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Tumor progression depends on the gradual accumulation of 

genetic and epigenetic aberrations in cancer cells that also modify 

the cellular composition of the tumor environment, establishing a 

state of chronic inflammation characterized by the stromal infil-

tration of immune cells. Myeloid cells play a critical role in sus-

taining cancer progression (1). Moreover, inflammatory myeloid 

cells help to create and fuel the mutagenic pressure underlying the 

genetic instability of neoplastic cells by both direct mechanisms, 

such as the production of free-radical compounds (2), and indirect 

processes, such as the disruption of host defense barriers (3).

Tumor growth is assisted by tumor-associated macrophages 

(TAMs), the major leukocyte population infiltrating cancers (4). 

Although macrophages have the potential to attack and elimi-

nate tumor cells, TAMs exhibit many protumoral features that are 

partly shared by macrophages involved in tissue repair, and they 

interfere with the function and proliferation of immune effectors 

(5). Thus, a high frequency of TAMs is associated with poor prog-

nosis in many but not all human tumors (6).

Myeloid-derived suppressor cells (MDSCs) have received 

increased attention, and their presence and frequency in the blood 

of patients with tumors is emerging as a potential and simple prog-

nostic marker to monitor clinical outcome and response to therapy 

(7). MDSCs are characterized by their myeloid origin, heteroge-

neous cell composition, and ability to negatively regulate adap-

tive and innate immune responses to cancer. Although TAMs and 

MDSCs are regarded as separate entities (Figure 1), the boundaries 

between them are not clearly demarcated, and they share many 

characteristics (8). TAM accumulation in cancerous tissues is sus-

tained by circulating inflammatory monocytes (CCR2+Ly6C+ cells 

in mice and CCR2+CD14+CD16– cells in humans; ref. 9), which 

are distinct from vessel-patrolling monocytes (Ly6CloCX3CR1hi 

in mice and CD14dimCD16–CX3CR1hi in humans). Interestingly, 

immunosuppressive MDSCs with monocytic features are able to 

traffic from BM to tumors, mainly through the same chemokine 

pathway (10). Therefore, the CCR2/CCL2 axis is required for 

MDSC and TAM accrual and functional specialization. Here, we 

review the distinctive and common characteristics of TAMs and 

MDSCs, their role in maintaining cancer growth, and the ongoing 

development of selective therapeutic approaches.

MDSCs and TAMs result from  
altered myelopoiesis
The most pervasive and efficient strategy of immune escape likely 

relies on cancer’s ability to create a widespread tolerogenic envi-

ronment by altering normal hematopoiesis and promoting the 

expansion of myeloid cells through the constant and progressive 

release of tumor-derived factors (TDFs), which include metabo-

lites, cytokines, and chemokines (ref. 11 and Figure 2). This “reac-

tive myelopoiesis,” leading to MDSC and TAM accumulation, 

presents marked and distinct molecular features compared with 

emergency granulopoiesis (12), as emphasized below.

Macrophage composition in different tissues or inflammatory 

environments depends on a dynamic equilibrium between recruited 

and tissue-resident macrophages. Tissue-resident macrophages 

originate at the prenatal stage from the yolk sac and fetal liver 

(13–15) and acquire selective, tissue-dependent features through 

the activation of distinctive transcriptional profiles (16–20). During 

inflammation and under steady-state conditions in some tissues, 

macrophages are derived from circulating Ly6C+CCR2+ monocytes, 

as in the case of colonic mucosal macrophages (21).

In cancer, the evidence to date indicates that TAMs are 

dynamically replaced by circulating precursors. Both the tissue- 
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As further detailed by Marvel and Gabrilovich (30), mouse 

MDSCs have been divided into two main subgroups with different 

phenotypic and biological properties: the monocytic (MO-MDSC) 

and polymorphonuclear/granulocytic (PMN-MDSC) subsets (31). 

In tumor-bearing mice, MO-MDSCs (Gr1lo/intCD11b+Ly6ChiLy6G−) 

are highly immunosuppressive and exert their effects largely in an 

antigen-nonspecific manner, whereas PMN-MDSCs (Gr1hiCD11b+ 

Ly6CloLy6G+) are moderately immunosuppressive and promote 

T cell tolerance via antigen-specific mechanisms (32, 33). TDFs 

induce tumor-infiltrating MO-MDSC differentiation into immu-

nosuppressive TAMs. This conversion is primarily mediated 

by CSF1 (34), but also by molecular pathways controlled by the 

hypoxia-inducible factor 1α (HIF-1α) (35). HIF-1α may also be 

stabilized by the lactic acid that is produced by aerobic glycoly-

sis (Warburg effect) in cancer cells (36). Alternatively, lactic acid 

can be actively produced in immune-regulatory myeloid cells by 

cytokine-activated, anerobic glycolysis (28, 37).

