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The evidence for T-cell–mediated regression of human cancers such as non–small-cell lung
carcinoma, renal cell carcinoma, and—in particular—melanoma after immunotherapy is
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strong. Anti-CTLA4 (ipilimumab) treatment has been approved for treatment of meta-static
melanoma,1 and antibody-mediated blockade of PD-1, a second inhibitory receptor on T
cells, has shown highly encouraging results in early clinical trials.2,3 Although the clinical
activity of these treatments is apparent, it is still unknown which T-cell reactivities are
involved in immunotherapy-induced cancer regression.4 T-cell reactivity against nonmutated
tumor-associated self-antigens has been analyzed in patients treated with ipilimumab or with
autologous tumor-infiltrating T cells, but the magnitude of the T-cell responses observed has
been relatively modest.5,6 In part on the basis of such data, recognition of patient-specific
mutant epitopes (hereafter referred to as neoantigens) has been suggested to be a potentially
important component.7 A potential involvement of mutated epitopes in T-cell control would
also fit well with the observation that the mutation load in sun-exposed melanomas is
particularly high.8-10

Intriguingly, on the basis of animal model data, it has recently been suggested that (therapy-
induced) analysis of T-cell reactivity against patient-specific neoantigens may be feasible
through exploitation of cancer genome data.11,12 However, human data have thus far been
lacking. Here we report a case of a patient with stage IV melanoma who exhibited a clinical
response to ipilimumab treatment. Cancer exome–guided analysis of T-cell reactivity in this
patient revealed reactivity against two neoantigens, including a dominant T-cell response
against a mutant epitope of the ATR (ataxia telangiectasia and Rad3 related) gene product
that increased strongly after ipilimumab treatment. These data provide the first
demonstration (to our knowledge) of cancer exome–guided analysis to dissect the effects of
melanoma immunotherapy.

Case Report
A 56-year-old male was diagnosed in 2003 with a nodular melanoma with a Breslow
thickness of 1.5 mm on the left upper arm. In April 2009, he developed lymph node
metastases in both axillae and underwent dissection of involved nodes at the right side.
Positron emission tomography showed [18F]fluorodeoxyglucose uptake in both axillae, in
soft tissue at the right scapula, in the left liver lobe, and mesenterially cranial of the
transverse colon. He was treated with dacarbazine but experienced clear disease progression
after six courses. At that time (October 2009), as a result of discomfort, a palliative
dissection of the left axillary nodes was performed. In June 2010, before enrollment in the
ipilimumab Expanded Access Pro-gram, magnetic resonance imaging of the brain showed
three lesions, of which one was resected and two others were treated with stereotac-tic
radiotherapy. In August 2010, he started ipilimumab treatment (3 mg/kg) and received four
infusions. All four courses of ipilimumab were tolerated well, except for grade 1 dermatitis.
After completion, the patient displayed a marked regression of the tumor load (25%), as
shown by computed tomography (Fig 1A) and close to normalization (upper limit of normal
0.10 g/L) of the S100b tumor marker after ipilimumab treatment (Fig 1B).

To determine whether exome-guided analysis of antigen-specific T-cell responses against
mutated antigens was feasible, we obtained both tumor cells and tumor-infiltrating
lymphocytes (TILs) from the lesion resected in 2009. Whole-exome sequencing of tumor
cells and autologous healthy tissue was performed to identify tumor-specific mutations. This
revealed a total of 1,657 somatic mutations, consisting of 1,075 nonsynonymous (1,036
single nucleotide and 39 nonsense variants) and 573 synonymous mutations with a false
discovery rate of 0.07. In addition, the tumor harbored seven frame shifts and two codon
deletions. Consistent with prior data, C T/G A mutations, reflective of UV-induced DNA
damage, predominated (Fig 1C).8-10 To predict potential neoantigens from this set of
mutations, the data were first filtered for gene expression using RNAseq data. Subsequently,
predictions for proteasomal processing and HLA class I bind-ing were performed on
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stretches of amino acid sequences that contained nonsynonymous mutations, using the
NetChop Cterm3.0 and NetMHC3.2 algorithms.13-15 This analysis yielded a set of 448
potential CD8 T-cell epitopes (nine to 11 amino acids in length) with a predicted medium-
to-high affinity binding for each HLA-A and -B allele (HLA-A*03:01, HLA-A*32:01,
HLA-B*35:03, and HLA-B*40: 02). Predicted peptides were synthesized, and HLA
multimers containing these ligands were produced by micro-scale parallel UV-induced
peptide exchange reactions.16,17 Subsequently, tumor-infiltrating lymphocytes from this
patient were analyzed for reactivity against these predicted T-cell epitopes by a multiplexed
major histo-compatibility complex (MHC) multimer staining strategy.16,18,19 An overview
of the complete screening procedure can be found in Figure 2 (MHC, major
histocompatibility complex).

