For this peculiar field

the number of TAMs nuclei were 162 and the number of cancer

nuclei 152 that to say a percentage of 52% of TAMs on total

nuclei population.

(TIF)

Figure S2 NOX2 (A) and CD163 (B) immunostainings in

TAMs. Strong intracytoplasmic staining for NOX2 and CD163.

Note the granular appearance in cytoplasmic extensions (arrows).

Magnification in A and B:61000.

(TIF)

Figure S3 Double immunostaining Ki67/P22. Ki67 is

stained in brown/black in the nucleus and P22 is stained in red in

the cytoplasm. The different types of cells according to their

staining were counted with the help of ImageJ software: Type1

corresponds to TAMs Ki672 P22+; type2 to TAMs Ki67+, P22+;

type3 to cancer cells Ki672 P222 and type4 to cancer cells

Ki67+, P222.

(TIF)

Figure S4
18F-FDG PET/CT in a patient suffering of

anaplastic thyroid carcinoma. Note an intense uptake of the
18F-FDG by the thyroid tumor.

(TIF)
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