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Abstract

Introduction: Tumor microenvironment immunity is associated with breast cancer outcome. A high lymphocytic
infiltration has been associated with response to neoadjuvant chemotherapy, but the contribution to response and
prognosis of immune cell subpopulations profiles in both pre-treated and post-treatment residual tumor is still unclear.

Methods: We analyzed pre- and post-treatment tumor-infiltrating immune cells (CD3, CD4, CD8, CD20, CD68, Foxp3) by
immunohistochemistry in a series of 121 breast cancer patients homogeneously treated with neoadjuvant chemotherapy.
Immune cell profiles were analyzed and correlated with response and survival.

Results: We identified three tumor-infiltrating immune cell profiles, which were able to predict pathological complete
response (pCR) to neoadjuvant chemotherapy (cluster B: 58%, versus clusters A and C: 7%). A higher infiltration by CD4
lymphocytes was the main factor explaining the occurrence of pCR, and this association was validated in six public
genomic datasets. A higher chemotherapy effect on lymphocytic infiltration, including an inversion of CD4/CD8 ratio,
was associated with pCR and with better prognosis. Analysis of the immune infiltrate in post-chemotherapy residual
tumor identified a profile (cluster Y), mainly characterized by high CD3 and CD68 infiltration, with a worse disease free
survival.

Conclusions: Breast cancer immune cell subpopulation profiles, determined by immunohistochemistry-based
computerized analysis, identify groups of patients characterized by high response (in the pre-treatment setting)
and poor prognosis (in the post-treatment setting). Further understanding of the mechanisms underlying the
distribution of immune cells and their changes after chemotherapy may contribute to the development of new
immune-targeted therapies for breast cancer.

Introduction
Neoadjuvant chemotherapy (NCT) is an increasingly

used therapeutic strategy for early breast cancer. Besides

its ability to induce clinical responses that allow breast-

preserving surgery [1-3], the neoadjuvant setting is a for-

midable research tool to unveil mechanisms of resistance

to treatment. Pathological complete response (pCR) to

NCT is currently acknowledged as a surrogate endpoint

for therapeutic benefit, especially in human epidermal

growth factor receptor 2 (HER2) and basal breast cancer

[4]. Schedules that include sequential anthracyclines and

taxanes render a higher rate of pCR, thus being the pre-

ferred neoadjuvant regimens [5,6].

Adaptive and innate immune responses play an im-

portant role in tumor immunosurveillance, and they

may limit the development and growth of neoplasms

[7,8]. The role of immune response in breast cancer is

not fully understood, but some recent observations sug-

gest the involvement of tumor microenvironment im-

mune balance in breast cancer response and prognosis.

In particular, chemotherapy may trigger an immune re-

sponse, which contributes to treatment response [9,10].
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Since tumor infiltrating lymphocytes (TILs) are the main

actors in the response against cancer cells, they might

constitute surrogate markers of the immune balance

between the host and the tumor. In breast cancer, the

results of studies addressing the issue of tumor immune

cell infiltration have consistently demonstrated that a

high lymphocytic infiltration predicts a better prognosis

[11] and a better response to NCT chemotherapy [12],

although this benefit might be restricted to some tumor

subtypes. Similarly, the relationship between some sub-

types of TIL and breast cancer survival is supported by

some studies [13-15]. However, conflicting results exist

regarding the exact prognostic or predictive value of

immune cell infiltrates [16], and the methodological

approaches are frequently different among the diverse

studies [17-19].

In the setting of NCT for breast cancer, mixed results

for the diverse TIL subpopulations, such as CD8 or Foxp3,

have been found in different studies [13]. Regarding the

pre-treatment TIL profile, most studies have evaluated

either lymphocytic infiltration as a whole [20-22] or a lim-

ited set of TIL subpopulations [12,23-25] as predictors of

pCR. However, no clinical series in the neoadjuvant setting

have included both a broader spectrum of TIL subpopula-

tions and macrophage markers. The changes induced by

chemotherapy on TIL populations and the immune profile

of the residual tumor, that is, the chemotherapy-resistant

tumor, are even less well understood, although they might

be more relevant for determining prognosis [12,13,24,25].

Some reports show an increase in TIL (especially CD8) in

responding patients [13,25], and other data point to a de-

crease of some TIL subpopulations, such as Foxp3 [13],

but again no comprehensive evaluations of NCT-induced

changes on immune subpopulations are available. Finally,

the prognostic impact of the lymphocytic profile change

has not been formally evaluated, and the only publication

addressing the relevance of post-NCT lymphocytic infil-

tration in the residual tumor is confined to triple negative

breast cancer and does not include data regarding the

different lymphocyte sets [26].

The aim of this study was to integrate the predictive

and prognostic information obtained from the multiple

immune cell populations of breast cancer (CD4, CD8,

Foxp3, CD20, CD68), both in the pre-treatment and

post-chemotherapy residual tumor setting, and to deter-

mine the changes induced by anthracycline and taxane

NCT on TIL subpopulations. We here demonstrate that

pre- and post-treatment tumor-infiltrating immune cell

profiles are able to identify subgroups of patients with

different sensitivity to chemotherapy and with different

prognosis. CD4 infiltration is identified as the main

factor driving these effects. Additionally, chemotherapy-

induced changes of immune infiltrates are characterized

and their prognostic relevance is shown.

Methods
Patients

Clinical data were collected from 121 consecutive patients

with stage II or III breast cancer who received NCT in the

Department of Hematology and Medical Oncology, Uni-

versity Hospital Morales Meseguer, Murcia, Spain. Clinical

evaluation included physical examination, blood tests,

chest X-ray, mammography, ultrasound breast exam,

breast magnetic resonance imaging (MRI) and core bi-

opsy. Pre-NCT nodal status was determined by axillary

and/or supraclavicular ultrasound-guided fine-needle as-

piration. In the cases with a negative initial evaluation for

nodal metastasis, a sentinel lymph node biopsy (SLNB)

was performed before chemotherapy. In locally advanced

tumors (defined as cT3N1, cN2-3 or cT4), bone scintig-

raphy and body computed tomography were added to the

staging workup. For chemotherapy response evaluation,

dynamic breast MRI was performed prior to surgery.

Written informed consent was obtained from all patients

and the study was approved by the hospital Institutional

Review Board (Comisión de Ensayos e Investigación

Clínica, Hospital Morales Meseguer).