TAMs in tumor-bearing hosts: cellular plasticity. After arriving 

at the tumor site, Ly6C+CD11c–MHCII–CD11bhiVCAM– mono-

cytes undergo sequential phenotypical changes characterized by 

the downregulation of Ly6C and CD11b and the upregulation of 

MHC class II (MHCII) molecules, VCAM, and CD11c (22). How-

ever, TAM differentiation and distribution is not a defined and 

preserved track but depends on both anatomical location and the 

tumor stage: cancers with different histology are infiltrated by 

TAMs with phenotypic and functionally distinct features (38). It 

is essential to avoid simplified conclusions regarding TAM onto-

resident macrophages present in normal mammary tissues and 

TAMs that develop during tumor progression in the MMTV-

PyMT breast cancer model are derived from blood-circulating 

CCR2+ monocytes, but only TAMs display self-renewal capability 

(22). In fact, TAM differentiation relies on the NOTCH/recombi-

nation signal–binding protein for the Ig κ J region (RBPJ) signaling 

pathway and is cell restricted, as genetic ablation of RbpJ caused 

a reduction in both TAMs and tumor growth (22). In the MMTV-

neu mouse model of autochthonous mammary carcinogenesis, 

in situ cell division of fully differentiated CD11bloF4/80hi mac-

rophages was the main contributor to the rapid TAM expansion; 

however, circulating monocyte influx was required in the long 

term (23). TAM progenitors (Ly6C+ monocytes) can also arise 

from tumor-induced extramedullary hematopoiesis within the 

spleen (24), although the relative contribution of BM and spleen 

to the monocyte reservoir and tumor trafficking is not clear and 

might be tumor dependent (25).

MDSCs in tumor-bearing hosts: cellular heterogeneity. Normal 

CD11b+Gr1+ cells in BM are multipotent cells that can differenti-

ate, depending on the kind and/or extent of cytokine/chemokine 

stimulation, into cells able to either enhance (e.g., myeloid DCs) 

or restrain (MDSCs) the immune response (26, 27). However, even 

in tumor-bearing hosts, BM CD11b+Gr1+ cells are poorly suppres-

sive, while the same cells isolated from liver, spleen, blood, and 

tumors are fully competent to inhibit T cell activation (28, 29). 

These findings suggest that the BM niche is not permissive for a 

complete, functional maturation of MDSCs.

Figure 1. Common phenotypic markers of 

MDSCs and TAMs. Several phenotypic markers of 

mouse and human MDSCs (A) and TAMs (B) have 

been identified (+ indicates expression, while – 

indicates lack of expression) and used to define 

specific cell subgroups, such as PMN-MDSCs, 

MO-MDSCs, and immature MDSCs (I-MDSCs), as 

well as M1-like and M2-like TAMs, by both cyto-

fluorimetric and immunohistochemical analyses.
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phage plasticity. M1 and M2 extremes exhibit specific, character-

istic expression of metabolic enzymes (iNOS vs. ARG1), cyto kines 

(IL-12hiIL-10lo vs. IL-12loIL-10hi), chemokines (CXCL9 and CXCL10 

vs. CCL17 and CCL22), and marker genes (Nos2, IL12b, and Ciita 

vs. Arg1, Retnla, and Chi3l3), as well as transcription factors (NF-κB, 

STAT1, and IRF5 vs. STAT6, MYC, IRF4, KLF4, and PPARγ) (39). 

M1 macrophages are functionally proinflammatory and cytotoxic, 

whereas M2 macrophages act preferentially in antiinflammatory 

responses and tissue repair; however, when applied to TAMs, this 

classification is excessively simplistic and can generate misunder-

standings and serious errors in data interpretation. For instance, 

mammary carcinoma–derived TAMs exhibit M2-related gene 

expression that is IL-4 independent and primarily orchestrated by 

genetic analysis; for instance, the adoptive transfer of fully differ-

entiated macrophages to alternate tissues demonstrated that the 

local environment is sufficient to reprogram both the macrophage 

chromatin landscape and gene expression, similar to what hap-

pens to less mature, BM-derived myeloid precursors (20).

The definition of TAM function that is based on a rigid dichot-

omy in which inducible NOS–positive (iNOS, also known as NOS2) 

macrophages (M1) are antitumoral and ARG1-positive macro-

phages (M2) are protumoral is no longer satisfactory and was 

recently revised (39). The M1 and M2 designations should only 

describe macrophages activated by either IFN-γ and LPS or IL-4 

and IL-13, respectively, and M1 and M2 should be viewed as the 

extremes of a continuum that emphasize the extremes of macro-

Figure 2. MDSC and TAM development in tumor-bearing mice. Under steady-state conditions, resident macrophages may originate from either embryonic 

tissues or inflammatory monocytes. Resident macrophages are programmed by local factors, and molecular switches support their differentiation. Circu-

lating monocytes can be divided into two subsets: patrolling monocytes (Ly6CloCX3CR1hi) and inflammatory monocytes (Ly6ChiCD11b+CD11c–MHCII– 

