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Simple Summary: Approximately 25% of women diagnosed with tubo-ovarian high-grade serous

carcinoma have germline deleterious mutations in BRCA1 or BRCA2, characteristic of hereditary

breast and ovarian cancer syndrome, while somatic mutations have been detected in 3–7%. We set out

to determine the mutation rates and optimal tissue requirements for tumor BRCA testing in 291 tissue

samples. Initial testing was successful in 78% and deemed indeterminate in 13%. Repeat testing

was successful in 67% of retested samples, with an overall success rate of 86%. Clinically significant

BRCA variants were identified in 17% of patients. Successful sequencing was dependent on sample

type, tumor cellularity and size (p ≤ 0.001) but not on neoadjuvant chemotherapy or age of blocks.

In summary, our study shows a 17% tumor BRCA mutation rate, with an overall success rate of 86%.

Biopsy and cytology samples and post-chemotherapy specimens can be used, and optimal tumors

measure ≥5 mm in size with at least 20% cellularity.

Abstract: Background: Approximately 25% of women diagnosed with tubo-ovarian high-grade serous

carcinoma have germline deleterious mutations in BRCA1 or BRCA2, characteristic of hereditary

breast and ovarian cancer syndrome, while somatic mutations have been detected in 3–7%. We set

out to determine the BRCA mutation rates and optimal tissue requirements for tumor BRCA testing

in patients diagnosed with tubo-ovarian high-grade serous carcinoma. Methods: Sequencing was

performed using a multiplexed polymerase chain reaction-based approach on 291 tissue samples,

with a minimum sequencing depth of 500X and an allele frequency of >5%. Results: There were 253

surgical samples (87%), 35 biopsies (12%) and 3 cytology cell blocks (1%). The initial failure rate

was 9% (25/291), including 9 cases (3%) with insufficient tumor, and 16 (6%) with non-amplifiable

DNA. Sequencing was successful in 78% (228/291) and deemed indeterminate due to failed exons or

variants below the limit of detection in 13% (38/291). Repeat testing was successful in 67% (28/42) of

retested samples, with an overall success rate of 86% (251/291). Clinically significant (pathogenic,

likely pathogenic) variants were identified in 17% (48/276) of complete and indeterminate cases.

Successful sequencing was dependent on sample type, tumor cellularity and size (p ≤ 0.001) but

not on neoadjuvant chemotherapy or age of blocks (p > 0.05). Conclusions: Our study shows
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a 17% tumor BRCA mutation rate, with an overall success rate of 86%. Biopsy and cytology

samples and post-chemotherapy specimens can be used for tumor BRCA testing, and optimal tumors

measure ≥5 mm in size with at least 20% cellularity.

Keywords: high-grade serous carcinoma; BRCA; tumor sequencing; PARP inhibitors

1. Introduction

Ovarian cancer is the 7th most common malignancy in women worldwide [1]. Epithelial tumors

account for approximately 90% of all ovarian cancers and are comprised of five distinct disease groups,

with different clinical presentations, pathogenesis, chemosensitivity and prognosis [2]. High-grade

serous carcinoma (HGSC) is the most common histological subtype of epithelial ovarian cancer

accounting for 70% of cases and majority of deaths, with a median overall survival of 41 months [1,3].

Up to 25% of women diagnosed with HGSC have germline deleterious mutations in BRCA1 or BRCA2

characteristic of hereditary breast and ovarian cancer syndrome (HBOC) [4–6], while somatic mutations

have been detected in 3–7% [7–12]. Of all patients with tumor BRCA1/2 variants, 54–74% are germline

and 27–46% are somatic, i.e., present only in the tumor tissue [10,12–14].

The BRCA1 (chromosome 17q21) and BRCA2 (chromosome 13q12.3) are tumor suppressor genes

that encode for proteins essential in DNA double strand break repair by homologous recombination

(HR) [15–17]. In women with HBOC, cells with a “second-hit” leading to HR deficiency rely on

alternative error-prone mechanisms of DNA repair that leads to an increased risk for the development

of a variety of malignancies involving the breast as well as ovary, fallopian tube or peritoneum [18,19].

The presence of BRCA mutation in HGSC has important prognostic and predictive implications.

Tumor cells with HR deficiency have been shown to display greater sensitivity to platinum-based

chemotherapy regimens in both breast and ovarian cancer patients [20–22]. In addition, HR deficient

tumors can also be treated with novel poly adenosine diphosphate ribose polymerase (PARP) inhibitors.

PARP enzymes are important in DNA single-strand break repair. PARP inhibitors selectively target

HR-deficient cancer cells and lead to cell death through the mechanism of synthetic lethality [23–26].

PARP inhibitors have been demonstrated to extend progression free survival in HGSC patients with

the greatest effectiveness in patients with BRCA1/2 mutations [27–31].

