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Tumor cell sensitivity to vemurafenib can
be predicted from protein expression in a
BRAF-V600E basket trial setting
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Abstract

Background: Genetics-based basket trials have emerged to test targeted therapeutics across multiple cancer types.
However, while vemurafenib is FDA-approved for BRAF-V600E melanomas, the non-melanoma basket trial was
unsuccessful, suggesting mutation status is insufficient to predict response. We hypothesized that proteomic data
would complement mutation status to identify vemurafenib-sensitive tumors and effective co-treatments for BRAF-
V600E tumors with inherent resistance.

Methods: Reverse Phase Proteomic Array (RPPA, MD Anderson Cell Lines Project), RNAseq (Cancer Cell Line
Encyclopedia) and vemurafenib sensitivity (Cancer Therapeutic Response Portal) data for BRAF-V600E cancer cell
lines were curated. Linear and nonlinear regression models using RPPA protein or RNAseq were evaluated and
compared based on their ability to predict BRAF-V600E cell line sensitivity (area under the dose response curve).
Accuracies of all models were evaluated using hold-out testing. CausalPath software was used to identify protein-
protein interaction networks that could explain differential protein expression in resistant cells. Human examination
of features employed by the model, the identified protein interaction networks, and model simulation suggested
anti-ErbB co-therapy would counter intrinsic resistance to vemurafenib. To validate this potential co-therapy, cell
lines were treated with vemurafenib and dacomitinib (a pan-ErbB inhibitor) and the number of viable cells was
measured.

Results: Orthogonal partial least squares (O-PLS) predicted vemurafenib sensitivity with greater accuracy in both
melanoma and non-melanoma BRAF-V600E cell lines than other leading machine learning methods, specifically
Random Forests, Support Vector Regression (linear and quadratic kernels) and LASSO-penalized regression.
Additionally, use of transcriptomic in place of proteomic data weakened model performance. Model analysis
revealed that resistant lines had elevated expression and activation of ErbB receptors, suggesting ErbB inhibition
could improve vemurafenib response. As predicted, experimental evaluation of vemurafenib plus dacomitinb
demonstrated improved efficacy relative to monotherapies.
Conclusions: Combined, our results support that inclusion of proteomics can predict drug response and identify co-
therapies in a basket setting.

Keywords: Reverse phase protein array, Orthogonal partials least squares, Protein activity, Targeted therapies, BRAF
inhibitor
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Background
In recent decades, there has been a shift to add targeted

therapeutics (e.g., Herceptin) to standard cancer treat-

ment approaches such as surgery, chemotherapy, and ra-

diation. This is due, in part, to the emergence of large-

scale DNA sequence analysis that has identified action-

able genetic mutations across multiple tumor types [1,

2]. For example, mutations in the serine-threonine pro-

tein kinase BRAF are present in up to 15% of all cancers

[3], with an increased incidence of up to 70% in melan-

oma [4]. In 2011, a Phase III clinical trial for vemurafe-

nib was conducted in BRAF-V600E melanoma patients

with metastatic disease [5]. Based on the significant im-

provements observed for both progression-free and

overall survival, vemurafenib was subsequently FDA-

approved for first-line treatment of metastatic, non-

resectable melanoma.

However, conducting a clinical trial for a targeted thera-

peutic can be challenging due to slow patient accrual, par-

ticularly for tumor types that harbor the mutation at a low

frequency [2]. To combat this challenge, basket trials have

emerged as a method where multiple tumor types harbor-

ing a common mutation are entered collectively into a sin-

gle clinical trial [6]. Unfortunately, results of the basket

clinical trial of vemurafenib for non-melanoma tumors

with the BRAF-V600E mutation indicated that other can-

cers, including colorectal, lung, and ovarian responded

poorly to vemurafenib monotherapy [7]. However, some

patients exhibited a partial response or achieved stable

disease, suggesting that information beyond the presence

of a genetic mutation might identify potential responders

in a basket setting. Additionally, a subset of colorectal pa-

tients achieved a partial response when combined with

cetuximab, suggesting that the effects of vemurafenib are

subject to the larger cellular network context.

To better identify patient cohorts that will respond to

targeted therapeutics, precision medicine approaches

have begun to use machine learning algorithms to find

associations between drug sensitivity and “omic” data

such as gene expression and mutational status. Consist-

ent with the basket trial result for melanoma, one such

study found that mutation status was an imperfect pre-

dictor across multiple cancer types and drugs [8]. While

most prior studies have examined transcriptomic data to

predict drug sensitivity [9], a few studies have examined

protein expression and activation to predict response to

therapies [10, 11]. A recent study showed that models

built with protein expression were better able to predict

sensitivity to inhibitors of the ErbB family of receptors

compared to gene expression, suggesting protein expres-

sion may be more informative [12].