Pathology assessment

Pre-treatment estrogen (ER) and progesterone receptors

(PR) status was assessed by immunohistochemistry

(IHC), and HER2 status was assessed by either fluores-

cent in situ hybridization (FISH) or a validated IHC

method (Herceptest, Dako North America, Inc., Dako,

Carpinteria, CA, USA). For ER and PR, cases were consi-

dered as negative when the percentage of immunoreactive

tumor cells was below 1%; the rest of the cases (≥1% of

tumor cells stained) were classified as positive. For HER2,

cases were considered positive if Herceptest result was 3+

and/or FISH showed a ratio HER2/CEP17 ≥ 2; the rest of

the cases were classified as negative. pCR was defined as

the absence of invasive carcinoma both in the breast and

the axilla, regardless of the presence of carcinoma in situ

(ypT0/Tis ypN0). Primary tumor pCR was defined as

absence of invasive carcinoma in the breast. Tumors were

phenotypically classified according to pre-treatment IHC re-

sults as hormone-dependent HER2 negative (ER and/or PR

positive and HER2 negative), hormone-dependent HER2

positive (ER and/or PR positive and HER2 positive), HER2

positive (ER and PR negative and HER2 positive) or triple

negative (ER negative and PR negative and HER2 negative).

Treatment

Preoperative chemotherapy included both taxanes and

anthracyclines. The NSABP-B27 regimen was the most

frequently used and included cyclophosphamide (600 mg/

m2/21 days) and doxorubicin (60 mg/m2/21 days) for four

courses, followed by docetaxel (100 mg/m2/21 days) for four

cycles. After its approval, trastuzumab was administered
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concomitantly with taxanes to those patients whose tumors

overexpressed HER2. Patients treated with docetaxel re-

ceived prophylaxis with dexamethasone and subcutaneous

filgrastim.

After definitive surgery, hormone therapy was adminis-

tered in all tumors with positive hormone receptors, and,

after its approval, adjuvant trastuzumab was given to pa-

tients with tumors overexpressing HER2. Adjuvant radio-

therapy was administered to all patients treated with

breast-preserving surgery and to those patients undergo-

ing mastectomy with any of the following criteria: primary

tumor >5 cm, pre or post-chemotherapy T4 and/or N2-3,

premenopausal status with pN+, postmenopausal status

with pN+ >3, or positive resection margin.

Tumor-infiltrating lymphocytes assessment

A tissue microarray with paired pre- and post-NCT 2 mm

biopsies (two cores for each sample) was built after selec-

tion of predominantly tumor areas by a pathologist (ACB).

Adequate controls (tonsil and normal breast) were included

in each array. For immunohistochemistry, 4 μm sections

were cut from the tissue microarray, deparaffinated, rehy-

drated and processed with standard methods using an au-

tomatized stainer (Autostainer Link 48, DAKO, Carpinteria,

CA, USA). Secondary antibodies and visualization were

performed using standard DAKO Envision systems. Staining

was performed simultaneously in all slides to avoid inter-

section variability. For TIL study, the following antibodies

were used: CD4 (IS649, Dako), CD8 (IS623, Dako), CD3

(IS503, Dako), CD20 (MO755, Dako), FOXP3 (#14-4776,

eBioscience, San Diego, CA, USA) and CD68 (IS623, Dako).

After assessment of adequate staining by two independent

observers, each slide was scanned and digitized with an auto-

mated scanning system (Leica SCN400F). Digital images from

pre- and post-CT samples were obtained for each tissue core,

and after area quantification, tumor area-adjusted morpho-

metric analysis was performed with Image J software (NIH,

USA). Results are expressed as TIL count/mm2. For each

subpopulation, chemotherapy-related relative variation was

determined and expressed as a percentage. Using the same

tissue microarray, we also performed an evaluation of lympho-

cytic infiltration based on hematoxylin-eosin staining. Follow-

ing Denkert’s classification [12], cases were classified in three

categories: no lymphocyte infiltrate, partial lymphocyte infil-

trate and lymphocyte-predominant breast cancer.

Hierarchical clustering of lymphocyte markers

In order to conduct an unsupervised hierarchical clustering

of the six immune markers, the quantitative values (count/

mm2) obtained for each case were normalized and catego-

rized in inter-quintile intervals. An average-linkage hier-

archical clustering was performed using software Genesis

v.1.7.6 [27], primarily designed for analyzing cDNA

microarray data, and which also generates a heat map and

a dendrogram.

RNA purification and qRT-PCR assay

Pre- and post-chemotherapy tumor tissues from formalin

fixed paraffin-embedded biopsies were deparaffinated with

xylene followed by ethanol washes. RNA was extracted

with RNeasy FFPE Kit (QIAgen, Germantown, MD, USA)

according to the manufacturer’s instructions. Sample retro-

transcription and pre-amplification was realized in Master-

cycler® nexus (Eppendorf, Hamburg, Germany). Real-time

PCR for IFNG and IL10 was performed in LightCycler® 480

System (Roche Diagnostics, Basel, Switzerland) using

TaqMan® Gene Expression Assays (Applied Biosystems,

Carlsbad, CA, USA). Relative expression levels of each gene

were calculated and quantified by the 2−ΔΔCt method using

ACTB as endogenous control [28].

Analysis of public datasets

A group of 1,001 breast cancer patients included in six public

genomic datasets (GSE16446 [29], GSE20194 [30], GSE20271

[31], GSE22093 [32], GSE41988 [33] and GSE23988 [34]) were

analyzed to confirm the predictive value of pre-chemotherapy

immune CD4 and CD8 expression. Patients included were

treated with NCT and had available data for pCR and for ex-

pression of the six immune markers used in this study (CD3,

CD4, CD8, CD20, CD68, Foxp3).

Statistical analysis

Statistical analysis was carried out with SPSS 20.0 (SPSS,

Inc., Chicago, IL, USA). The association between clinical

and pathologic parameters was tested with χ2 test for cat-

egorical variables. Mean differences were studied with the

T-test. Disease-free survival (DFS) was measured from the

date of diagnosis to the date of last follow-up or disease re-

lapse. Overall survival (OS) was measured from the date of

diagnosis to the date of last follow-up or death. Time vari-

ables (DFS and OS) were analyzed with the Kaplan-Meier

method and groups were compared with the log-rank test.