The first PARP inhibitor Olaparib was approved by the United States Food and Drug

Administration (FDA) in 2016 as a maintenance treatment for BRCA-mutated recurrent HGSC

following ≥3 lines of chemotherapy, and extended to treatment following first-line chemotherapy in

2018. Tumor BRCA testing and PARP inhibitor monotherapy for the maintenance treatment of adult

patients with BRCA-mutated platinum-sensitive relapsed (PSR) HGSC was first approved by Health

Canada in April 2016. Currently, tumor BRCA testing is performed reflexively for newly diagnosed

HGSC patients in Ontario in several referral centres. Although formalin-fixed paraffin-embedded

(FFPE) samples can be used for molecular studies, there is a wide variety of pre-analytical and analytical

variables that can affect the performance of molecular assays, including cold ischemic time, length of

fixation, storage conditions, age of paraffin blocks etc. [32–34]. The use of FFPE tumor tissue for BRCA

variant analysis using next-generation sequencing (NGS) as well as the feasibility of the implementation

for such tests in clinical practice have been investigated previously [7,35]. Tumor testing for BRCA

variant screening has been suggested to be more efficient in selecting HGSC patients for genetic

counseling as well as for PARP inhibitor therapy [13]. A combination of NGS and copy number

variant multiplex ligation-dependent probe amplification has been reported to have a sensitivity

of 98% in the training cohort of 50 patients, and 100% in the prospective cohort of 66 patients [13].

Another prospective analysis of FFPE samples from 223 patients with epithelial ovarian cancer showed

that the tumor BRCA testing using NGS had a success rate of 99.1% (221/223), with a 28.1% rate of
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pathogenic/likely pathogenic mutations and 87% concordance rate between germline and tumor BRCA

tests [36].

In this study, we present the results of tumor BRCA1/2 testing in a cohort of 291 HGSC patients

performed in the clinical setting at a tertiary hospital. We report the rate of tumor BRCA1/2 mutations,

optimal tissue requirements and challenges encountered such as variable quality of tissue samples and

success rates following repeat testing.

2. Results

2.1. Overview of Clinical Data

FFPE samples from a total of 291 patients diagnosed between 2004 and 2019 were received for

tumor BRCA1 and BRCA2 analysis during the study period. The median patient age was 65 years

(range 34–89). Most (87%, 253/291) samples were from surgical excisions, with 12% (35/291) biopsies

and 1% (3/291) cytology cell blocks from peritoneal fluid. Of tissue samples, most cases (41.2%, 120/291)

were ovarian, 11% (32/291) were tubal and “adnexal” each, 20% (58/291) were omental, although other

tissues were also represented (16.8%, 49/291). Most patients (70.8%, 206/291) were chemotherapy naïve

(Table 1).

Table 1. Description of the tissue samples analyzed.

Tissue Type No (%)

Ovary 120 (41.2)
Fallopian tube 32 (11.0)

Adnexa 32 (11.0)
Omentum 58 (20.0)

Other 49 (16.8)
Post neoadjuvant chemotherapy

Yes 85 (29.2)
No 206 (70.8)

2.2. Initial Testing

Tumor cellularity was analyzed by a single pathologist prior to sequencing. Samples with a

cellularity of <10%, irrespective of tumor size, were not eligible for sequencing under the assumption

that a heterozygous variant would not meet the 5% limit of detection for this test. Of 291 samples,

9 (3%) had insufficient tumor with <10% cellularity and thus were not submitted for DNA extraction,

16 (5.5%) had suboptimal DNA quality and/or quantity and thus were not submitted for sequencing.

Overall, the initial failure rate was 8.6% (25/291) (Figure 1). Of 266 (91.4%) samples that were sequenced,

complete reports were generated in most cases (78.4%, 228/291), while 13% (38/291) was considered

indeterminate. Indeterminate reports included those with either failed exons due to the possibility of

uncaptured pathogenic or likely pathogenic variants within the failed exons or with pathogenic or

likely pathogenic variants below the limit of detection (LOD) due to uncertainty over true presence of

clinically significant variants below LOD.

2.3. Repeat Testing

Repeat testing was performed in 42 cases, including all 16 failed (insufficient and/or non-amplifiable

DNA) samples and 26 of 38 indeterminate (19 with low coverage depth, 11 with variants below the

LOD, 1 with a large number of variants of uncertain significance (VUS)) samples (Figure 2). Successful

results were obtained in 66.7% (28/42) of cases, 7.1% (3/42) failed, while the remaining 26.2% (11/42)

were still indeterminate. New paraffin blocks were tested in three patients, of which one yielded a

complete report. Repeat testing identified a pathogenic variant in three failed cases and four cases with

low depth of coverage. Of interest, one sample had low coverage depth in exons 22–23 in BRCA1 in

both initial and repeat tests, which was confirmed using a second independent methodology (following
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enrichment using the Illumina TruSight Rapid Capture Kit) [37] to be a likely pathogenic deletion of

exons 22–23.

Thus, overall success rates based on the 291 samples were as follows: complete reports issued

in most cases (86.3%, 251/291), failed reports in 5.1% (15/291), while 8.6% (25/291) of cases were still

considered indeterminate (Figure 2). Of these 25 patients, 15 had <5 exons with low coverage, 6 had

5–9 exons with low coverage, and 4 had ≥10 exons with low coverage; the remaining exons were

successfully sequenced.