However, the studies performed by Li et al. analyzed

cell lines independent of their genomic status. This may

limit the translational potential of this approach as

mutational status is a primary criteria for many targeted

therapy trials due to the relative ease of developing com-

panion diagnostics for single mutations. We hypothesize

that in a basket setting, the addition of protein expres-

sion and activity will provide superior predictive power

compared to mutation status alone and will lead to iden-

tification of co-therapies to improve responses for cells

with inherent resistance. To address this hypothesis, we

built and compared multiple machine learning models

from a publicly available RPPA dataset for 26 BRAF-

V600E pan-cancer cell lines and identified protein signa-

tures predictive of sensitivity to the FDA-approved

BRAF inhibitor vemurafenib. From these signatures, po-

tential co-therapies were identified and their respective

impacts on vemurafenib efficacy were tested.

Materials and methods
Cell lines and reagents

Unless otherwise stated, all reagents were purchased

from ThermoFisher (Waltham, MA). Cancer Cell Line

Encyclopedia lines A375, LS411N, and MDAMB361

were purchased from American Type Culture Collection

(ATCC; Rockville, MD). Cells were maintained at 37 °C

in a humidified 5% CO2 atmosphere. A375 and LS411N

were cultured in RPMI 1640 supplemented with 1%

penicillin/streptomycin and 10% heat-inactivated fetal

bovine serum. MDA-MB-361 were cultured in RPMI

1640 supplemented with 1% penicillin/streptomycin,

15% heat-inactivated fetal bovine serum, and 0.023 IU/

mL insulin (Sigma; St. Louis, MO).

Matching CCLE, RPPA, and CTRP cell data

BRAF-V600E mutational status of cancer cell lines was

obtained through the CCLE portal (https://portals.

broadinstitute.org/ccle, Broad Institute; Cambridge,

MA). The RPPA data for the 26 BRAF mutated cancer

cell lines (Additional file 1: Table S1) was generated at

the MD Anderson Cancer Center as part of the MD An-

derson Cancer Cell Line Project (MCLP, https://tcpapor-

tal.org/mclp) [12]. Of the reported 474 proteins in the

level 4 data, a threshold was set that for inclusion a pro-

tein must be detected in at least 25% of the selected cell

lines, resulting in 232 included in the analysis. Gene-

centric RMA-normalized mRNA expression data was re-

trieved from CCLE portal. Data on vemurafenib sensitiv-

ity was collected as part of the Cancer Therapeutics

Response Portal (CTRP; Broad Institute) and normalized

area-under-IC50 curve data (IC50AUC) was procured

from the Quantitative Analysis of Pharmacogenomics in

Cancer (QAPC, http://tanlab.ucdenver.edu/QAPC/) [13].

Regression algorithms to predict vemurafenib sensitivity

Regression of vemurafenib IC50AUC with RPPA protein

expression was analyzed by Support Vector Regression
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with linear and quadratic polynomial kernels (SMOreg,

WEKA [14]), cross-validated least absolute shrinkage

and selection operator (LASSOCV, Python; Wilmington,

DE), cross-validated Random Forest (RF, randomly

seeded 5 times, WEKA), and O-PLS (SimcaP+ v.12.0.1,

Umetrics; San Jose, CA) with mean-centered and

variance-scaled data. Models were trained on a set of 20

cell lines and tested on a set of 6 cell lines (Additional

file 2: Table S2). Root mean squared error of IC50AUC

in the test set was used to compare across regression

models using the following formula:

RMSEpred ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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In O-PLS model, R2Y, the coefficient of determin-

ation for predicted behavior Y, describes how well the

model fits the predicted behavior, while Q2Y mea-

sures the predictive value of the model based upon 7-

fold cross validation. Predictive and orthogonal com-

ponents were defined sequentially, and if Q2Y in-

creased significantly (> 0.05) with the addition of the

new component, that component was retained, and

the algorithm continued until Q2Y no longer signifi-

cantly increased. The variable importance of projec-

tion (VIP) score summarizes the overall contribution

of each protein’s measurement to the O-PLS model,

and the VIP score for variable j is defined via the fol-

lowing equation:
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where p is the total number of variables, M is the num-

ber of principal components, wmj is the weight for the j-

th variable in the m-the principal component and SS

(bm∙tm) is the percent variance in y explained by the m-

th principal component. Proteins whose VIP score is

greater than 1 are considered important towards the

predictive power of the model.

For a receptor-only built O-PLS model, expression

of AR, CMET, CMET-Y1235, EGFR, EGFR-Y1068,

EGFR-Y1173, ERα, ERα-S118, HER2, HER2-Y1248,

HER3, HER3-Y1289, IGFRB, PDGFRB, PR, and

VEGFR2 were used to predict vemurafenib IC50 AUC,

using all 26 cell lines for training. To simulate pan-

ErbB inhibition for MDA-MB-361, LS411N, and

A375, the RPPA values for EGFR, HER2, and HER3

phosphorylated receptors were set to each protein’s

minimum value in the original data set.

Heatmaps and clustering

Mean-centered and variance scaled RPPA data for

training and testing set cell lines were hierarchically

clustered (1-Pearson) with publicly available Mor-

pheus software (https://software.broadinstitute.org/

morpheus, Broad Institute). Resulting heatmap plots

were created in GraphPad Prism software (La Jolla,

California).