For univariate analysis, the difference between survival

functions was calculated using the univariate Cox propor-

tional hazard regression model. Multivariate Cox propor-

tional hazard regression models and logistic regression

models were used for multivariate analysis, which included

all prognostic factors that were significant in the univariate

analysis. For external validation in public datasets, after in-

dividual calculation of the odds ratio (OR) for each dataset,

we performed a pooled analysis (random-effects model)

using the R-based software OpenMetaAnalyst [35].

Results
Clinical data and treatment outcomes

One hundred and twenty one breast cancer patients

treated with NCT were evaluated. Clinical and pathologic
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characteristics and treatment data are shown in Table 1. Me-

dian age was 56 years (range, 21 to 79 years), and most tu-

mors were stage IIB (28.1%) or IIIA-C (56.4%). Invasive

ductal carcinoma was the predominant histology (93.4%)

and more than half of the cases were histological grade 3.

IHC subtype distribution included 63.6% hormone receptor-

positive cases (13.2% HER2 positive and 50.4% HER2 nega-

tive), 10.7% HER2 positive hormone receptor-negative and

21.5% triple negative cases. Neoadjuvant treatment mainly

consisted of sequential AC-docetaxel (NSABP-B27 sched-

ule) (80.2%), and the pCR rate was 17% (primary tumor

pCR: 20.7%; axillary pCR: 26.4%). Tumor subtype (hor-

mone-dependent HER2 negative, hormone-dependent

HER2 positive, non-hormone dependent HER2 positive or

triple negative) was the only independent predictor of pCR

in a logistic-regression multivariate model (OR: 1.87; 95%

confidence interval (CI): 1.19 to 2.93; P= 0.006). After a me-

dian follow up of 60 months neither OS nor DFS has been

reached.

Pre-treatment breast cancer TIL profile and response to

chemotherapy

Tumor material was successfully incorporated in a tissue

microarray in 76% of patients (93 of 121) and morphometric

quantification by digital imaging analysis was possible in

94% of those cases (Figure 1A). Mean pre-chemotherapy

(pre-CT) values of TIL for the whole group are shown in

Table 2. CD4 was the predominant lymphocyte subpopula-

tion, with lower values for CD8, while only a small Foxp3

subpopulation was found. Intermediate values were found

for B lymphocytes (CD20) and macrophages (CD68)

(Additional file 1: Figure S1A). Analysis of percentage distri-

bution showed a predominant CD4 subpopulation over

CD8 and CD20 in untreated breast cancer (Additional file 1:

Figure S1C). The distribution of T and B cell subpopulations

did not differ according to breast tumor characteristics

(Additional file 2: Table S1), with the only exception being a

higher CD68 infiltration in hormone receptor-negative tu-

mors (P= 0.01).

In order to understand better the complexity of immune

subpopulation profiles in breast cancer, an unsupervised

hierarchical clustering using the six immune cell markers

was performed. Clustering generated three groups of pa-

tients arbitrarily designated as cluster A (n = 40; 54%), clus-

ter B (n = 17; 23%) and cluster C (n = 17; 23%) (Figure 1B).

A clear association of immune clusters with pCR was found,

with cluster B showing a remarkable pCR rate of 58% versus

only 7% for clusters A and C (P <10−6) (Figure 1C). Cluster

B group was characterized by low CD8, high CD4, high

CD20 and high CD68 infiltration (Table 3), and it showed a

significant association with a high histological grade (P =

0.03). However, no clear correlation was found between

cluster B and age, clinical stage or tumor subtype (Table 4).

Multivariate analysis including histological grade and tumor

subtype demonstrated the independent predictive value of

cluster B for pCR (OR: 18.2; 95%CI: 3.28 to 100.5, P= 0.001)

after sequential anthracyclines and taxanes NCT. No differ-

ences were found for DFS or OS according to pre-treatment

immune cluster groups.

We analyzed the contribution of individual immune cell

subpopulations to response to chemotherapy. A signifi-

cant correlation was found between pCR and higher

pre-CT infiltration by CD3, CD4 and CD20 (Table 2):

CD3 > 172.3/mm2 (P = 0.001), CD4 > 67.34/mm2 (P =

0.001) and CD20 > 42.08/mm2 (P = 0.001) (Figure 1D).

Logistic regression multivariate models including tumor

subtype and histological grade confirmed the independent

predictive value of a higher pre-NCT CD3, CD4 and

CD20 TIL subpopulations for pCR: CD3 (P = 0.007; OR =

11.7, 95%CI:1.97 to 69.2); CD4 (P = 0.005; OR = 11.0, 95%

CI:2.0 to 59.7); and CD20 (P = 0.005; OR = 15.3, 95%

CI:2.2 to 104.1). Accordingly, a high (over the median)

CD4/CD8 ratio was also a stronger and independent pre-

dictor of pCR after NCT (P = 0.01; OR = 8.5, 95% CI:1.4 to

50.2), thereby partially explaining the predictive value of

cluster group B for pCR.

Analysis of predictive value of CD4 and CD8 expression in

public genomic datasets

In order to externally validate the relative contribution of

CD4 and CD8 expression to pCR prediction, we analyzed

six public genomic datasets comprising 1,001 patients

treated with NCT. Using the median expression as a cut-off

for high and low expression, the ORs for each dataset were

calculated and a pooled analysis performed according to a

random-effects model. As shown in Figure 2, high CD4

expression significantly associated with pCR (OR= 2.03,

95% CI:1.29 to 3.21; P = 0.002) while the effect of high CD8

expression on pCR was not clear (OR = 1.41; 95% CI:0.79

to 2.52; P = 0.24). In the whole dataset, 27.5% of patients

with high CD4 pre-NCT expression obtained a pCR versus

only 15.5% of patients with low CD4 expression. CD4 high

expression associated with pCR both in high (P = 0.05) and

low (P = 0.0001) CD8 expression groups (Additional file 3:

Figure S2A-B), while CD8 expression did not significantly

predict pCR in high (P = 0.83) and low (P = 0.09) CD4

expression groups (Additional file 3: Figure S2C).