VCAM1–CCR2+), originating from macrophage and DC precursors (MDPs) in BM. Inflammatory monocytes migrate from blood to tissue under the guid-

ance of CCL2/CCR2 chemokine signaling. Tumor cells secrete several factors that modify physiological myelopoiesis, promoting MDP differentiation into 

PMN-MDSCs (CD11b+Ly6G+) and MO-MDSCs (CD11b+Ly6ChiCCR2+CD115+F4/80lo). MO-MDSCs also originate from the spleen under conditions of emergency 

and reactive myelopoiesis. MO-MDSCs and inflammatory monocytes migrate to tumor tissues via CCL2/CCR2 and CSF1 signaling and differentiate into 

TAMs (Ly6C–CD11b+/loCD68+CD1d+MHCIIhi/loF4/80+VCAM1+) in the presence of specific signals released by tumor cells within the local environment. However, 

the TAM phenotypic profile depends on cancer histology and stage, which might influence marker distribution. TAMs also proliferate locally, with different 

rates in various tumors. Furthermore, TAMs are inherently plastic, with an activation state falling along a continuum between the two extremes of M1- 

and M2-like phenotypes. Rb, retinoblastoma.
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turn, TAMs release CCL18, which supports epithelial-to-mesenchy-

mal transition (EMT) and metastasis formation (49).

The master factor for TAM recruitment and programming in 

the tumor microenvironment is CSF1. Genetic deletion of CSF1 

either slowed tumor initiation or decreased disease progression 

and distal metastatic spread, both of which were associated with 

TAM loss or reduction (50, 51). Indeed, elevated CSF1 levels 

correlated with marked macrophage infiltration in human met-

astatic breast cancer (52). In addition to CSF1 and CCL2, several 

other TDFs attract circulating monocytes to the tumor site. For 

instance, chemokines, such as CCL5, CXCL12, and CX3CL1 (53) 

as well as growth factors and noncanonical chemotactic pep-

tides, such as VEGF, TGF-β, bFGF, and the antimicrobial peptide 

β-defensin 3, are involved in monocyte recruitment and macro-

phage differentiation (54).

IL-4 and IL-13 participate in both TAM and MDSC survival 

and the acquisition of an immune-suppressive phenotype. They 

bind different receptors sharing the IL-4Rα chain that is responsi-

ble for recruiting and phosphorylating STAT6, which induces the 

transcription of genes involved in the immune-suppressive pro-

gram, including Arg1 (55). GM-CSF released by mouse and human 

gliomas upregulate IL-4Rα in MDSCs (56), which further fuel a 

positive loop for MDSC-mediated immune-suppressive activity 

by releasing IL-13 and IFN-γ, with the last cytokine maintaining 

IL-4Rα surface expression (57). Accordingly, IL-4R genetic deple-

tion impaired MDSC-dependent immune suppression in vivo (57), 

and administration of aptamers targeting IL-4Rα triggered MDSC 

and TAM apoptosis and delayed tumor progression (58). Addition-

ally, IL-4 in the tumor microenvironment (secreted by tumor cells 

or Th2-polarized infiltration T cells) (59, 60) induces local macro-

phages to produce WNT7β, thereby promoting tumor invasion (61).

Metabolic environmental signals can also modulate the intra-

tumoral distribution of myeloid cells. Macrophages can survive 

in a hypoxic environment, but the high lactate levels produced 

via the Warburg effect can influence their spatial dissemination 

within specific areas of tumors as well as their dismissal (62). 

Hypoxia induces semaphorin 3A (SEMA3A), which interacts with 

a holoreceptor composed of neuropilin 1 (NRP1) and plexin A1/A4 

to trigger VEGFR1 phosphorylation and macrophage recruitment 

(63). A TAM retention signal within hypoxic areas is delivered 

by SEMA3A through plexin A1/A4; conversely, NRP1 is down-

regulated in cancer, and its genetic inactivation in macrophages 

enhances TAM trapping within normoxic areas, resulting in the 

ablation of their immunosuppressive and proangiogenic activity 

(63). Partial correction of tumor hypoxia did not affect the relative 

distribution of TAM subsets or overall M2 marker expression, but 

rather downregulated the hypoxia-sensitive genes and proangio-

genic activity of TAMs residing in the hypoxic areas (64).

Myeloid cells and cancer promotion
MDSC and TAM activity is not simply a buildup of an immune-

suppressive environment that keeps T cells at bay and protects 

tumors from the effector arm of the immune system, but includes 

mechanisms that sustain and promote tumor growth and metasta-

sis (Figure 3), as detailed below.