CausalPath analysis of resistant cell lines

CausalPath software [15] was used to identify net-

works of proteins from the RPPA data set that were

significantly enriched in the resistant cell lines (IC50

AUC < 0.2) compared to the sensitive cell lines. For

analysis of predictive protein interactions, proteins

with a VIP > 1 were examined (87 of the original 232

proteins met this criteria), and significant change in

the mean expression of each protein/phosphorylated

protein between the two groups was determined with

10,000 permutations and a FDR of 0.2 for total and

phosphorylated proteins. This relaxed discovery rate

is consistent with prior use of this algorithm with a

constrained subset of proteins [15].

In vitro testing of co-therapeutics

A375, LS411N, and MDAMB361 were seeded at 3000

cells/cm2, 5000 cells/cm2, and 10,000 cells/cm2 re-

spectively in duplicate in 96 well opaque, white assay

plates for 24 h. Vemurafenib (Santa Cruz Biotechnol-

ogy; Dallas, TX), dacomitinib, or a 1:2 dual treatment

of vemurafenib:dacomitinib were tested using 2-fold

concentration ranges (highest concentration of 33 μM

and 66 μM respectively) for 72 h. ATP levels were

measured using CellTiter-Glo (Promega; Madison,

WI) to assess cell viability. ATP levels were simultan-

eously measured in cells treated with vehicle (0.2%

DMSO) cells, and all values were corrected by sub-

traction of measurements from blank wells. The ATP

level of vehicle-treated cells was set as Amin and per-

cent inhibition was calculated using the following

formula:

y ¼
Amin−xð Þ

Amin
� 100 ð3Þ

GraphPad was used to calculate nonlinear log (inhibi-

tor) fit of each dose response curve using the following

formula:

y ¼
100

1þ IC50

x

� �Hill
ð4Þ

where the Hill coefficient is the Hill slope of the best fit

line calculated by GraphPad.
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Loewes additive model [16] was used to determine

synergy between monotherapy and dual therapy treat-

ments using the following formula:

x1

X1
LOEWE

þ
x2

X2
LOEWE

ð5Þ

where x1, x2 represent the dual therapy IC50 concentra-

tions for each drug, and X1
LOEWE, X

2
LOEWE represent

the monotherapy IC50 for each drug. Model values less

than 1 indicate synergy.

Statistical analysis

To compare the different machine learning models, each

model was evaluated on all 26 cell lines using leave one

out cross validation. Errors for each cell line prediction

were calculated, and models were evaluated on the num-

ber of cell lines for which they had the smallest error in

comparison with O-PLS. A binomial t-test was per-

formed in Prism for each model against O-PLS.

Results
Tumors exhibit heterogeneous protein expression and

sensitivity to vemurafenib

To examine the ability of protein expression and activity

to predict response in BRAF-V600E tumor cells to the

BRAF inhibitor vemurafenib, appropriate cell line

models were explored. Of the cell lines characterized by

the Cancer Cell Line Encyclopedia (CCLE) that possess

a BRAF-V600E mutation (n = 94), and the Reverse Phase

Protein Array (RPPA) data available from the MD An-

derson Cell Line Project (MCLP, n = 650), 26 overlapped

and had data pertaining to vemurafenib sensitivity in the

Cancer Therapeutic Response Portal (CTRP) (Fig. 1 a,

Additional file 1: Table S1). While many studies have

predicted the dose of a drug that inhibits tumors by 50%

(IC50), analysis of IC50 doses of vemurafenib in these 26

cell lines showed that many exceeded the maximal dose

tested in the CTRP database [13, 17]. Therefore, the nor-

malized area under the dose response inhibition curve

(IC50 AUC) was used as a measure of vemurafenib sensi-

tivity. This response metric has been used in other phar-

macogenomic studies to better capture sensitivity of

cells to a drug, either using AUC < 0.2 as a classifier of

resistant cell lines, or predicting sensitivity as a continu-

ous response (0 < AUC < 1) [18]. Analysis of the 26 cell

lines showed that, like patient responses to vemurafenib

[5, 7], most non-melanoma cell lines were resistant to

vemurafenib (AUC < 0.2, n = 7/11), while most melan-

oma cell lines were sensitive to vemurafenib (AUC > 0.2,

n = 12/15, Additional file 1: Table S1). However, because

the range captured in the response to vemurafenib is

broad (10− 4 - 0.97), we aimed to predict the continuous

response to vemurafenib, rather than classify resistant

and sensitive cells alone.