Prognostic value of immune cell infiltration profile in

post-chemotherapy residual tumor

Mean values of post-NCT immune cell infiltration are

shown in Table 2. There was no significant correlation be-

tween TIL subpopulations and clinical or pathological char-

acteristics of patients at diagnosis or after NCT (Additional

file 2: Table S2). To better appraise the post-treatment

tumor immune microenvironment profile, we performed

an unsupervised hierarchical clustering analysis of post-

treatment immune cell subpopulation distribution in those
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Table 1 Patient characteristics

Characteristic Number = 121 %

Menopausal status Premenopausal 60 49.6

Postmenopausal 61 50.4

Clinical staging IIA 19 15.7

IIB 34 28.1

IIIA 40 33.1

IIIB 8 6.6

IIIC 20 16.5

Clinical staging primary tumor cT1-2 52 43.0

cT3-4 69 57.0

Clinical staging nodes cN0 39 32.2

cN1 36 29.8

cN2-3 46 38.0

Tumor type Ductal invasive 113 93.4

Lobular invasive 5 4.1

Other 3 2.5

Tumor grade GI 7 5.8

GII 39 32.2

GIII 61 50.4

Unknown 14 11.5

Hormone-sensitivity Negative 39 32.2

Positive 80 66.1

No data 2 1.7

HER2 overexpression Negative 87 71.9

Positive 29 24.0

Unknown 5 4.1

Triple negative No 90 74.4

Yes 26 21.5

Unknown 5 4.1

IHC subtype ER+ and/or PR+ and HER2- 61 50.4

ER+ and/or PR+ and HER2+ 16 13.2

ER- and PR- and HER2+ 13 10.7

ER- and PR- and HER2- 26 21.5

Non classifiable 5 4.1

Chemotherapy regimen AC x 4 – Docetaxel x 4 97 80.2

Sequential anthracyclines-paclitaxel 10 8.3

Non anthracycline 2 1.7

Non anthracycline-taxane 4 3.3

Concomitant anthracyclines–taxane 8 6.6

Trastuzumab treatment No 99 81.8

Neoadjuvant 17 14.0

Adjuvant 5 4.1

Local treatment Mastectomy 67 55.3

Breast conservation surgery (BCT) 53 43.8

ER, estrogen receptor, HER2, human epidermal growth factor receptor 2, IHC, immunohistochemistry; PR, progesterone receptor.
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patients with residual breast carcinoma after chemotherapy.

Clustering generated two groups designed as cluster Y and

cluster Z (Figure 3A), which basically corresponded with

high and low lymphocyte infiltration for all subpopulations

(Figure 3B; Table 5). A comparison of clinical and patho-

logical characteristics of both groups showed the associ-

ation of group Y with histological grade 3 and absence of

hormone receptors expression (Table 6). The groups de-

fined by clustering rendered a better prognostic classifica-

tion than any isolated TIL subpopulation: patients with a

residual tumor belonging to cluster group Y showed a

worse DFS (P = 0.006; log-rank), even after adjusting for

post-chemotherapy nodal involvement (P = 0.02; HR = 3.38,

95% CI:1.2 to 9.6) (Figure 3C).

To identify the contribution of each immune cell sub-

population to the biological behavior of post-treatment

breast tumors, we analyzed their prognostic impact both

in the whole group and in those patients with residual

(resistant to chemotherapy) tumor (Additional file 2:

Table S3). Differences were mainly found for CD68, a

marker of tumor associated macrophages, which have

been linked to tumor progression and worse prognosis

both in experimental models and clinical series [36]. For

the whole group of patients (with or without pCR) we

observed a worse DFS and OS in those cases with higher

CD68 infiltration after chemotherapy (P = 0.03), which

was lost in multivariate analysis. The prognostic effect of

post-chemotherapy CD68 infiltration was especially ob-

served in those patients with residual tumor (no pCR),

in whom a higher CD68 count trended to associate with

worse DFS in univariate (P = 0.055) and multivariate

analysis (P = 0.09; HR = 2.26, 95% CI: 0.86 to 5.96)

(Figure 3D). A gradual prognostic effect of tumor-

infiltrating CD3 was also observed in those cases with

residual carcinoma, with higher infiltration associated

with worse DFS in the univariate analysis (P = 0.038)

(Figure 3E).

Since previous reports point to a better prognosis for

those patients showing very high TIL in residual tumor

[26], we next tested whether post-NCT immune cluster

Figure 1 Pre-treatment lymphocyte subpopulations profile of breast cancer and pathological response to neoadjuvant chemotherapy.

A) representative digital images (100x) of ductal invasive carcinoma of the breast showing CD3, CD4, CD8, CD20, CD68 and Foxp3 staining (scale
bar, 100 μm). B) unsupervised hierarchical clustering analysis of pre-chemotherapy TIL subpopulations yielded three groups or immune clusters
(arbitrarily named A, B and C); each column represents a patient and each row represents an immunohistochemical marker. C) pathologic
complete response distribution according to pre-chemotherapy immune cluster group. D) differential distribution of lymphocyte populations
(CD3, CD4, CD8, CD20, Foxp3, CD68) according to pathological response to neoadjuvant chemotherapy; differences were statistically significant
for CD3, CD4 and CD20 and non significant for CD8, Foxp3 and CD68. Statistical analysis: Mann–Whitney U-test. *, P ≤0.05. TIL, tumor
infiltrating lymphocytes.
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Table 2 Mean pre-chemotherapy counts/mm2 of tumor infiltrating lymphocytes subpopulations and CD68 for the

whole group of patients and comparison between responding and non-responding patients

TIL/mm2 Mean ± SD Whole group pCR Non pCR P
a

CD3 cells

Pre-CT 172.33 ± 334.50 324.33 ± 233.18 138.26 ± 345.70 0.0004

(n = 71) (n = 13) (n = 58)

Post-CT 100.43 ± 117.43 94.98 ± 158.88 101.74 ± 106.58 0.25

(n = 88) (n = 17) (n = 71)

Absolute variation −78.46 ± 360.56 −259.59 ± 249.85 −37.87 ± 370.61 0.001

(post-CT)-(pre-CT) (n = 71) (n = 13) (n = 58)

Relative variation, % 2459.63 ± 6403.11 281.52 ± 1242.71 2947.83 ± 6978.61 0.002

CD4 cells

Pre-CT 67.33 ± 123.89 146.94 ± 161.77 48.44 ± 106.28 0.003

(n = 73) (n = 14) (n = 59)

Post-CT 21.99 ± 69.64 58.38 ± 145.88 13.27 ± 27.66 0.31

(n = 88) (n = 17) (n = 71)

Absolute variation −52.28 ± 122.94 −119.93 ± 175.28 −36.23 ± 102.52 0.01

(post-CT)-(pre-CT) (n = 73) (n = 14) (n = 59)