MDSC- and TAM-induced immune dysfunction. TAMs and 

MDSCs exert their immunosuppressive effects in an antigen- 

NOTCH signaling (22) or lactic acid–stabilized HIF-1α (36). M1-like 

TAMs are detectable in early-stage cancers as well as in regressing 

cancers and necrotic areas of growing tumors (40). Furthermore, 

monocytes isolated from the blood of patients with renal cell car-

cinoma (RCC) simultaneously express both tumor-suppressing 

genes, such as TNF and IL1A, and tumor-promoting genes, such as 

VEGFA, MMP9, and HIF1A, a mixed profile that was confirmed in 

macrophages of RCC specimens (41). Thus, TAM classification will 

require the integration of a multiparameter analysis of cell surface 

markers, exclusion of ambiguous identifications, and comparison 

of the TAM transcriptome with the gene profile of resident macro-

phages isolated from the same tissues (39).

Factors driving TAM and MDSC recruitment, 
expansion, and activation during tumor growth
In tumor-bearing hosts, MDSC and TAM generation requires the 

integration of at least two types of signals: factors that expand mye-

loid precursors, followed by factors that activate immune-regula-

tory programs. Myeloid cells are activated and localize to specific 

tumor areas with different kinetics during primary tumor forma-

tion. CSF1, granulocyte-CSF (G-CSF), and granulocyte-macro-

phage CSF (GM-CSF) are the three chief regulators of myeloid 

lineage proliferation and differentiation. G-CSF promotes the dif-

ferentiation of myeloid precursors into PMN-MDSCs. Expansion 

of Ly6G+ PMN-MDSCs occurs very early during tumorigenesis in 

the MMTV-PyMT mouse model, and these cells are detectable 

in the blood, spleen, and lungs of mice at the onset of oncogene-

driven malignant conversion (42). In this model, tumor-released 

G-CSF stimulated reactive granulopoiesis at the expense of ery-

thropoiesis by expanding hematopoietic stem cells and granulo-

cyte/macrophage progenitors, but not common myeloid progeni-

tors. This peculiar precursor signature in the BM is reproduced by 

either G-CSF or GM-CSF inoculation (31, 42) as well as by trans-

plantable, GM-CSF–secreting tumors (31), suggesting a shared 

action of both cytokines on myeloid progenitors. G-CSF also 

mediates the lung infiltration of PMN-MDSCs, a step required for 

the formation of the premetastatic niche (43).

GM-CSF and IL-6 activate the immune-suppressive program 

in BM-derived progenitors by regulating the C/EBPβ transcription 

factor (28) and affect myeloid function during very early stages of 

pancreatic ductal adenocarcinoma (PDAC) progression. After ini-

tiation of the transforming program controlled by the active KRAS 

oncogene in mouse PDAC models, there are progressive waves of 

myelomonocytic cell recruitment, with CD11b+Gr1+ cells and TAMs 

being among the first to be accrued (44). Along with transformed 

epithelial cells, CD11b+Gr1+ cells contribute to the local release of 

IL-6 and IL-11, which activate protumoral STAT3 in cancer cells 

(45, 46). Moreover, KRAS-dependent release of GM-CSF primed 

CD11b+Gr1+ cells to suppress tumor-specific CD8+ T cells and pro-

moted progression to invasive PDAC; only the blockade of either 

GM-CSF production or CD11b+Gr1+ cell activity restored antitumor 

immunity (47). Other unknown factors might promote systemic 

CD11b+Gr1+ cell expansion in tumors driven by the viral SV40 onco-

gene, but GM-CSF was nonetheless required for the full in vivo 

maturation of CD11b+Gr1+ cell–suppressive activity (48). Further 

highlighting the role of GM-CSF, mesenchymal breast cancer cells 

activate TAMs by the combined activity of GM-CSF and lactate; in 
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Figure 3. TAM- and MDSC-dependent mechanisms driving tumor progression. TAMs and MDSCs sustain tumor growth, progression, and dissemina-

tion by promoting immune dysfunction (green slices) but also by nonimmune-related mechanisms (yellow slices). (A) TAMs alter immune responses 

in tumor-bearing hosts by four main mechanisms: 1) inhibition of T cell activation; 2) inhibition of T cell viability; 3) promotion of Treg induction and 

recruitment; and 4) consumption of metabolites essential for T cell fitness. TAMs promote tumor angiogenesis and vasculogenesis by the release of VEGF 

and WNT7β, which favor the generation of new blood vessels and sustain metastasis. Finally, TAMs maintain the cancer cell reservoir by secreting IL-6 and 

TNF-α and produce MFG-E8 to protect CSCs from chemotherapy. (B) MDSCs inhibit the immune response in tumor-bearing mice by four processes:  

1) MDSCs drive the differentiation of immune cells toward regulatory cells; 2) MDSCs interfere with T cell migration and viability; 3) MDSCs alter T cell 

fitness by turning on intracellular ARG1, NOS2, and NOX2 expression to produce NO, ROS, and RNS (ONOO–, O
2