Orthogonal partial least squares model outperforms other

regression models to predict vemurafenib sensitivity

Since the goal was to predict the continuous IC50 AUC

in BRAF mutated cell lines based on their RPPA protein

expression data, we compared various types of regres-

sion models to determine the model that performed with

the highest accuracy. Regression models, such as support

vector regression (SVR) with linear kernels, orthogonal

partial least squares regression (O-PLS), and LASSO-

penalized linear regression, utilize linear relationships

between the protein expression and vemurafenib sensi-

tivity for prediction. One limitation of our data set is the

relatively low number of cell lines (observations, n = 26)

relative to RPPA proteins (variables, n = 232); given a

data set with more variables than observations, over-

fitting of the training data is always a concern. O-PLS

addresses this issue by reducing the dimension to pre-

dictive and orthogonal principal components that repre-

sent linear combinations of the original protein

expression cohort [19], while LASSO-penalized regres-

sion instead addresses the same issue by introducing an

L1 regularization term that penalizes non-zero weights

given to proteins in the model [20]. While these two

model types are restricted to linear relationships, Ran-

dom Forests (with regression trees) and SVRs with non-

linear kernels possess the ability to find non-linear inter-

actions between proteins to predict vemurafenib sensi-

tivity. Random Forests address overfitting via the use of

an ensemble approach, making predictions by an un-

weighted vote among multiple trees, while SVRs at least

partially address overfitting by not counting training set

errors smaller than a threshold ε, i.e., not penalizing pre-

dictions that are within an “ε-tube” around the correct

value [21, 22].

To evaluate SVRs (using linear and quadratic ker-

nels), LASSO, Random Forest, and O-PLS algorithms,

the original set of 26 cell lines was split into a train-

ing set of 20 and testing set of 6 cell lines (Fig. 1b,c,

Additional file 1: Table S1). To represent the full

variability in the data set, the training/testing split

was not entirely random, but rather ensured that each

set contained at least one each of: a melanoma cell

line with IC50 AUC > 0.2, a melanoma cell line with

IC50 AUC < 0.2, a non-melanoma cell line with IC50

AUC > 0.2, and a non-melanoma cell line with IC50

AUC < 0.2. Figure 2 and Additional file 2: Table S2

summarize the performance of these five algorithms

to predict vemurafenib sensitivity from the 232 pro-

teins in the RPPA dataset. Overall, O-PLS was the

most accurate in predicting the IC50 AUC metric

across the 6 validation set cell lines (RMSE = 0.09;
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binomial test, Additional file 3: Table S3), and per-

formed well predicting both non-melanoma and mel-

anoma cell lines (Fig. 2a,f). The LASSO and Random

Forest models (Fig. 2b,c,f) performed second best in

terms of RMSE across the 6 cell lines; however,

these model forms appeared to overestimate IC50

AUC for melanoma cell lines and underestimate IC50

AUC for non-melanoma cell lines, resulting in larger

prediction errors for melanoma cell lines compared

to non-melanoma (Additional file 3: Table S3). The

SVR model with a linear kernel had the highest

error for the prediction set (RMSE = 0.233), and

while use of a quadratic kernel decreased the error,

interpretability of this model was decreased due to

the non-linear interactions (Fig. 2d-f, Additional file

3: Table S3). Based on our goals of pan-cancer ac-

curacy and ease in model interpretation, we selected

to analyze the O-PLS model in greater depth.

Fig. 1 Overview of dataset curation. (a) Intersection of number of cell lines represented in the MCLP RPPA level 4 dataset, CTRP vemurafenib response
dataset, and CCLE database of BRAF-V600E mutated cells. (b) Pipeline of data curation and evaluation of machine learning models to predict vemurafenib
response in BRAF-V600E cell lines. (c) Heatmap illustrating z-score normalized expression of 232 proteins used in model evaluation. Top heatmap indicates
training set and bottom indicates testing set of cell lines in order of increasing IC50 AUC, with cell lines above the dotted line having IC50 AUC < 0.2
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O-PLS identifies unique protein signatures that correlate

with vemurafenib sensitivity

The O-PLS model accurately captured the high variance in

vemurafenib sensitivity (R2Y= 0.99), had the most accurate

prediction in the single train-test split previously described,

and maintained reasonable prediction accuracy during

cross validation (Q2Y= 0.4, Fig. 3a). The cell lines projected

along the first component t[1] according to increasing IC50

AUC, while they projected along the orthogonal compo-

nent to[1] according to tumor type of the cell line (Fig. 3b).

For instance, while the two triple negative breast cancer cell

lines MDA-MB-361 and DU-4475 have differing vemurafe-

nib sensitivity, they project within the same orthogonal

principal component space (Fig. 3b). Further analysis of the

first and orthogonal component showed that the first com-

ponent captured a lower percentage of the variance in the

protein expression compared to the orthogonal component

(R2Xpred = 0.08, R2Xorthog = 0.36). Additionally, removal of

the orthogonal component to produce an O-PLS model

using only the first component reduced the predictive

power of the model (Q2Y= 0.0842). These results suggest

that the improved prediction success of O-PLS may result

from its use of orthogonal components, which here identify

and distinguish protein expression patterns that correlate

to tumor type independent of protein patterns that correl-

ate to vemurafenib-sensitivity.

Of the 232 proteins from the RPPA dataset used in this

model, 87 had VIP scores greater than 1, and were thus the

most important proteins for the prediction of this model.

Figure 3c illustrates these proteins with respect to their

weights along p[1]. A small subset of proteins and phos-

phorylated forms of proteins correlated with projection

along the negative space of p[1], suggesting that high levels

of these proteins were associated with intrinsic resistance to

vemurafenib (Fig. 3c, blue). Further inspection of the ex-

pression of these proteins in both the training and testing

set showed that, on average, these proteins were more

highly expressed in resistant cell lines (IC50 AUC< 0.2, Fig.