Relative variation, % 541.63 ± 1817.60 902.63 ± 3590.52 455.97 ± 1082.89 0.03

CD8 cells

Pre-CT 30.25 ± 101.97 3.58 ± 12.93 36.03 ± 111.65 0.15

(n = 73) (n = 13) (n = 60)

Post-CT 37.03 ± 66.65 65.61 ± 121.59 30.28 ± 43.95 0.35

(n = 89) (n = 17) (n = 72)

Absolute variation 3.75 ± 110.74 39.42 ± 46.51 −3.97 ± 119.10 0.08

(post-CT)-(pre-CT) (n = 73) (n = 13) (n = 60)

Relative variation, % 2650.38 ± 3563.74 4294.12 ± 4085.8 2294.24 ± 3373.26 0.08

FOXP3 cells

Pre-CT 6.97 ± 17.98 8.37 ± 9.26 6.63 ± 19.53 0.01

(n = 68) (n = 13) (n = 55)

Post-CT 16.51 ± 85.56 53.73 ± 190.42 7.60 ± 19.86 0.82

(n = 88) (n = 17) (n = 71)

Absolute variation 0.4859 + 23.03 1.17 ± 27.44 0.32 ± 22.15 0.12

(post-CT)-(pre-CT) (n = 68) (n = 13) (n = 55)

Relative variation, % 372.91 ± 1317.91 269.25 ± 901.21 397.411 ± 1404.04 0.08

CD20 cells

Pre-CT 42.08 ± 83.05 92.82 ± 94.10 30.71 ± 76.73 0.000

(n = 71) (n = 13) (n = 58) 2

Post-CT 14.17 ± 53.89 40.83 ± 119.40 7.79 ± 11.70 0.73

(n = 88) (n = 17) (n = 71)

Absolute variation −33.86 ± 78.03 −81.31 ± 86.12 −23.23 ± 72.71 0.01

(post-CT)-(pre-CT) (n = 71) (n = 13) (n = 58)

Relative variation, % 296.45 ± 782.61 −45.09 ± 95.39 373.00 ± 847.17 0.002

CD68 cells

Pre-CT 33.92 ± 45.09 55.65 ± 65.73 28.60 ± 37.48 0.12

(n = 61) (n = 12) (n = 49)
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classification might just rely on the level of TIL in post-

treatment tumor. Survival analysis stratified by high

(P75) CD3 infiltration, a likely surrogate of high TIL,

showed that immune cluster classification kept its statis-

tical significance for DFS (P = 0.008, log-rank), while

only a trend was observed for OS (P = 0.16, log-rank)

(Additional file 4: Figure S3).

Finally, we explored the possibility of a differential effect

of post-treatment immune infiltrate in residual tumor

across the different breast cancer subtypes (Additional

file 2: Table S4). A higher deleterious effect of CD68 infil-

tration was found in HER2 tumors (P = 0.04), while in

hormone receptor-positive tumors the main factor associ-

ated with worse DFS was a higher CD8 count (P = 0.04).

Comparison of hematoxylin-eosin-based lymphocytic

infiltration classification with immunohistochemistry-

based immune cell profiles

In order to determine if pre-NCT and post-NCT cluster

group classification added any information to the HE-

based morphological evaluation of tumor-infiltrating

lymphocytes, we categorized breast tumors according to

Denkert’s classification (no infiltrate, partial infiltrate,

lymphocyte-predominant breast cancer). As shown in

Additional file 2: Table S5, both the mean number of

CD3 cells and the total number of immune cells (CD3 +

CD20 + CD68) showed a good correlation with the HE-

based lymphocyte infiltrate classification.

Pre-chemotherapy TILs, as determined by conventional

histology, showed a good predictive value for pCR (OR:4.8;

95% CI: 1.6 to 14,6; P = 0.006). However, this predictive

value was lost in a multivariate model in which both the

clinical covariates (histological grade and tumor subtype)

and the cluster B were introduced. In the final model for

pCR, only tumor subtype (OR: 3.8; 95% CI: 1.2 to 12.1;

P = 0.02) and cluster B (OR: 28.5; 95% CI:2.1 to 390.4; P =

0,01) were statistically significant.

The prognostic value of HE-determined TIL was also

evaluated both in the pre- and post-treatment setting.

Differences were found neither for DFS (log-rank; P =

0.27) nor for OS (log-rank; P = 0.30) according to pre-

chemotherapyTIL morphologic classification. In the

group of patients with post-chemotherapy residual

tumor, no statistically significant differences were ob-

served for DFS (log-rank; P = 0.33) or OS (P = 0.18).

After inclusion of post-NCT HE-determined lympho-

cytic infiltration together with post-treatment cluster

(Y versus Z) in a Cox model for DFS, only the post-

treatment cluster group kept the prognostic value (HR:

3.3; 95% CI: 1.1 to 9.8; P = 0.03).

Changes induced by chemotherapy on breast cancer

immune cell infiltration

We evaluated the pattern of treatment-induced changes in

immune cells infiltration. NCT produced a statistically

significant decrease of CD4 (P = 0.01), CD20 (P = 0.04)

and CD68 (P = 0.03) cell counts (Table 2). Changes in

CD8 infiltrate occurred in the opposite direction, with a

clear increase after chemotherapy (P = 0.0001), while

Foxp3 remained unchanged (P = 0.86). Although post-

treatment total CD3 counts were lower, this difference did

not reach statistical significance (P = 0.47). Taken together

these data support a chemotherapy-induced change in the

distribution of lymphocyte subpopulations, with an inver-

sion of the CD4/CD8 ratio and a decrease of B cells and

macrophage infiltration after treatment.

The degree of TIL distribution changes exerted by chemo-

therapy was related to pathological response (Figure 4A): a

higher (over the median) chemotherapy-induced decrease of

the total infiltration by Tcells (CD3) was significantly related

to pCR even after adjusting for tumor subtype in the

multivariate analysis (P= 0.001; OR= 17.84, 95% CI:3.02 to

105.27). This tumor subtype-independent association be-

tween pCR and a higher effect of chemotherapy on tumor

infiltration was also found for two particular lymphocyte

Table 2 Mean pre-chemotherapy counts/mm2 of tumor infiltrating lymphocytes subpopulations and CD68 for the

whole group of patients and comparison between responding and non-responding patients (Continued)

Post-CT 39.08 ± 70.77 19.44 ± 23.52 43.51 ± 76.98 0.61

(n = 87) (n = 16) (n = 71)

Absolute variation −7.04 ± 58.85 −36.93 ± 62.27 0.27 ± 56.24 0.02

(post-CT)-(pre-CT) (n = 61) (n = 12) (n = 49)

Relative variation, % 340.13 ± 1132.29 −1.03 ± 159.41 423.68 ± 1249.23 0.16
aMann–Whitney U-test. CT, chemotherapy; n, number; pCR, pathological complete response; SD, standard deviation; TIL, tumor infiltrating lymphocytes.