 

≥

≥

Figure 1. Schematic summary of success rates of tumor BRCA analysis. Complete report: all exons

of BRCA1 and BRCA2 sequenced; indeterminate report: ≥1 exon of BRCA1 and/or BRCA2 with low

coverage depth or pathogenic or likely pathogenic variants below the limit of detection; failed report:

unsuccessful BRCA analysis.
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Figure 2. Success rates of tumor BRCA analysis by specimen type. Complete report: all exons of

BRCA1 and BRCA2 sequenced; indeterminate report: ≥1 exon of BRCA1 and/or BRCA2 with low

coverage depth or pathogenic or likely pathogenic variants below the limit of detection; failed report:

unsuccessful BRCA analysis.

2.4. Predictors of Successful Tumor BRCA Analysis

We next assessed how sample type, tumor cellularity, tumor size, neoadjuvant chemotherapy or

age of paraffin blocks affected the rates of successful tumor BRCA analysis. Detailed analysis of failure

rates based on tumor cellularity and tumor size showed higher rates of failed reports among samples

with lower tumor cellularity and smaller tumors. More specifically, failure rates were 4% (9/226) in

samples with ≥50% cellularity, 15.2% (7/46) in samples with cellularity >10% but <50%, and 47.4%

(9/19) in samples with ≤10% cellularity (p < 0.0001). When rates of successful tumor BRCA analysis

were analyzed by tumor size, failure rates were 6.6% (17/259) in samples measuring ≥10 mm, 7.1%

(1/14) in samples measuring 5–9 mm, and 38.9% (7/18) in samples measuring ≤4 mm (p < 0.0001).

Comparison of specimen types demonstrated a failure rate of 25.7% (9/35) in biopsies, 33.3% (1/3) in

cytology specimens and 5.9% (15/253) in surgical samples (p = 0.001). There was no association with

post-neoadjuvant chemotherapy, age of the paraffin blocks tested or referring site (p ≥ 0.396) (Table 2).

The mutation rate was 13% (19/144) in patients diagnosed before 2018 versus 20% (29/147) for patients

diagnosed after 2018 (Fisher‘s p = 0.16).

Table 2. Summary of initial success rates of BRCA1/2 sequencing based on clinical–pathologic variables.

Clinical–Pathologic Variables Complete Failed Indeterminate Total p-Value (Pearson Chi-Square)

Sample type
Surgical 206 (81.4%) 15 (5.9%) 32 (12.7%) 253 (87%)

0.001Biopsy 20 (57.1%) 9 (25.7%) 6 (17.2%) 35 (12%)
Cytology 2 (66.7%) 1 (33.3%) 0 3 (1%)

Tumor cellularity
≥50% 185 (81.9%) 9 (4.0%) 32 (14.1%) 226 (77.7%)

<0.0001>10% to <50% 34 (73.9%) 7 (15.2%) 5 (10.9%) 46 (15.8%)
≤10% 9 (47.4%) 9 (47.4%) * 1 (5.2%) 19 (6.5%)

Tumor size

≥10 mm 206 (79.5%) 17 (6.6%) 36 (13.9%) 259 (89%)

<0.00015–9 mm 13 (92.9%) 1 (7.1%) 0 14 (4.8%)
≤4 mm 9 (50.0%) 7 (38.9%) 2 (11.1%) 18 (6.2%)

Chemotherapy
Yes 64 (75.3%) 9 (10.6%) 12 (14.1%) 85 (29.2%)

0.669
No 164 (79.6%) 16 (7.8%) 26 (12.6%) 206 (70.8%)

Age of tissue block, years
<3 111 (75.5%) 13 (8.8%) 23 (15.7%) 147 (50.5%)

0.396
≥3 117 (81.3%) 12 (8.3%) 15 (10.4%) 144 (49.5%)

Total 228 (78.4%) 25 (8.6%) 38 (13.0%) 291 (100%)

* 9 samples with insufficient tumor.
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2.5. Histologic Analysis

We retrospectively assessed histologic variables previously reported to be predictive of BRCA1/2

status in surgical specimens from 172 chemotherapy naïve patients. These variables included the Solid,

pseudo-Endometrioid and Transitional cell-like (SET) features, necrosis, grade 3 nuclei, abundant

tumor-infiltrating lymphocytes (TILs) and metastases with pushing or micropapillary growth patterns.

Formal statistical analysis was underpowered due to the small number of BRCA1 and BRCA2 mutant

samples; however, histologic features in tissue samples with and without BRCA mutations are

summarized in Table 3.

Table 3. Summary of histologic features associated with BRCA1/2 mutations in surgical specimens from

a cohort of 172 chemotherapy-naïve patients.

Histologic Features Mutation Total
BRCA1

Mutation
BRCA2

Mutation
No

Mutation
Total

SET features
S 13 (38.2%) 9 (45%) 4 (28.6%) 35 (25.4%) 48 (27.9%)
E 11 (32.4%) 7 (35%) 4 (28.6%) 21 (15.2%) 32 (18.6%)
T 4 (11.8%) 0 4 (28.6%) 2 (1.4%) 6 (3.5%)
All 3 features 2 (5.9%) 0 2 (14.3%) 2 (1.4%) 4 (2.3%)
Any 2 of 3 features 7 (20.6%) 7 (35%) 0 19 (13.8%) 26 (15.1%)
Any 1 of 3 features 2 (5.9%) 2 (10%) 0 14 (10.1%) 16 (9.3%)

Necrosis 27 (79.4%) 18 (90%) 9 (64.3%) 93 (67.4%) 120 (69.8%)
Grade 3 nuclei 15 (44.1%) 11 (55%) 4 (28.6%) 79 (57.2%) 94 (54.6%)
TILs 5 (14.7%) 2 (10%) 3 (21.4%) 14 (10.1%) 19 (11%)
Metastasis with pushing or micropapillary
pattern

3 (8.8%) 2 (10%) 1 (7.1%) 4 (2.9%) 7 (4.1%)

Total 34 (19.8%) 20 (11.6%) 14 (8.2%) 138 (80.2%) 172 (100%)

SET, Solid, pseudo-Endometrioid and Transitional cell-like; TILs, tumor-infiltrating lymphocytes.