3d). Included in this signature were both EGFR and a phos-

phorylated form of HER3 (HER3 Y1289), as well as down-

stream signaling proteins in the AKT pathway, such as

P70S6K, suggesting that expression and activity of this fam-

ily of receptors and downstream pathways correlate with

increased vemurafenib resistance. Conversely, the protein

signature that correlated with increased sensitivity to

vemurafenib included proteins in the MAPK pathway such

as NRAS, BRAF S445, MEK S217/S221, MAPK T202/Y204

(Fig. 3c yellow bars, Fig. 3d). This suggests that even among

cell lines that universally possess a constitutively activating

mutation in BRAF, increased activation of this pathway cor-

related with increased sensitivity.

Protein expression and activity outperform gene

expression for predicting vemurafenib sensitivity

While the O-PLS model utilized a pharmaco-proteomics

approach, others have used transcriptomic data to

Fig. 2 Comparison of machine learning algorithm predictions of vemurafenib sensitivity. Comparison of prediction performance on the testing
set of cell lines for (a) O-PLS, (b) LASSO, (c) Random Forest, (d) SVR with linear kernel and (e) SVR with quadratic kernel. Open symbols indicate
melanoma cell lines, closed symbols indicate non-melanoma cell lines. (f) RMSE for prediction set of each model
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predict therapeutic responses in tumor cell lines [18,

23]. To examine the relative strength of proteomic vs.

transcriptomic data, we revised the model to predict

vemurafenib sensitivity in BRAF mutated cell lines from

RNAseq data curated by the CCLE. In the first RNAseq

model comparison, we predicted vemurafenib sensitivity

from genes in the RNAseq dataset that corresponded to

proteins represented in the 232 protein RPPA data set

(RNAseq Subset). In comparison to the O-PLS model

built on RPPA protein expression (Fig. 3a, reproduced in

4A, left for direct comparison), the RNAseq Subset

model was less able to capture the variance in sensitivity

(R2Y = 0.89 vs. 0.99) and was less predictive (Q2Y = 0.34

vs. 0.40). Additionally, this change resulted in an in-

creased RMSE during model evaluation on the training

set using 7-fold cross validation, as well as an overesti-

mation of melanoma cell lines in the testing set (Fig. 4a

middle, Additional file 4: Table S4). Previously, a MAPK

pathway activity score was developed from the expres-

sion of 10 genes to identify cell line and patient response

Fig. 3 O-PLS prediction of vemurafenib sensitivity from RPPA dataset. (a) Comparison of observed and predicted IC50 AUC values in training (7-
fold cross validation) and testing set cell lines. Open symbols indicate melanoma cell lines, closed symbols indicate non-melanoma cell lines. (b)
Scores plot of O-PLS model showing projection of training cells along first component t[1] and first orthogonal component to [1]. (c) Weights of
proteins (VIP score > 1) along the predictive component. (d) Heatmap of z-score normalized proteins (VIP score > 1) whose weights correlate with
resistant (left) and sensitive cell lines (right). Top heatmap indicates training set and bottom indicates testing set of cell lines in order of
increasing IC50 AUC, with cell lines above the dotted line having IC50 AUC < 0.2
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to variety of MAPK pathway inhibitors, including

vemurafenib [24]. While developed from data from pa-

tients both with and without the BRAF-V600E mutation,

this signature performed best for BRAF-V600E melan-

oma patients. To investigate this MAPK signature in our

basket setting, a model was built to predict vemurafenib

sensitivity from RNAseq expression of the 10 genes in

the signature. Evaluation of this model showed that vari-

ance captured in vemurafenib sensitivity was the lowest

of these three models (R2Y = 0.53). Additionally, this

model iteration showed the lowest predictive ability be-

tween the three O-PLS models tested (Q2Y = 0.31) and

the highest error in the training set (7-fold cross valid-

ation) and the test set of cell lines, particularly in non-

melanoma cell lines (Fig. 4 a right, Additional file 2:

Table S2 and Additional file 4:Table S4). To further

investigate why protein expression and activity may bet-

ter predict sensitivity to vemurafenib compared to RNA-

seq data, we calculated univariate correlations of

phosphoprotein expression for predictive phosphopro-

teins (VIP score > 1) in the RPPA, gene expression and/

or total protein expression with vemurafenib sensitivity

(IC50 AUC, Fig. 4b,c, Additional file 5: Table S5). Not

surprisingly, all univariate relationships were weaker

than the multivariate O-PLS model for either RPPA or

RNAseq. Of the phosphoproteins with VIP score > 1, 10/

13 had higher correlation coefficients (R2) than their

total protein expression, and 14/18 had higher correl-

ation than the gene expression, including p-MEK1 (R2 =

0.4006) and p-HER3 (R2 = 0.2215). Notedly, some gene/

protein pairs such as MAP2K1/MEK1 had discordant

trends in the correlation with sensitivity (Fig. 4b).