Table 3 Distribution of immune cell subpopulations

across pre-treatment cluster groups

Cluster A Cluster B Cluster C

Subpopulation Mean Mean Mean

CD3 pre-CT 51.7 352.0 255.1

CD4 pre-CT 15.7 142.6 110.6

CD8 pre-CT 0.0 0.0 129.9

CD20 pre-CT 4.5 122.0 43.9

FOXP3 pre-CT 3.1 19.3 2.3

CD68 pre-CT 17.5 67.5 34.3
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Table 4 Clinical and pathological characteristics of pre-chemotherapy cluster B immune cell profile

Characteristic Profile A and C % Profile B % P (χ2)

Age <50 years 86 13 0.21

≥50 years 73 27

HER2 Negative 81 19 0.19

Positive 66 33

Hormone- sensitivity No 64 36 0.06

Yes 83 17

IHC subtype HR+/HER2- 84 16 0.15

HR+/HER+ 82 18

HR-/HER2+ 50 50

HR-/HER2- 73 27

Grade G1-2 87 13 0.03

G3 65 35

cN cN0-1 81 19 0.24

cN2-3 69 31

cT cT1-2 77 23 0.95

cT3-4 77 23

HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry.

Figure 2 Analysis of CD4 and CD8 association with response in six genomic public datasets. Genomic public datasets of breast cancer
patients treated with neoadjuvant chemotherapy were analyzed to determine the relative contribution of CD4 and CD8 to pathological response.
The odds ratios, with their 95%CI and the proportions of pCR, are shown in the forest plot for each dataset and for the pooled analysis (binary
random-effects model); the median value (independently calculated for each dataset) was used as a cut-point between high and low expression.
A) high CD4 expression was associated (P = 0.002) with pCR. B) high CD8 expression was more heterogeneous among the six datasets and did
not show a significant correlation with pCR after neoadjuvant chemotherapy (P = 0.24). pCR, pathological complete response.
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subpopulations: CD4 (P= 0.001; OR= 15.02, 95% CI: 2.89 to

77.92) and CD20 (P = 0.002; OR = 11.87, 95% CI: 2.47 to

57.01) (Additional file 2: Table S6). The modulation of the

TIL profile by chemotherapy not only was associated with

response, but also with survival: higher CD3 decrease after

treatment was related to better OS (P= 0.02) and DFS

(P = 0.005) (Figure 4B), although only a trend for DFS

was kept in the multivariate analysis (P = 0.08; HR = 4.5,

95% CI: 0.8 to 24.9).

Finally, we evaluated the evolution from pre-treatment

immune cluster A-C groups to post-chemotherapy Y-Z

cluster groups in those patients with residual tumor.

Figure 3 Post-chemotherapy immune cell subpopulation profile and breast cancer prognosis. A) unsupervised hierarchical clustering analysis
of post-chemotherapy immune cell populations generated two groups (named as Y and Z); each column represents a patient and each row represents
an immunohistochemical marker. B) distribution of immune cell populations in post-chemotherapy cluster groups Y and Z; statistically significant
higher infiltration was shown in cluster Y for all populations (CD3, CD4, CD8, CD20, Foxp3, CD68), Mann–Whitney U-test. C) Kaplan-Meier curves
showed a worse disease-free survival for patients with tumors belonging to post-chemotherapy immune cluster Y (P = 0.01). D) disease free survival
curves according to post-treatment CD68 infiltration in residual tumor (P = 0.055). E) Kaplan-Meier disease free survival curves according to level of
post-treatment CD3 infiltration in residual tumor, showing an increasingly worse prognosis as CD3 infiltration increases (P = 0.038). Hazard ratios
(HR) and 95%CI calculated according to Cox proportional hazard regression models.
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The transition between pre-NCT and post-NCT immune

cluster groups was unequally distributed, with more pa-

tients from group A (40.5%) and B (71.4%) evolving to

group Y (P = 0.05) when compared with cases included

in group C (18.8%). However, the prognostic relevance

of post-NCT immune cluster groups was apparently in-

dependent of the pre-NCT group (A, B or C) as sug-

gested by the stratified DFS analysis (P = 0.07; log-rank)

in which the deleterious prognostic impact of cluster Y

was observed among all pre-treatment clusters groups

(Figure 4C).

Expression of immune response mediators according to

immune cell infiltration profiles

In order to determine the functional basis of immune

cell infiltration profiles we analyzed the mRNA expres-

sion levels of IFNG, a marker of Th1 response, and IL10,

a Th2 mediator, by RT-qPCR in pre- and post-treatment

breast biopsies. IFNG expression, classified as high or

low (over or under the median value), was significantly

different between clusters (χ2, P = 0.025), with more

cases in clusters B and C showing high expression, while

most tumors (65%) included in cluster A had low IFNG

expression (Additional file 5: Figure S4A). IL10 expres-

sion showed a different pattern, with virtually no cases

of pre-NCT profile B showing a high level (P75) of IL10

expression (1/15 cluster B versus 13/43 cluster A-C;

Fisher’s exact test, P = 0.087) (Additional file 5: Figure

S4B-C). Mean expression levels were not significantly

different in any of the pre-treatment cluster groups

(Additional file 5: Figure S4D-E). High expression of

IFNG was also associated with pCR (30.4% versus 11.1%

pCR; P = 0.023), while the association was unclear for

low IL10 expression (P = 0.22) (Additional file 5: Figure

S4F-G). Taken together, these data suggest that cluster

group B might be characterized by a lower level of IL10

expression in the context of a high IFNG expression,

which is consistent with a dominant Th1 response

profile.