2.6. Clinically Significant BRCA Mutations

Pathogenic or likely pathogenic variants were identified in 17.4% (48/276) of complete and

indeterminate cases, including BRCA1 variants in 30 patients and BRCA2 variants in 18 patients

(Tables 4 and S1). The most common type of mutations was substitutions (23/48, 47.9%). Of these,

12 created a premature stop codon, 7 were splicing alterations, and 4 were missense mutations.

The remaining mutations were small deletions (39.6%, 19/48), small duplications (6.2%, 3/48), combined

indels (4.2%, 2/48), and small insertions (2.1%, 1/48), all of which resulted in a frameshift (Table 4).

Most patients with mutations (60.4%, 29/48) were 60 years or older, including 16 patients aged 70–79

and 13 patients aged 60–69. Only eight patients (16.7%) were 40–49 years of age.

In addition, our study identified 33 variants of uncertain significance (VUS) in 27 patients,

including 23 patients with 1 VUS, 3 patients with 2 VUS, and 1 patient with 4 VUS. Five of the

23 patients with 1 VUS also had a pathogenic variant. Almost all VUS were substitution variants (97%,

32/33), including 26 missense variants, 3 silent variants, 2 splicing alterations, 1 variant located in the 5’

untranslated region, and 1 in-frame deletion. Unlike pathogenic variants, VUS were more common in

BRCA2 (69.7%, 23/33) than BRCA1 (33.3%, 11/33) (Table S2).

2.7. Loss of heterozygosity (LOH) Analysis

This molecular test was evaluated for copy number variant detection by way of assessing allelic

imbalances in tumors for individual variants, although amplicon sequencing may not be the best

approach for the detection of copy number alterations or LOH. Tumors were considered LOH positive

if there was an allelic imbalance of two or more variants in the same gene with allele frequencies

between 5 and 45% or 55 and 95%, regardless of the presence of a pathogenic variant. Among the

276 patients with complete or indeterminate BRCA1/2 sequencing results, 204 (73.9%) had LOH in

either BRCA1 only (59, 29%), BRCA2 only (78, 38.2%), or both BRCA1 and BRCA2 (67, 32.8%). By this

definition, 39 of 48 (81.3%) subjects with a pathogenic variant had LOH. Among these, 31 (79.5%)
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tumors showed LOH in the same gene as the mutation with 14 (35.9%) in BRCA1 and 17 (43.6%) in

BRCA2; 8 (20.5%) samples had LOH in the non-mutated BRCA gene (Table S2). By applying this

method of determining LOH, we assessed whether or not the LOH occurred at the same allele as the

pathogenic variant in order to investigate bi-allelic inactivation. Among the 48 pathogenic variants,

29 (60.4%) had an allele frequency greater than 0.55. Of these, 11 (37.9%) had another variant with an

allele frequency below 0.45; 10 (34.5%) had another variant with an allele frequency above 0.55, but no

variant below 0.45; 8 (27.6%) did not have any other variants in the same gene and did not meet LOH

criteria defined here as allelic imbalance in at least two variants.

Table 4. Summary of pathogenic and likely pathogenic BRCA variants identified.

No Exon Variant
Allele

Frequency
Cellularity, % Amino Acid Change

Mutation
Type

Mutation
Effect

LOH Status

BRCA1
1 22–23 c.5333-?_5467+?del Unknown 70 p.(Asp1778_His1822del) Deletion Frameshift None
2 18 c.5141_5144del 0.642 80 p.(Val1714fs) Deletion Frameshift BRCA2 only
3 11 c.3607C>T 0.541 80 p.(Arg1203*) Substitution Stop codon BRCA2 only
4 15 c.4485-10_4491del 0.362 80 p.(Arg1495fs) Deletion Frameshift None
5 19 c.5154G>A 0.050 90 p.(Trp1718*) Substitution Stop codon BRCA1 and BRCA2
6 11 c.1387_1390delinsGAAAG 0.855 80 p.(Lys463Glufs*17) Indel Frameshift BRCA1 and BRCA2
7 11 c.2263G>T 0.399 60 p.(Glu755*) Substitution Stop codon BRCA1 and BRCA2
8 11 c.3476del 0.704 80 p.(Ile1159fs) Deletion Frameshift BRCA1 and BRCA2
9 5 c.212+3A>G 0.802 70 p.? Substitution Splicing BRCA1 and BRCA2