Fig. 4 O-PLS prediction of vemurafenib sensitivity from different data forms. (a) Comparison of O-PLS model performances for training (7-fold
cross validation, grey) and testing sets of cell lines (blue). Models were built on the RPPA dataset (RPPA), gene expression corresponding to RPPA
proteins (RNAseq Subset), or gene expression of the MAPK signature (MAPK signature). Open symbols indicate melanoma cell lines, closed
symbols indicate non-melanoma cell lines. (b, c) Comparison of univarate correlations of z-score normalized gene expression (blue), total protein
expression (grey) and phospho-protein expression (yellow) of MEK1 (b) and HER3 (c) with IC50 AUC
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Alternatively, for some gene/protein pairs there was a

similar trend, but a discordance was instead observed at

the phosphoprotein level (ERBB3/HER3/p-HER3, Fig.

4c). These results suggest that protein expression and

activity may be a more direct readout of pathway activity

compared to gene expression in cells. To explore this

further, O-PLS models were built using either expression

of total proteins (n = 173 variables) or phosphorylated

proteins (n = 59 variables) represented in the RPPA data-

set. The O-PLS model built from total protein expres-

sion maintained the high variance in IC50 AUC captured

from the original full RPPA (n = 232 variables) O-PLS

model (R2Y = 0.99 for both) but had lower predictive

ability (Q2Y = 0.37 vs. Q2Y = 0.40). Additionally, the total

protein O-PLS model had higher error in prediction for

the held aside test set (RMSE = 0.11 vs. RMSE = 0.09,

Additional file 6: Table S6 and Additional file 8: Fig.

S1A). Further inspection found the O-PLS model built

from total protein expression made greater prediction

errors on non-melanoma cell lines in the held aside test

set (Additional file 6: Table S6). In the O-PLS model

built on phosphoproteins, the variance captured in IC50

AUC, the predictive ability of the model, and the accur-

acy in the held aside test set suffered (R2Y = 0.43, Q2Y =

0.09, RMSE = 0.19). However, this phosphoprotein-built

O-PLS favored more accurate prediction of non-

melanoma cell lines (Additional file 8: Fig. S1B, Add-

itional file 6: Table S6). Overall, the correlation analysis

and O-PLS model comparisons showed that vemurafe-

nib sensitivity was more accurately predicted from

proteomic data than genomic data, and that incorpor-

ation of protein phosphorylation may be important to

capturing vemurafenib sensitivity across a wide range of

tumor types.

ErbB receptor activation and downstream PI3K signaling

is increased in vemurafenib-resistant cell lines

Our model analysis suggested that distinct sets of pro-

teins and phosphorylated proteins were differentially

expressed among BRAF-V600E cell lines according to

their vemurafenib sensitivity. To further analyze these

proteins, we next examined their involvement in cellular

signaling pathways. CausalPath is a computational

method that uses biological prior knowledge to identify

causal relationships that explain differential protein ex-

pression and phosphorylation [15]. Cell lines were sorted

into sensitive and resistant groups based on IC50 AUC,

and CausalPath was used to identify protein-protein in-

teractions (PPIs) that explained significant changes in

mean expression of the predictive total and phosphopro-

teins (VIP score > 1) in the resistant cohort of cell lines.

This computational method identified that the resistant

subset had increased expression of EGFR and HER3-

Y1289, which could be explained by the biological prior

knowledge that EGFR transphosphorylates HER3 in

EGFR-HER3 heterodimers (Fig. 5a). While CausalPath

identified expression patterns from PPIs, it is limited by

the input proteins represented in the dataset, (i.e., it can-

not find the relationship A➔ B➔ C if only A and C are

measured). Because the important proteins in the O-PLS

model (VIP score > 1, Fig. 3c) do not include the

complete cell proteome, CausalPath could not identify a

full pathway, but did identify several protein interactions

in the PI3K pathway, suggesting that this pathway may

also be of interest (Fig. 5a). Manual curation of 29 pro-

teins in the PI3K pathway present in the RPPA dataset

are shown in a heatmap in Fig. 5b, with their projections

along the principal component space of the O-PLS

model in Supplemental Fig. S2. The pathway curation

includes receptors, adaptor proteins, and downstream

signaling cascade proteins, many of which have a VIP

score greater than 1 (Additional file 9: Fig. S2A bolded).

Examination of the projections of phosphorylated pro-

teins present from this dataset shows that the majority

of them project along the negative predictive component

space, indicating that elevated levels correlated with

more resistant cell lines (Additional file 9: Fig. S2B or-

ange). Therefore, through CausalPath analysis and man-

ual pathway curation, we have identified that ErbB

family signaling and downstream PI3K pathway activa-

tion are upregulated in cell lines that are resistant to

vemurafenib.

Inhibition of ErbB receptors enhances sensitivity of

resistant cell lines to vemurafenib

From the pathway analysis, we hypothesized that in-

creased ErbB family signaling led to intrinsic vemurafe-

nib resistance. As receptor-level inhibition of cellular

signaling is a common therapeutic approach (e.g., Her-

ceptin), we tested whether pan-ErbB inhibition would

increase vemurafenib sensitivity in the more resistant

cell lines. To explore this scenario, an O-PLS model was

built using the expression and activation of receptors

from the RPPA dataset (16 proteins) in order to more

easily simulate the impact of receptor inhibition without

the confounding element of having to simulate the im-

pact of receptor inhibition on downstream proteins.