Discussion
Immune response in breast cancer has been recently rec-

ognized as a potential mechanism mediating tumor pro-

gression and response to treatment. Analysis of baseline

tumor infiltrating lymphocytes (TIL), a likely surrogate of

the immune balance in the tumor microenvironment, has

shown prognostic value in large clinical series of breast

cancer [11,17,37]. However, the contribution of the differ-

ent TIL subpopulations to the clinical and biological

behavior of the tumor is still unclear. Lymphocytic infiltra-

tion in breast tumor has also been shown to be a potent

predictive factor for response in patients undergoing NCT

for breast cancer [12,20], although further knowledge of

the detailed effects of chemotherapy on breast cancer im-

mune response is needed. In this work, we show that the

pre-treatment profile of immune cell subpopulations is

able to identify a highly responsive group of breast carcin-

omas characterized by a high CD4, CD68 and CD20 and a

low CD8 infiltration. We also analyze the effects of

chemotherapy on TIL subpopulations and the immune

profile of post-NCT residual tumor. Our results support

the prognostic impact of chemotherapy-mediated immune

changes and identify a high-risk post-NCT tumor immune

cell profile.

Although lymphocytic infiltration is emerging as a po-

tential prognostic factor in breast cancer, its evaluation

has not been standardized yet. In a large adjuvant series

of breast cancer, lymphocytic predominance was defined

as infiltration over 50% [11]. Other studies have used ei-

ther quantitative or semiquantitative methods [12] for

TIL evaluation with variable cut-points used to define

low and high lymphocytic infiltration. All these meth-

odological approaches depend on manual counting by a

pathologist, and are time-consuming and difficult to

standardize. Few groups have used computer-based

evaluation of breast cancer TIL infiltration, which is es-

pecially feasible when combined with IHC detection of

lymphocytes [12,38].

Our choice of an open-source software analysis of

digital images for quantifying breast cancer TIL and

CD68 was also undertaken to avoid inter-observer bias

and to favor the future standardization of TIL evalu-

ation. Evaluation of the whole sample, including both

the tumor and the peritumor stroma, further simplifies

image processing and is supported by previous results

showing that intratumoral and peritumoral lymphocytic

infiltration have a similar prognostic value [11,39]. The

results shown here for CD3, a pan-T cell marker, are

consistent with previous extensive data on the predictive

value for pCR of high TIL in breast cancer [12,20] and

the correlation of CD3 with manually-counted TIL [12],

thereby supporting the feasibility of an IHC-based auto-

mated method to evaluate lymphocytic infiltration in

breast cancer. The comparison of these results with the

Table 5 Comparison of immune cell subpopulations

between post-chemotherapy cluster groups (Y versus Z)

Cluster Y (post-CT) Cluster Z (post-CT)

Subpopulation Median SD Median SD P
a

CD3 (post-CT) 182.6 117.0 45.9 47.1 <10−6

CD4 (post-CT) 27.4 39.3 3.5 3.9 <10−6

CD8 (post-CT) 57.9 58.4 11.9 10.2 <10−6

CD20 (post-CT) 11.7 13.6 5.1 9.4 0.017

FOXP3 (post-CT) 12.6 28.5 4.2 9.4 0.026

CD68 (post-CT) 62.1 74.6 21.5 42.3 0.001
aMann–Whitney U-test. CT, chemotherapy; SD, standard deviation.
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HE-based morphological classification of lymphocyte in-

filtration also supports the value of computer-based

methods. However, extensive work is still needed to val-

idate and standardize these methods before introducing

them in the clinical setting.

Previous studies of TIL in breast cancers have ad-

dressed the prognostic or predictive relevance of individ-

ual immune cell subpopulations, showing mixed or

conflicting results. High CD3, CD20 [12] and CD8 in

the tumor have been variably identified or excluded as

predictive factors for pCR [13,25]. Other authors have

used definition of TIL ratios, such as CD8/CD4 [38] or

Foxp3/CD3 [40], as an alternative approach to better in-

tegrate the information provided by each TIL subpopula-

tion. Our evaluation was, instead, based on the

unsupervised hierarchical clustering of all subpopula-

tions across the whole group of patients. The underlying

assumptions of this strategy are the complexity of im-

mune balance in the tumor microenvironment and the

potential contribution of each immune cell subpopula-

tion to determine the immune response against the

tumor and the level of cooperation with chemotherapy

Table 6 Comparison of clinical and pathological characteristics of post-CT immune cell clusters (Y and Z) in BC patients

with residual tumor after NCT

Number = 71

Cluster Y Cluster Z P (χ2)

Characteristic Number % Number %

Menopausal status Postmenopausal 10 34.5 23 54.8 0.09

Premenopausal 19 65.5 19 45.2

Tumor type Ductal invasive 27 93.1 40 95.2 0.70

Lobular invasive 2 6.9 2 4.8

Others 0 0.0 0 0.0

Grade 3 (pre-CT) Grade 1-2 7 28.0 26 65.0 0.004

Grade 3 18 72.0 14 35.0

Grade 3 (residual tumor) Grade 1-2 15 51.7 29 74.4 0.053

Grade 3 14 48.3 10 25.6

HER2 HER2 negative 22 78.6 35 83.3 0.61

HER2 positive 6 21.4 7 16.7

Hormone-sensitivity Negative 12 42.9 7 16.7 0.016

Positive 16 57.1 35 83.3

IHC subtype HS 12 42.9 31 73.8 0.033

HS-HER2+ 4 14.3 4 9.5

HER2+ 2 7.1 3 7.1

Triple negative 10 35.7 4 9.5

cN2-3 (pre-CT) cN0-1 19 65.5 32 76.2 0.32

cN2-3 10 34.5 10 23.8

ypN ypN0 12 41.4 21 50.0 0.47

ypN+ 17 58.6 21 50.0

ypN2-3 ypN0-1 17 70.8 26 76.5 0.63

ypN2-3 7 29.2 8 23.5

cT3-4 (pre-CT) cT1-2 12 41.4 20 47.6 0.60

cT3-4 17 58.6 22 52.4

ypT ypT0/is 0 0.0 0 0.0 0.43

ypT1 10 34.5 9 21.4

ypT2 12 41.4 19 45.2

ypT3 4 13.8 11 26.2

ypT4 3 10.3 2 4.8

ypTx 0 0.0 1 2.4

BC, breast cancer; CT, chemotherapy; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry.
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effects. Our results support this type of approach and

allowed us to identify a subgroup of patients highly sen-

sitive to anthracyclines and taxanes NCT, independently

of grade or tumor subtype.