This analysis revealed a T-cell response against two patient-specific neoantigens (both
confirmed in independent analyses), a mi-nor T-cell response against a mutated epitope in
the ZNF462 gene (0.003% of CD8-positive cells) that was not pursued further, and a
dominant response (3.3% of CD8-positive cells, Fig 3A; Cy7, cytochrome 7; PE-Cy7, R-
Phycoerythrincyanine 7; pMHC, peptide MHC; QD, Qdot 625; WT, wild type) against a
mutated epitope in the ATR serine/threonine protein kinase that functions to signal DNA
damage.20 This mutation in ATR, resulting in an S L change at position eight of a nonameric
HLA-A*03:01 restricted epitope (ATRS>L KLYEEPLLK) was heterozygous within the
tumor (66% of reads obtained, n=298) but absent in healthy control tissue (0%, n=189).

In order to assess whether the observed T cells were specific for the mutant ATRS>L
epitope, bulk TILs were cocultured with HLA-A*03:01-matched melanoma cells (526
cells). In the absence of added peptide, a low level of T-cell reactivity was observed,
presumably reflecting recognition of shared (ie, nonmutated) HLA-A*03:01-restricted
antigens (Fig 3B). Importantly, whereas addition of wild-type ATR peptide was without
effect, addition of the ATRS>L peptide led to a substantial increase in T-cell recognition.
Furthermore, sorted ATRS>L MHC multimer-positive T cells likewise showed strong reac-
tivity against target cells loaded with the mutant epitope but not with the wild-type peptide
(Fig 3C).

Having established the presence of neoantigen-specific T-cell reactivity on the basis of
cancer exome data, we subsequently assessed whether this information could be used to
monitor treatment-induced T-cell reactivity. To this purpose, peripheral blood mononuclear
cell samples collected before (341 days, 216 days, 28 days) and during (33 days) ipilimumab
therapy were analyzed by ATRS L MHC multimer staining. HLA-A*03:01 ATRS>L-specific
T cells could be detected in peripheral blood at the earliest time point available and
remained stable for a 10-month period preceding the start of ipilimumab treatment.
Remarkably, within 5 weeks after the start of ipilimumab, the magnitude of this neoantigen-
specific T-cell response increased five-fold (Fig 3D), demonstrating that autologous cancer
exome data can be used not only to predict neoantigens in patients, but also to monitor the
effects of immunotherapy.

Discussion
To our knowledge, this is the first report to show how autologous cancer exome data can be
used to reveal T-cell responses against patient-specific neoantigens in humans. The
ATRS>L-specific T-cell response was identified in purposively comprehensive analysis, in
which all genes with RNA expression above 0 were used for epitope prediction, and in
which all neoantigens with at least an intermediate predicted HLA affinity were retained.
Interestingly, analysis of RNA expression of the ATR gene and the predicted HLA binding
affinity of the ATRS>L mutant epitope revealed that ATR was in the top 28% of expressed
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genes and that the ATRS>L epitope was in the top 4% of predicted HLA-A*03:01-restricted
epitopes. In case this reflects a more general bias toward recognition of neoantigens from
highly expressed genes with a high predicted HLA binding affinity, it may in future studies
be feasible to analyze patient-specific T-cell reactivity with even relatively small peptide
sets. Analysis of larger groups of patients will be useful to address this issue.

Recent work of the groups of Schreiber and Sahin11,12 in animal model systems have
provided the first indications how cancer exome data may be used for immunotherapy, by
demonstrating not only that vaccination against neoantigens within a mouse melanoma
model can be used to increase tumor control, but also that immune-based selection against
such neoantigens can lead to epitope loss in vivo. Here we provide, to our knowledge, the
first demonstration of the feasibility of exome-driven analysis of tumor-specific T-cell
reactivity in human cancer. In the coming years, it will be interesting to assess how such
information can be used as a potential diagnostic strategy, as well as for the develop-ment of
personalized cancer immunotherapy.21

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Patient characteristics
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Figure 2.
Overview of screening procedure
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Figure 3.
Functional characterization of ATRS>L specific T cells

van Rooij et al. Page 8

J Clin Oncol. Author manuscript; available in PMC 2013 November 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