–, H
2
O

2
); and 4) MDSCs deplete essential 

metabolites for T lymphocyte fitness. MDSCs can also promote tumor angiogenesis and vasculogenesis via VEGF and MMP9 secretion. MDSCs produce 

elevated levels of TGF-β and HGF in primary tumors, inducing EMT, and secrete versican in the metastatic niche, promoting MET. Finally, MDSCs maintain 

tumor cell stemness by both IL-1RA production and by inducing the upregulation of miR-101 in cancer stem cells. cGMP, cyclic GMP; βcat, β-catenin;  

N, nitrosylated/nitrated; Tcf, HNF1 homeobox A.
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specific and -nonspecific manner, deploying strategies that can 

be either direct or indirect, with the latter involving the genera-

tion or expansion of other regulatory cell populations, such as 

CD4+CD25+ Tregs (65).

Indirect strategies of immune suppression. The mechanisms for 

Treg expansion and conversion are not completely understood 

but involve cell-to-cell contact (including CD40 and CD40L 

interactions) and the production of soluble factors such as TGF-β, 

IFN-γ, and IL-10 (66–68). To sustain the immune-suppressive 

environment, TAMs and MDSCs secrete an array of chemokines 

acting on CCR5 and CCR6, which are involved in Treg recruit-

ment (67–69). MDSCs also skew macrophages toward an M2 phe-

notype, characterized by impaired production of functional IL-12, 

through a cell contact–dependent mechanism (70). The down-

regulation of IL-12 is further exacerbated by the macrophages 

themselves, because TAMs stimulate an additional IL-10 release 

by MDSCs, thereby creating a self-perpetuating negative loop. 

Therefore, both MDSCs and TAMs can regulate the intratumoral 

IL-10/IL-12 balance, which is critical for priming T lymphocyte 

responses, as reviewed elsewhere (54, 71–73). Interestingly, IL-10 

receptor blockade enhanced tumor responses to paclitaxel and 

carboplatin, enabling CD103+ DCs to produce IL-12 and support 

antitumor CD8+ T cells (74).

Direct immune suppression strategies. Direct immune-suppres-

sive mechanisms rely on the activity of enzymes, chemokines, 

and receptors in myeloid cells. L-arginine and L-tryptophan con-

sumption — which is dependent on the activity of ARG1 (73) and 

iNOS (75) or indoleamine 2,3-dioxygenase 1 (IDO1) and IDO2 

(76), respectively — or L-cysteine deprivation (77) promotes T cell 

proliferation arrest and functional inhibition by downregulation 

of the CD3ζ chain in the T cell receptor (TCR) complex. The pro-

duction of NO can inhibit T cell signaling downstream of IL-2R 

and induce T cell apoptosis by different mechanisms in an anti-

gen-independent manner (78, 79). Another TAM/MDSC-related 

immune-suppressive mechanism is based on the production of 

ROS and reactive nitrogen species (RNS). ROS comprise superox-

ide anion (O
2

–) and hydrogen peroxide (H
2
O

2
) and are generated 

in high amounts by the activity of NADPH oxidase (NOX) family 

members, in which NOX2 is the key player (80). ROS affect T cell 

fitness by downregulating CD3ζ chain expression and reducing 

cytokine secretion, as observed in pancreatic cancer (81). RNS, 

such as peroxynitrite (ONOO–), are byproducts of the combined 

activity of iNOS, ARG1, and NOX2 and can alter the formation 

of a correct peptide-MHC complex in MHCI molecules or induce 

modification of the immunodominant tumor-antigen peptides, 

thereby affecting TCR recognition and T cell activation (82). RNS 

can act on α and β chains of the TCR, promoting dissociation of 

the CD3ζ chain from the TCR complex and preventing TCR sig-

naling (83). Last, RNS also modify trafficking of leukocytes that 

promote homing of immune-suppressive subsets (but not T cells) 

through aromatic amino acid nitration and nitrosylation of chemo-

kines (CCL2, CCL5, CCL21, CXCL12) or chemokine receptors 

(CXCR4) (84, 85). Myeloid cells also promote immune dysfunc-

tion by expressing membrane surface ligands of T cell–inhibitory 

receptors, such as programmed death ligand 1/2 (PD-L1/2), which 

bind programmed death 1 (PD-1) (86–88) and B7-1/2, which bind 

to cytotoxic T lymphocyte antigen 4 (CTLA4) (89) and CD28 as 

well as FASL (90). Moreover, TAMs express nonclassical HLA-G 

and HLA-E molecules that can inhibit T cell activation upon their 

ligation to the inhibitory leukocyte Ig–like receptor LIT-2 (91).

MDSC- and TAM-dependent protumoral aid
Cancer stemness. MDSCs finely tune tumor senescence by promot-

ing cellular stemness. At tumor onset in different autochthonous 

tumor models, neoplastic cells showed a senescent phenotype, a 

condition limiting tumor progression that was reversed by MDSCs 

(92). MDSC-secreted IL-1RA was the main molecular media-

tor of this reprogramming activity, and interference with MDSC 

trafficking to the tumor (i.e., by CXCL1/2 and CXCR2 target-

ing) enhanced chemotherapy-induced cellular senescence (92). 