10 11 c.1961del 0.631 80 p.(Lys654fs) Deletion Frameshift BRCA2 only
11 24 c.5497G>A 0.927 80 p.(Val1833Met) Substitution Missense BRCA1 and BRCA2
12 11 c.2365del 0.642 70 p.(Ser789Alafs*3) Deletion Frameshift BRCA2 only
13 11 c.2827A>T 0.304 80 p.(Lys943*) Substitution Stop codon BRCA1 only
14 11 c.3225_3226del 0.685 80 p.(Asn1075fs) Deletion Frameshift BRCA1 and BRCA2
15 11 c.2188G>T 0.800 80 p.(Glu730*) Substitution Stop codon BRCA1 and BRCA2
16 2 c.3G>A 0.632 70 p.(Met1?) Substitution Missense None
17 16 c.4689C>G 0.802 60 p.(Tyr1563*) Substitution Stop codon None
18 14 c.4484G>T 0.686 40 p.(Arg1495Met) Substitution Splicing BRCA1 only
19 24 c.5468-2A>G 0.503 20 p.? Substitution Splicing BRCA2 only
20 11 c.2269del 0.173 10 p.(Val757fs) Deletion Frameshift None
21 11 c.3481_3491del 0.585 70 p.(Glu1161fs) Deletion Frameshift BRCA2 only
22 21 c.5324T>G 0.628 80 p.(Met1775Arg) Substitution Missense BRCA1 and BRCA2
23 14 c.4372C>T 0.154 70 p.(Gln1458*) Substitution Stop codon None
24 9 c.593+1G>A 0.051 80 p.? Substitution Splicing BRCA1 only
25 11 c.1603G>T 0.715 80 p.(Gly535*) Substitution Stop codon BRCA1 only
26 11 c.1390_1391insG 0.674 80 p.(Thr464Serfs*16) Insertion Frameshift BRCA1 only
27 11 c.1504_1508del 0.743 80 p.(Leu502Alafs*2) Deletion Frameshift BRCA1 and BRCA2
28 16 c.4689C>G 0.818 70 p.(Tyr1563*) Substitution Stop codon BRCA1 and BRCA2
29 19 c.5193+1G>T 0.614 90 p.? Substitution Splicing BRCA1 only
30 21 c.5296del 0.391 90 p.(Ile1766Serfs*27) Deletion Frameshift BRCA1 only

BRCA2
31 11 c.4321G>T 0.616 60 p.(Glu1441*) Substitution Stop codon BRCA2 only
32 11 c.5238dupT 0.681 50 p.(Asn1747fs) Duplication Frameshift BRCA2 only
33 11 c.5073dup 0.848 80 p.(Trp1692fs) Duplication Frameshift BRCA1 and BRCA2
34 9 c.755_758del 0.711 80 p.(Asp252fs) Deletion Frameshift BRCA1 and BRCA2
35 23 c.8954-1G>A 0.863 70 p.? Substitution Splicing None
36 9 c.712G>T 0.072 50 p.(Glu238*) Substitution Stop codon None
37 8 c.658_659del 0.495 40 p.(Val220fs) Deletion Frameshift BRCA1 and BRCA2
38 11 c.6808_6836del 0.320 40 p.(Gly2270fs) Deletion Frameshift BRCA2 only
39 21 c.8732del 0.097 80 p.(Ala2911Glufs*16) Deletion Frameshift BRCA1 only
40 11 c.3339del 0.819 80 p.(Glu1113Aspfs*6) Deletion Frameshift BRCA2 only
41 8 c.632-1G>A 0.129 80 p.? Substitution Splicing BRCA1 only
42 11 c.6267_6269delinsC 0.848 40 p.(His2090fs) Indel Frameshift BRCA1 and BRCA2
43 11 c.4631del 0.869 80 p.(Asn1544fs) Deletion Frameshift BRCA2 only
44 11 c.3545_3546delTT 0.813 40 p.(Phe1182fs) Deletion Frameshift None
45 24 c.9154C>T 0.341 80 p.(Arg3052Trp) Substitution Missense BRCA1 and BRCA2
46 10 c.1859_1865del 0.645 90 p.(Phe620*) Deletion Frameshift BRCA2 only
47 11 c.5351dup 0.293 80 p.(Asn1784Lysfs*3) Duplication Frameshift BRCA2 only
48 11 c.3187C>T 0.057 20 p.(Gln1063*) Substitution Stop codon None

LOH, loss of heterozygosity

3. Discussion

Our cohort consists of 291 HGSC patients who underwent tumor BRCA1/2 testing between

1 September 2018 and 31 May 2019 in our laboratory to determine eligibility for PARP inhibitor

therapy. Tumor BRCA1/2 variant status was determined for 276 patients (251 complete reports with

fully sequenced BRCA1 and BRCA2 genes, 25 indeterminate reports with at least one failed exon),

of which 17.4% (48/276) had a pathogenic/likely pathogenic variant and 8.3% (23/276) carried a VUS.

The overall mutation rate of 17.4% in our study may be on the lower end of the spectrum but appears
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comparable to the combined germline and somatic mutation rate of 16.7–28% reported in previous

studies [7,10,12,14,35]. We hypothesize that this is primarily due to ascertainment bias as some

patients diagnosed before 2018 may have already been tested negative for a germline BRCA mutation.