While model performance suffered (R2Y = 0.37, Q2Y =

0.12), receptors with the highest VIP scores were EGFR,

HER3, and HER3 Y1289 (Fig. 5c,d). To test the hypoth-

esis that ErbB receptor inhibition would increase vemur-

afenib sensitivity, inhibition was first simulated by

reducing phosphorylated receptor expression in the

MDA-MB-361, LS411N, A375 cell lines to that of the

minimal levels detected in the data set. Vemurafenib

sensitivity in these three ErbB “inhibited” cell lines was

then predicted using the receptor-only O-PLS model

(Fig. 5e). Simulations indicated that inhibition of ErbB
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pathway activity would increase sensitivity to vemurafe-

nib across the three different tumor cell lines. To experi-

mentally validate this prediction, we treated the MDA-

MB-361, LS411N, and A375 cell lines in vitro with

vemurafenib, dacomitinib (a pan-ErbB receptor tyrosine

kinase inhibitor), or combination treatment of vemurafe-

nib and dacomitinib. In comparison to either

monotherapy, the IC50 concentrations for both drugs de-

creased in the combinatorial treatment, showing in-

creased efficacy of treatment when ErbB and B-RAF

were dually inhibited. Additionally, Loewe’s model

values from the dose response curves indicated synergy

between the two inhibitors (Fig. 5f,g, Additional file 7:

Table S7). This suggests that the inhibitors worked

Fig. 5 Pathway analysis of co-therapeutics to increase sensitivity to vemurafenib. (a) CausalPath results for protein causal relationships that are
significantly up- or down-regulated in vemurafenib resistant cells (FDR = 0.2). (b) Heatmap of z-score normalized expression of ErbB family
receptors and related downstream signaling proteins. Top heatmap indicates training set and bottom indicates testing set of cell lines in order of
increasing IC50 AUC, with dotted line separating between AUC < 0.2. (c) Weights of all receptors in RPPA receptor-only O-PLS model. (d) VIP
scores of receptors in RPPA receptor-only O-PLS model. (e) Comparison of IC50 AUC for vemurafenib monotherapy and predicted IC50 AUC for
dual therapy with vemurafenib and a pan-ErbB inhibitor in MDA-MB-361, LS411N, and A375 cell lines. (f) Impact of dual pan-ErbB and BRAF
inhibition using dacomitinib and vemurafenib in MDA-MB-361, LS411N, and A375 cell lines. + indicates the measured dose that was closest to
the IC50 for dual treated. (g) Comparison of effects of dual treatment near the IC50 and the component monotherapies of vemurafenib (V) and
dacotinib (D) for each cell line
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cooperatively to target intrinsic BRAF phosphorylation

(caused by the V-600E mutation), as well as upstream

ErbB signaling that could activate pathways parallel to

BRAF, including PI3K. The computational results shown

here illustrate the utility of O-PLS modeling to predict

vemurafenib sensitivity in an in vitro setting mimicking

a basket trial. Additionally, the ease of interpreting the

O-PLS model allowed for identification and in vitro val-

idation of vulnerabilities in vemurafenib-resistant cell

lines in order to increase the efficacy of treatment.

Discussion
Using a basket trial setting of pan-cancer BRAF-V600E

cell lines, we developed an O-PLS model to predict

tumor cell sensitivity to vemurafenib and identified co-

treatments to overcome inherent resistance. While

others have identified signatures from transcriptomic or

proteomic data that correlate to sensitivity, to attempt to

expand vemurafenib use beyond BRAF-V600E mutations

[25], the clinical reality is that the FDA-approved appli-

cation of vemurafenib requires the detection of a BRAF-

V600E mutation in advanced stage melanoma [5]. Fur-

thermore, the drug label warns that application of

vemurafenib to BRAF wild-type tumors can increase cell

proliferation in vitro [26]. This is consistent with the

move, over the past decade, to develop assays for pre-

dictive biomarkers to guide use of targeted cancer thera-

peutics [27]. Use of such assays, termed “companion

diagnostics” [28], often increases the success rates of

drugs during clinical trials [27, 29]. The approved test

method and guidelines are then used for future general-

population administration. Despite the failures in the

non-melanoma BRAF-V600E basket trial for vemurafe-

nib, the existing FDA requirement and warning for

BRAF mutation status provide a translational structure

that cannot be ignored. Through our model of protein

data in pan-cancer BRAF-V600E cells, vemurafenib sen-

sitivity was accurately predicted in multiple tumor cell

lines including colorectal, breast, bone, and melanoma

tumors. With further refinement and expansion to clin-

ical samples, we expect that this approach could trans-

late to refine basket trial enrollment and improve

outcomes.