In human ovarian carcinoma, MDSCs regulated senescence by 

inducing tumor cell expression of miR-101, which downregulated 

the stemness repressor C-terminal–binding protein 2 (CTBP2), 

ultimately triggering cancer stem cell (CSC) sphere formation and 

enhancing metastatic potential (93). Finally, in a mouse model 

of pancreatic cancer, MO-MDSCs directly induced expansion of 

aldehyde dehydrogenase 1+ (ALDH1A1+) pancreatic CSCs; a simi-

lar effect was observed with human CD14+HLA-DR− MDSCs from 

patients with PDAC (94).

In pancreatic tumors, TAM depletion arrests the proliferation 

of tumor-initiating cells (95). Indeed, TAMs can sustain CSC pro-

liferation by releasing proinflammatory cytokines such as TNF-α 

and IL-6, which reinforce tumor cell proliferation through NF-κB 

and STAT3 signaling pathways (96, 97). These same molecular 

pathways may be activated through a direct TAM-to-CSC con-

tact via CD90 and ephrin A4 receptors (98). Finally, the crosstalk 

between CSCs and TAMs induced TAM secretion of milk fat glob-

ule EGF factor 8 (MFGE8) and IL-6, which favored CSC reservoir 

survival during chemotherapeutic treatment (99).

Angiogenesis. MDSCs and TAMs play a crucial role in pro-

moting the angiogenic switch. During hypoxia adaptation, tumor 

cells, which sense O
2
 levels through HIF prolyl hydroxylase 1–3 

(PHD1–3) to control HIF-1α stability, release VEGF and thereby 

stimulate angiogenesis (100). Similarly, TAMs, in response to 

hypoxia, release mediators such as VEGF, bFGF, CXCL8/IL-8, 

and glycolytic enzymes (101, 102). Secreted VEGF also orches-

trates peripheral expansion, trafficking, and functional commit-

ment of MDSCs (103). In the tumor microenvironment, TAMs and 

MDSCs release proteases (cathepsin and MMP9), which support 

angiogenesis by freeing heparin-bound growth factors, such as 

VEGF-A, and by inducing extracellular matrix remodeling, which 

promotes invasion (51). Recruitment of MDSCs mediates resis-

tance to anti-VEGF Ab–mediated therapy, as MDSCs can support 

new vessel growth, even in the presence of anti-VEGF Ab (104), 

by releasing the proangiogenic bombina variegata peptide 8 (105).

EMT–mesenchymal-to-epithelial transition and metastatic 

spreading. Myeloid cells play an active role in promoting the 

spread of distal tumor cells. In mammary tumors, TAMs pro-

mote metastatic diffusion via a paracrine loop involving CSF1 

and EGF, which induces macrophages and tumor cells to clus-

ter around blood vessels, where macrophages create a gate for 

tumor cell intravasation into the circulation, thus producing a 

tumor microenvironment for metastasis (TMEM) (106–108). The 

proinflammatory proteins S100A8 and S100A9, potent MDSC 
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chemoattractants, have been implicated in tumor progression 

(109); S100A8/A9-induced serum amyloid A3 directly recruited 

MDSCs to premetastatic lungs, stimulated NF-κB signaling in a 

TLR4-dependent manner, and facilitated metastatic spreading 

(110). Moreover, MO-MDSCs and inflammatory monocytes are 

recruited through the CCL2/CCR2 axis to a metastatic environ-

ment in which they can differentiate into metastasis-associated 

macrophages (MAMs) (52, 111). Hypoxia in primary tumors 

can trigger MDSC-induced dysfunction in NK cells within the 

lung premetastatic niche, a defined site to which hematopoietic 

cells migrate before the tumor cells can seed the niche (112). 

PMN-MDSCs can also be armed by IL-17 released from γδ T cells 

infiltrating the primary breast cancers and assist lymph node 

and lung metastasis, in part through the inhibition of CD8+ T cell 

function (113). MDSCs and TAMs also assist the metastatic pro-

cess by inducing tumor cell EMT. MDSCs attracted by CXCL5 

induced EMT in melanoma cells by releasing HGF and TGF-β at 

the primary tumor site; targeting of PMN-MDSCs in this model 

resulted in marked impairment of primary tumor growth (114). 

TAM recruitment induces EMT by both TGF-β release in a vari-

ety of solid tumors (115) and IL-8 in hepatocellular carcinoma 

(116). Additionally, a positive correlation was found between 

intratumoral macrophage densities, EMT markers, intraepithe-

lial TGF-β levels, and tumor grade of non–small-cell lung cancer 

(NSCLC) patient samples (115). Because metastatic cells reac-

quire morphological and phenotypic traits of epithelial cells at 

the metastatic site, it is conceivable that premetastatic myeloid 

cells also control a mesenchymal-to-epithelial transition (MET) 

that promotes cancer cell colonization of and survival in the new 

organ, likely by releasing the proteoglycan versican (117).