In support of our hypothesis, we found that the pathogenic/likely pathogenic mutation rate for patients

diagnosed before 2018 was 13%, whereas the diagnostic yield was 20% after 2018. Although not

statistically significant, the post-2018 rate is more consistent with what we had previously observed in

the hereditary breast and ovarian cancer germline genetic testing program in Ontario [38] as well as

with the existing literature [7,10,12,35]. However, given that the molecular test does not distinguish

between somatic or germline mutations, we were not able to assess the actual somatic mutation rate in

this cohort by way of ruling out germline variation.

The FFPE tumor samples were first assessed by analyzing tumor cellularity and tumor size.

In general, we observed that samples with higher tumor cellularity and larger tumors had better

outcomes of tumor BRCA analysis, with failure rates at 4% in samples with ≥50% cellularity versus

47.4% in samples with ≤10% cellularity, and 6.6% in samples measuring ≥10 mm versus 38.9% in

samples measuring ≤4 mm (p < 0.0001). In addition, surgical specimens had better analysis yield

compared to biopsies and cytology specimens with failures rates of 5.9%, 25.7% and 33.3%, respectively

(p = 0.001), although only three cytology samples were included in the study. Interestingly, neoadjuvant

chemotherapy or age of paraffin blocks did not affect the failure rate. These results support the use of

FFPE samples with high tumor cellularity. In addition, samples measuring < 5 mm in size have an

almost 40% probability of failure, highlighting the importance of recording tumor size in addition to

cellularity. It is also worth noting that despite this association between low tumor cellularity and small

tumor size with higher failure rates, samples with 10% tumor cellularity (the lowest eligible cellularity)

and those measuring ≤4 mm were still successfully sequenced. This indicates that tumors measuring

≤4 mm or tumors with 10% cellularity may still yield sufficient DNA for sequencing, although a higher

proportion of failures would be expected. Thus, sequencing may be attempted on these samples if and

when more optimal specimens are not available.

In order to maximize diagnostic yield, a second sample, if available, was sequenced if the first

test failed or resulted in an indeterminate report with variants below the LOD or low coverage

depth in at least one exon. A report with low coverage depth was considered indeterminate because

there may be pathogenic variants within the exons of low coverage that were not detected. Of the

291 patients, 8.6% had failed reports, and 13% had indeterminate reports following the first test per

patient. Among 42 patients that had a second sample tested, complete reports were successfully

generated in 66.7%. A pathogenic variant was also identified in seven patients (three failed, four with

low depth coverage), demonstrating high value in repeating previously failed samples as well as

samples with low depth coverage. Only three repeats were done on a different tissue block, suggesting

that a new block may not be necessary. In summary, after repeat testing, the proportion of conclusive

reports increased from 78.4% to 86.3%, while the number of indeterminate reports decreased from 13%

to 8.6%, demonstrating that repeat testing is an effective method of increasing diagnostic yield in a

clinical setting for challenging tissues such as FFPE.

With the incorporation of BRCA1/2 sequencing into HGSC treatment, it is of interest to associate

histologic characteristics with BRCA1/2 mutation status. Various histologic features have been reported

to be predictive of BRCA mutations including the presence of SET features, necrosis, grade 3 nuclei,

tumor infiltrating lymphocytes and mitotic index as well as metastases with pushing or “medullary-like”

invasion or infiltrative invasion composed exclusively of micropapillae [39–41]. Although the histologic

criteria developed in previous studies have limited positive predictive value, they have been more

effective at predicting the absence of BRCA1/2 mutations with negative predictive value of >95% [39,40].

Our study was underpowered for formal statistical analysis. However, the aforementioned histologic

features could be another tool used by clinicians to prioritize accessibility to BRCA1/2 testing in

situations where this is necessary.
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LOH was not included in most clinical trials to determine if individuals with this type of genomic

alteration might be responsive to PARP inhibitors [27,31,42–44], as LOH status is not considered to be

the type of pathogenic variant that would be eligible for PARP inhibitors. We assessed LOH status for

every patient based on allelic imbalances; however, it was not used for clinical decisions. In our study,

73.9% of patients had LOH which could be due to high genomic instability of HGSC. Some of the

variants had low (<10%) allele frequency even in tumors with >80% cellularity and LOH. This could

be explained as artifacts or low level somatic variation. Alternatively, if a non-tumor variant occurred

in a sample with 80% cellularity as a heterozygote, the theoretical allelic fraction would be 10%.

Previous studies have suggested that HGSC with retention of the normal BRCA1 or BRCA2 allele

(absence of locus-specific LOH) may have lower HR deficiency scores compared with tumors with

locus-specific LOH, and the latter may be used to predict primary resistance to PARP inhibitors in

BRCA mutation carriers [45]. Although LOH was not investigated in clinical trials for PARP inhibitor

therapy, BRCA wild-type patients with LOH were analyzed as a subgroup in the ARIEL 3 clinical

trial for rucaparib and demonstrated improved progression free survival compared to placebo [46].

If LOH alone is sufficient for PARP inhibitors to be effective, treatment with PARP inhibitors could

potentially be extended to 73.9% of patients in our study who tested positive for LOH based on our

criteria. In theory, however, the effective mechanism of PARP inhibitors requires inactivation of both

copies of either BRCA1 or BRCA2. This is supported by in vitro and in vivo studies that demonstrate

mutated cells in the heterozygous state are significantly less responsive to PARP inhibitors compared

to homozygous mutants [47–51]. Based on this theory, only patients with bi-allelic inactivation of

BRCA1/2 should be eligible, which would exclude the currently eligible hypothetical subset of patients

who are heterozygous for a BRCA1/2 mutation with no apparent inactivation of the second copy.