One of the key findings of our work is that proteomic

data outperforms transcriptomic data to predict re-

sponse in the basket setting. This is consistent with re-

sults obtained since the release of the RPPA expression

dataset from CCLE and TCGA cohort analyses [12, 30,

31]. Their results demonstrated that in a pan-cancer

model where genetic mutations are not incorporated

into inclusion criteria, proteomics from RPPA outper-

formed RNAseq transcriptomics to predict drug sensitiv-

ity [12]. Through the outlined model comparisons

shown in our study, we observed that O-PLS performed

optimally when protein expression and activity were

used instead of RNAseq expression. Closer analysis of

individual transcript/protein/activated proteins suggests

this is likely due to the disparities between protein and

transcript expression or protein expression and protein

activation (i.e., phosphorylation). While RPPA technol-

ogy is currently used in clinical trials [32], there are situ-

ations where other protein-based assays will be needed.

Chiefly, as a lysate-based measurement, RPPA from

tumor biopsies will capture the protein status of the en-

tire tumor and microenvironment, which may mask in-

dicators of tumor cell sensitivity. As an alternative, we

suggest that when RPPA is used to identify the reduced

signature of highly predictive proteins in tumor cells,

clinical implementation may be more accurate with

techniques that enable tumor cell-specific quantification

(i.e., multi-spectral imaging for solid tumors, flow cy-

tometry for non-solid tumors).

Our results also demonstrated that broad inclusion of

protein expression and activity measurements can iden-

tify altered signaling pathways that influence drug re-

sponse. For example, vemurafenib targets the BRAF

signaling cascade and model analysis of the data sup-

ported that lines with elevated sensitivity to vemurafenib

had increased phosphorylation of BRAF, MEK, and

MAPK proteins (Fig. 3d bolded). While melanoma pa-

tients treated with vemurafenib have shown rapid re-

sponses to the therapy, the duration of response is often

short [33], motivating a need to identify combination

treatments with vemurafenib to extend progression free

survival times. Results from our model suggest that mel-

anoma cell lines initially sensitive to vemurafenib have

elevated expression of p-MEK and p-BRAF when com-

pared to inherently resistant cell lines. Recent clinical

trials results showed significantly increased progression

free survival and overall survival in BRAF- mutant meta-

static melanomas with dual BRAF and MEK inhibitors

compared to BRAF inhibitor monotherapy [34]. In con-

strast, the model found that cell lines with higher resist-

ance had increased ErbB receptor-family activity and

downstream PI3K signaling. Therefore, by using a

method such as RPPA to expand the analysis of protein

signaling beyond the targeted pathway, protein signaling

activity can be better gauged and used to identify poten-

tial co-therapeutic targets in the pre-clinical setting.

Additionally, through the use of models such as the O-

PLS model presented here, co-treatments can be simu-

lated to prioritize experimental testing. Specifically, we

simulated dual pan-ErbB and BRAF inhibition, and vali-

dated the model prediction of a synergistic increase in

sensitivity of breast, colorectal, and melanoma cell lines

to vemurafenib.

While our prediction of anti-ErbB therapies was based

on model analysis rather than prior knowledge, there is
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evidence that this synergy is clinically relevant. Our

model indicated that tumor cells, including colorectal

cancer cells, with increased HER3 phosphorylation ex-

hibited increased resistance to vemurafenib. In vitro,

colorectal tumor stem cells with increased HER3 expres-

sion exhibited resistance to vemurafenib in the presence

of the HER3 ligand, NRG-1 [35]. Additionally, melan-

oma in vivo and PDX models have shown that increased

ErbB family-receptor activity is associated with acquired

resistance to vemurafenib [36]. While the O-PLS model

presented in this study was not used to predict acquired

resistance, it did identify melanoma lines with increased

ErbB signaling that led to inherent vemurafenib resist-

ance (A375). Our model and experimental results sug-

gested that co-treatment with an ErbB inhibitor and

vemurafenib would have a synergistic effect. Cetuximab,

a monoclonal antibody directed towards EGFR, has been

shown to increase survival in colorectal patients [37].

However, the BRAF-V600E colorectal patient cohort did

not respond as well to cetuximab monotherapy in com-

parison to the wild-type BRAF cohort. Interestingly, in

the vemurafenib basket clinical trial, colorectal patients

were split into vemurafenib or vemurafenib/cetuximab

treatment arm. The outcomes showed that the dual

treatment arm had an increase in partial and stable re-

sponders, suggesting a potential synergy between these

two inhibitors, similar to the synergy we observed in

multiple tumor cell types [7].

Conclusions
Here, we compared the predictive ability of leading ma-

chine learning algorithms for regression to predict

vemurafenib sensitivity in BRAF-V600E cell lines from

RPPA data. We determined that O-PLS predicted

vemurafenib response more accurately than SVR,

LASSO, and Random Forests, and the O-PLS model per-

formed superiorly with proteomic data compared to

transcriptomic data. Additionally, causal analysis identi-

fied that ErbB and PI3K signaling were upregulated in

resistant cells, and that dual inhibition of ErbB receptors

and BRAF increased vemurafenib sensitivity in resistant

cells. Collectively, this study illustrates how an unbiased

approach like O-PLS can be used to develop a model

from proteomic data in a basket clinical trial setting in

order to predict drug sensitivity and identify mecha-

nisms of resistance.
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