Prognostic significance of myeloid cells  
in cancer patients
Three main myeloid classes with distinct lineage commitments 

have been identified in the blood of cancer patients: monocytic, 

granulocytic, and immature MDSCs. Each class contains more 

than one subset (118). Although the role of MDSCs has been 

acknowledged in primary tumor formation (119), extensive data 

connect MDSC expansion to more advanced cancer stages (120). 

MDSC numbers are associated with clinical stage in bladder car-

cinoma (121), pancreatic adenocarcinoma (122), hepatocellular 

carcinoma (123, 124), gastric cancer (125), NSCLC (126), and head 

and neck squamous cell carcinoma (127), as well as in hematolog-

ical malignancies such as non-Hodgkin lymphoma (128). Collec-

tively, these results indicate that expansion of MDSCs in cancer 

patients is a general phenomenon accompanying tumor progres-

sion. MDSC levels also correlated with response to therapy (126, 

129, 130) or surgery (121); however, a deep analysis of clinical out-

come in patients showed that MDSC frequency in blood is associ-

ated with prognosis, independent of tumor burden (131, 132). In 

patients with either stage IV breast cancer or stage IV colorectal 

cancer (CRC), a significant correlation was observed between high 

numbers of circulating MDSCs and poor prognosis. In fact, survival 

estimates for patients with high numbers of immature MDSCs  

(lineage–HLA-DRlo/–CD11b+CD33+) in the blood prior to starting 

standard chemotherapy were associated with shorter overall sur-

vival (OS) (133). Finally, high levels of MDSCs, cytokines, and 

chemo kines (PDGF, IL-4, IL-8, IL-17, FGF-2, CCL5, and VEGF) in 

patients with PDAC are associated with progressive disease (134).

In recent years, immunotherapy has emerged as a therapeutic 

option for the treatment of cancer. IMA901 is a therapeutic vac-

Table 1. Synopsis of therapeutic interventions to limit monocyte and macrophage protumoral activity

Drug Type of cancer Effects on myeloid cells References

5-Fluorouracyl Thymoma (mouse) MO-MDSC apoptosis 29, 141

Gemcitabine Lung, breast, and sarcoma cancers (mouse) MO-MDSC apoptosis 29, 142

Aptamers targeting CD124 (IL-4Rα) Mammary cancer (mouse) MO-MDSC and TAM depletion 58

Anti-CCL2 mAb Mammary carcinoma, prostate cancer, other solid tumors 
(mouse and human)

MO-MDSC recruitment and angiogenesis alteration 111, 153, 154

CSF1R antagonist Prostate tumor lung carcinoma, diffuse-type giant  
cell tumor, and tenosynovial giant cell tumors,  

glioma (mouse and human)

MO-MDSC expansion and TAM recruitment 140, 152, 156

Anti-CSF1R mAb (RG7155) Mouse colon carcinoma, human diffuse-type  
giant cell tumor 

Circulating monocyte subsets, tissue macrophage  
and TAM depletion

149

Lipid nanoparticles delivering  
 CCR2-targeting siRNA

Thymoma and CRC (mouse) Ly6Chi inflammatory monocytes and TAM depletion 159

Bisphosphonates Mammary tumor (mouse) TAM depletion, inhibition of MDSC expansion 160, 161

Combined therapy with IL-12, IL-16,  
 CpG DNA, and anti–IL-10R mAb

Lung and breast cancer (mouse) TAM reprogrammingA 150

CD40 agonist and gemcitabine PDAC (mouse and human) TAM reprogrammingA 157

Anti-CD40 mAb with IL-2 RCC (mouse) TAM reprogrammingA in lung metastasis but not in primary 
tumor

151

Histidine-rich glycoprotein Pancreatic and breast cancer, fibrosarcoma (mouse) TAM reprogrammingA 158

Trabectedin Lung and ovarian carcinomas, soft tissue sarcoma  
(mouse and human)

MO-MDSCs and macrophage depletion 90

AIn these studies, the indicated treatments did not affect TAM numbers; rather, TAMs were reprogrammed toward an antitumor, M1-like phenotype 

and function.
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TAMs toward a more inflammatory M1 type that releases NO (143). 

However, TAMs can either positively or negatively influence the 

antitumor activity of cytotoxic chemotherapy and radiotherapy 

(144), and targeting of immunosuppressive myeloid cells can have 

different effects on cancer progression (145, 146). Additionally, 

the microbiome can condition different myeloid cells, including 

TAMs, within murine tumors to contribute to the antitumor effi-

cacy of both chemotherapy and immunotherapy (147, 148). Novel 

biologic drugs recognizing MDSC and TAM antigens or disrupting 

their function have been developed for selective targeting of these 

cell populations. As shown in Table 1, these compounds include 

Abs and/or aptamers (58, 111, 149–151) as well as molecular antag-

onists of essential receptors and/or molecular pathways (152). 