We found that among the 48 patients with a BRCA mutation, 39 met our general criteria for LOH, but

of these only 21 (43%) had a pathogenic variant allele frequency above 0.55 that supported bi-allelic

inactivation. These rates are considerably lower than previously reported rates of 84–100% of LOH in

germline mutant BRCA1/2 [45,52]. Two mutations had an allele frequency between 0.45 and 0.55 while

the remaining 16 had an allele frequency below 0.45. Some of these low frequency mutations may

indicate mutations that were somatic in origin. Because LOH status was determined by a shift in allele

frequency to 55–95%, we could not determine if it was caused by deletion, mitotic recombination or

gene conversion, or other more complex chromosomal alterations which could result in copy number

abnormality or copy neutral LOH. We also did not assess other potential methods of gene inactivation

such as promoter methylation which would be a valuable future addition to this test. Additionally, it

is generally more difficult to detect large deletions in DNA extracted from FFPE tissue compared to

germline DNA [32].

Given that tumor BRCA1/2 testing identifies both germline and somatic mutations, we endorse

universal tumor testing in newly diagnosed HGSC patients. The universal tumor BRCA1/2 testing

workflow has been shown to be a feasible, effective and robust option in daily pathology practice, and

well perceived by gynecologists and patients [14]. It maximizes mutation detection rate (at least 16.7%

versus 9.5% with universal genetic predisposition testing) and effectively identifies patients who are

eligible for PARP inhibitor therapy. In addition, it may also serve as a screening tool to tailor genetic

counseling and may improve uptake of genetic predisposition testing in HGSC patients [14]. It should

also be noted that there are other genes in the HR family, such as ARID1A, ATM, ATRX, BAP1, BARD1,

BLM, BRIP1, CHEK1/2, PALB2, RAD50, RAD51, RAD51B, EMSY, that may be recognized as eligibility

criteria for PARP inhibitor therapy in the future [53–55]. Lastly, PARP inhibitors are increasingly being

used for patients with platinum-sensitive HGSC regardless of BRCA status [56,57].

Our study has several limitations: (a) germline mutation status of individuals whose tumor tissues

tested positive for a BRCA1/2 mutation was unknown; thus, it is unclear if the mutations detected were

of germline or somatic origin (albeit this does not affect eligibility for PARP inhibitors); (b) many cases

were referred with only one submitted paraffin block available for histologic review, introducing a

selection bias and limiting our assessment of BRCA mutation associated morphologic features.
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4. Materials and Methods

4.1. Study Population and Reference Laboratory

A total of 291 patients with HGSC underwent tumor BRCA testing in the Advanced Molecular

Diagnostics laboratory at Mount Sinai Hospital between October 2018 and May 2019. Patient eligibility

for tumor BRCA testing was determined based on the Ontario Ministry of Health and Long-Term Care

and Cancer Care Ontario guidelines. This included patients diagnosed with HGSC of the ovarian,

fallopian tube or primary peritoneal origin, whose BRCA mutation status was either unknown or

potentially negative for germline testing at the time of testing. Patients who have previously tested

positive for a germline BRCA mutation were not eligible. Samples were received from 15 different

hospitals including Sinai Health System. Germline BRCA status was not provided by referring

clinicians. The study was approved by the Research Ethics Board (19-0071E).

The Advanced Molecular Diagnostics laboratory at Mount Sinai Hospital is accredited by the

Institute of Quality Management in Healthcare (IQMH) to ISO 15189:2012/15190:2003. All tests were

validated according to accepted practice guidelines for molecular genetic testing of the American

College of Medical Genetics (ACMG), the College of American Pathologists (CAP), and the Clinical

and Laboratory Standards Institute (CLSI).

4.2. Tissue Samples and DNA Extraction

Microscopic slides were reviewed to confirm the diagnosis of HGSC, determine tumor cellularity

in increments of 10 and maximum linear dimension in millimeters, and circle tumor tissue. Slides from

chemotherapy naïve patients were also reviewed by a single pathologist blinded to sequencing results

(GT) for specific histologic features associated with BRCA mutations. Tumors were then macrodissected

from six 10-µm FFPE tissue sections with a minimum tumor cellularity of 10%. DNA was extracted

from macrodissected tumor samples using the Qiagen QIAsymphony DSP DNA Mini Kit on the

Qiagen QiaSymphony SP Automated DNA Extractor (Qiagen, Venlo, The Netherlands). The quantity

and quality of the DNA was determined by fluorescent spectrophotometric analysis using Qubit

(Thermofisher, Waltham, MA, USA).

4.3. Library Preparation and Analysis

The Illumina AmpliSeq Library PLUS for the BRCA Panel kit (Illumina, SanDiego, CA, USA)

was used to prepare multiplex PCR libraries for DNA sequencing according to the manufacturer

instructions. The minimum acceptable tumor cellularity was 10%, while the minimum acceptable

sample DNA Qubit concentration was >0.01 ng/µL in order to proceed with library preparation.