Among chemokines, targeting of CCL2 with a mAb (carlumab, 

CNTO 888) has proven to be beneficial in patients (153, 154); 

however, abrupt discontinuation of the therapy may result in a 

rebound effect causing increased metastatic disease (155). The 

inhibition of the CSF1/CSF1R axis with Abs (RG7155) or RTK 

inhibitors (imatinib mesylate) affects macrophage recruitment 

and differentiation and has shown encouraging results in clinical 

trials (149, 156). Considering the role of macrophages in regulating 

the tissue architecture and in mediating innate immune defense, 

there are concerns about side effects from the extended depletion 

of these cells. In this context, Abs activating immune stimulators 

(CD40), combinations of cytokines and Abs, or administration of 

histidine-rich glycoprotein appeared to modify macrophage polar-

ization toward an antitumor phenotype, without affecting overall 

macrophage levels (150, 151, 157, 158).

Future investigations will need to focus on the mechanisms 

driving macrophage polarization toward either proimmune 

or protumoral phenotypes. Gene expression, proteomic, and 

metabolomic profiles are increasing our understanding of TAM 

and MDSC biology and offer potential therapeutic strategies for 

impeding tumor-induced immune dysfunctions. The identifi-

cation of functional markers could guide the development of a 

new class of drugs targeting specific subsets of macrophages and 

MDSCs, thereby reducing the side effects of ablative therapy. In 

conclusion, while MDSC/TAM targeting will likely be insufficient 

to eradicate tumors, interference with patients’ immune dysfunc-

tions is a prerequisite and fundamental step for improving the effi-

cacy of passive and active immunotherapeutic protocols.
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cine for RCC that consists of HLA-A*02–restricted, tumor-derived 

peptides. In patients with advanced RCC, the levels of five of six 

MDSC subsets were expanded at baseline, and two of these sub-

sets were prognostic for OS following IMA901 administration. 

These results indicate that MDSCs are potential biomarkers of 

response to the vaccine (135).

Immune checkpoint inhibitors represent a new drug category 

that is dramatically changing the treatment options for cancer 

(136). Lower MDSC frequencies correlated with prolonged OS 

in ipilimumab-treated patients (132, 137), whereas a decrease in 

MDSCs after treatment correlated with improved progression-

free survival (PFS) in advanced melanoma patients receiving 

neoadjuvant ipilimumab (138). To date, it is not clear whether ipil-

imumab targets MDSCs or, conversely, whether the lower MDSC 

levels observed following ipilimumab treatment simply reflect 

tumor shrinkage in response to immune-mediated rejection.

While some studies demonstrated a correlation of extensive 

TAM infiltration with poor prognosis in breast, cervix, and blad-

der carcinomas, conflicting results were obtained in other solid 

tumors like prostate, NSCLC, and brain cancers (139). Along the 

same line, a recent meta-analysis of the literature showed incon-

sistent results (6), since elevated TAM numbers were associated 

with worse OS in patients with gastric, urogenital, or head and 

neck cancers, but with better prognosis in patients with CRC.

It appears that, while the expansion of MDSCs is often asso-

ciated with poor prognosis, expansion of TAMs is not always a 

negative prognostic factor. When TAM evaluation is carried out at 

the molecular level, another layer of complexity appears. As dis-

cussed above, monocytes from patients with RCC have a distinct 

transcriptional profile, with upregulation of protumor and anti-

tumor genes. The tumor-promoting function of RCC monocytes 

and TAMs required IL-1/IL-1R signaling, which also supported 

progression of RCC xenografts (41). These results are the first 

indication in human cancers that TAM induction is not mediated 

by the tumor microenvironment and suggest that patients’ mono-

cytes are already primed in the blood. Finally, CSF1R inhibition in a 

mouse model of proneural glioblastoma (GBM) increased survival 

by inducing regression of established tumors. Interestingly, a gene 

signature induced by CSF1R inhibition in murine TAMs was associ-

ated with increased survival in patients with proneural GBM (140).

Conclusions and future perspective
Targeting MO-MDSCs and TAMs can open new therapeutic 

opportunities to control tumor progression and block metastatic 

diffusion. The main strategies used thus far involve the inhibition 

of recruitment, depletion, or reprogramming of target cell popu-

lations. Some first-generation chemotherapeutic agents, such as 

5-fluorouracil (141) and gemcitabine (29, 142), are able to control 

MO-MDSC accumulation, probably because these cells are more 

sensitive than tumor cells to low-dose chemotherapy (29). Low-

dose irradiation also increases CD8+ T cell trafficking and normal-

izes tumor vasculature in many cancer models by reprogramming 
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