Analysis included all exonic regions and flanking intronic sequences (±15 base pairs from the exon

boundaries) of BRCA1 and BRCA2 genes. Amplicon coverage included two primer pools (Pool 1:

132 amplicons, Pool 2: 133 amplicons) that overlap all the exonic and flanking intronic regions of

the BRCA1 and BRCA2 genes. After amplification, leftover primer sequences were digested and

sequencing adapters were ligated to the amplicons. Libraries were amplified again, quantitated,

normalized and pooled together for sequencing. A Qubit value of 0.37 ng/µL was required to achieve

the normalized concentration (2 nM) for sample pooling to avoid preferential sequence amplification.

Twelve tumor samples per library were pooled and run on an Illumina MiSeq instrument using a v2

Micro cartridge. Paired end reads 150 bp in each direction was used for this test. For repeat testing,

DNA was re-extracted from the same block or a new block.

Quality control measures were followed per the provincial laboratory accreditation standards

for DNA transfer (to dilution tubes or plate) and the plates had two unique identifiers to label each

sample. In addition, proficiency testing is performed several times per year both internally and through

external programs to assess performance and quality of the test.
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4.4. Bioinformatic Analysis

Variant calling was performed using the DNA Amplicon Analysis Module V1.1.0 from Illumina

with a minimum per base coverage of 500 reads. Quality metrics for each run were evaluated and

needed to meet minimum acceptable threshold values based on prior clinically validated testing

metrics. These are summarized as averages as follows: total Yield (G) of 1.81 (SD 0.1), number of reads

passing filter (Reads PF) (M) of 5.75 (SD 0.32), Cluster Density (k/mm2) of 1153 (SD 89.85), Clusters

Passing Filter of 91.9% (SD 2.78) and >Q30 of 94.4% (SD 0.8) (Table S3).

A minimum per base read depth 500X was required to pass filter; the LOD (limit of detection)

was determined to be 5% and a minimum of 5% frequency of the alternative allele was required

for reporting.

The analytical sensitivity was > 99% and specificity was 100% for DNA substitutions and small

deletions or duplications (up to 5 bp) as well as exon-level or full gene deletions or duplications,

as demonstrated during the validation process in our laboratory before using the test in the clinical

setting. This test does not reliably detect chromosomal aberrations or rearrangements.

To identify deletions or loss of heterozygosity (LOH), a comprehensive analysis of all variants

in both BRCA genes was used based on internal validation metrics. Ranges of variant frequencies

for LOH were as follows: no evidence of LOH (45–55%), strong evidence of LOH (5–45%) (55–95%),

and not informative evidence of LOH (0–5%) (95–100%). LOH was reported if 2 or more variants from

the same gene had strong evidence of LOH (Tables S4,S5, Figure S1).

4.5. Reporting and Variant Interpretation

DNA variants were described using HGVS (Human Genome Variation Society) nomenclature and

variant interpretation and classification was based on the American College of Medical Genetics and

Genomics (ACMG) 2015 guidelines [58]. Pathogenic and likely pathogenic variants were reported as

clinically significant. Variants of uncertain significance were also included in the report, while benign

and likely benign variants were not included (workflow scheme in Figure 3). The report emphasized

that the results were specific to tumor tissue and would not decipher between germline versus somatic

mutations. Thus, genetic counselling and germline testing was recommended by the laboratory for

individuals with a pathogenic or likely pathogenic variant.

 
Figure 3. Schematic summary of laboratory workflow and analysis.
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If DNA extraction, library preparation or sequencing failed (defined as one or more exons falling

below the target threshold coverage of 500X), a report was generated with a statement recommending

repeat testing. If a pathogenic or likely pathogenic variant was identified, repeat testing was not

recommended regardless of whether or not other exons met the target threshold coverage. Additionally,

in samples with pathogenic or likely pathogenic variants that were below the LOD (5%), an alternative

sample was requested for confirmation testing. A maximum of two samples were tested for each patient.

4.6. Statistical Analysis

The significance of associations between variables was analyzed by using the chi-square test and

Fisher’s two-sided exact test. The software used was SPSS 25.0 for Windows. Probability values of

<0.05 were considered significant.

5. Conclusions

This prospective analysis demonstrates that our BRCA-tumor testing workflow is effective in

identifying individuals who may benefit from PARP inhibitor treatment, with success rates ranging

from 78.4% on initial testing to 86.3% following repeat testing. Our study shows a 17.4% tumor BRCA

mutation rate, slightly lower compared to the literature most likely due to ascertainment bias of the

studied population. Biopsy and cytology samples and post-chemotherapy specimens can be used,

and optimal tumors measure ≥5 mm with at least greater than 10% cellularity. Variable quality of FFPE

tissue remains a challenge but this was substantially alleviated through repeat testing with a 66.7%

success rate. We also assessed LOH that may become a valuable diagnostic tool in the future if it is

found to be clinically relevant in the context of PARP inhibitor therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/11/3468/s1,
Figure S1: Validation data for LOH, Table S1: Detailed summary of pathogenic and likely pathogenic BRCA
variants identified, Table S2: Summary of variants of unknown significance identified, Table S3: Metrics of an
average sequencing run, Table S4: Summary of validation data for LOH, Table S5: Theorectical heterozygous
variant fraction by tumor cellularity due to LOH.
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