Cluster B pre-NCT group showed an extremely high re-

sponse to chemotherapy, with 58% of patients achieving a

pCR. This level of pCR for the responsive group is higher

than those reported by other groups using hematoxylin-

eosin methods [20], IHC-based manual counting [12,21]

or even immune-related signatures [41,42]. The character-

istics of this group (CD4 high, CD8 low, CD20 high and

CD68 high) are not totally coincident with previous re-

sults in the literature and require further explanation. For

a long time, cytotoxic CD8 lymphocytes have been consid-

ered the main mediators of tumor immune surveillance,

while CD4 lymphocytes either have not been evaluated or

have been associated with suppression of anti-tumor im-

mune response. De Nardo et al. showed experimental and

clinical data consistent with this paradigm in breast cancer

[38], although their analysis of the CD68/CD8 profile as a

predictor of pCR was based on fine-needle aspiration

(FNA) samples, in which stroma and immune-related

stromal components are usually underrepresented in

comparison with the core biopsy samples obtained from

patients in our series [43]. Other work has shown the

predominance of the CD4 population over CD8 in breast

cancer, and has suggested that CD8 cytotoxicity is min-

imal in untreated tumors [44]. Recent data also support a

more complex functional role of CD4 cells in breast can-

cer than considered before: extensive lymphocytic infiltra-

tion of breast cancer has been linked to increased CD4+

Th1 and Tfh populations, and is associated with better

survival and higher pCR rates [45]. Other work also sug-

gests that low CD4 counts in the tumor [46] or in periph-

eral blood [47] are a negative prognostic factor in early or

metastatic breast cancer. Finally, results might also differ

between adjuvant and neoadjuvant series, perhaps point-

ing to a potential interaction of the tumor immune profile

and its modulation by exposure to chemotherapy.

Changes induced by chemotherapy on breast cancer

lymphocytic subpopulations have received less attention

and contradictory data have been reported. Similarly to

our results, De Maria et al. found that increased TIL,

specifically CD8, associated with pCR. Ladoire et al.,

using a semiquantitative scoring of TILs, showed the as-

sociation of pCR with the disappearance of Foxp3 TIL;

similarly to our results, they did not find significant

NCT-induced changes on CD3 counts. However, they

did not observe changes in CD8 infiltrate, which was in-

creased after NCT in our series; no evaluation of CD4,

Figure 4 Association of pCR and prognosis with chemotherapy-induced changes on breast cancer immune cell subpopulations. A) significant
association of higher chemotherapy-related changes of CD3, CD4, CD20 and CD8 populations with pCR; chemotherapy-induced decrease of CD3, CD4 and
CD20 was significantly higher in those patients achieving pCR. Statistical analysis: Mann–Whitney U-test. *, P ≤0.05. B) Kaplan-Meier disease free and overall
survival curves according to chemotherapy-induced CD3 decrease (log-rank test). C) Kaplan-Meier showing the prognostic effect of post-chemotherapy
cluster group (Y-Z) among the three pre-treatment cluster groups (A-C), and supporting that the prognostic impact of post-treatment immune cell profile
was independent of the baseline immune cell cluster group (stratified log-rank test). pCR, pathological complete response.

García-Martínez et al. Breast Cancer Research 2014, 16:488 Page 13 of 17

http://breast-cancer-research.com/content/16/6/488



CD20 or CD68 was performed [13]. Reasons for these dis-

crepancies are unclear, but a contribution of the chemother-

apy schedule cannot be ruled out since immune effects

differ between different drugs [48] and most previous re-

ports used anthracyclines as the main treatment regimen

and the percentage of sequential anthracyclines and taxanes

was low (20% in the series from Ladoire versus 88% in ours).

Interestingly, a comprehensive analysis of the immune char-

acteristics of a small group of breast carcinomas also

showed an increase of CD8 and a decrease of CD4 and

CD20 lymphocytes after chemotherapy [44].

The analysis of the immune cell pattern in post-

chemotherapy residual breast cancer might provide a

better prognostic stratification of this poor prognosis

group, and contribute to identify subgroups of patients

amenable to therapeutic strategies targeting the tumor

immune response. The unsupervised clustering ap-

proach performed in patients without primary tumor

complete response was able to identify two clearly dif-

ferentiated prognostic groups (post-NCT clusters Y and

Z). Paradoxically, the post-NCT group with a higher

TIL presence (cluster group Y) showed a significantly

worse DFS. These findings might be at least partially ex-

plained by the presence of a predominant infiltration by

CD68, a macrophage marker previously associated with

tumor progression and distant recurrence [38,49], and

also with a trend to worse DFS in our series. The identi-

fication of these high-risk patients, especially in the

group with voluminous residual disease, might lead to

adjuvant immune treatments such as agents modulating

tumor associated macrophages. Our data might be seen

as opposite that of a recent report by Dieci et al. show-

ing that high TIL (as evaluated by HE) in post-NCT re-

sidual triple negative breast tumor is a predictor of good

prognosis [26]. However, given the sample size and the

high pCR of triple negative breast cancer (TNBC) pri-

mary tumor in our series, we only identified three pa-

tients with TNBC and residual tumor with high TIL

infiltration (defined as CD3 counts over percentile 75).

Our results showing that post-NCT immune cluster

groups are able to prognostically classify patients even

after stratifying by high CD3 counts suggest that TIL

subpopulation analysis might further refine the selec-

tion of high risk patients among those with high TIL in

non-TNBC residual tumor, but the characteristics of the

sample do not allow us to sustain the same conclusion

for TNBC with residual disease.

Our work has some limitations, the main one being the

limited sample size. This fact precluded a more extensive

analysis of the interactions between the immune response

profile and the tumor subtype. However, other work has

shown that prediction of pCR by immune-related signa-

tures is probably not confined to HER2 or triple negative

tumors and may also be reliable in luminal breast cancer

[42]. Our analysis of the immune profile of residual tumor

mainly includes hormone receptor-positive tumors (77%),

a group in which the prognostic impact of pathologic re-

sponse is limited [4] and in which a better prognostic

stratification is particularly needed. A second limitation is

the lack of standardization and external validation of our

computer-based method for immune cell evaluation and

the potential sampling bias induced by the use of tissue

microarrays instead of full sections, especially in the post-

chemotherapy setting. Finally, a third limitation common

to other TIL studies, is that the evaluation of tumor-

infiltrating immune cells is probably only an imperfect

surrogate of the type of immune response in the tumor

microenvironment. Besides methodological variability,

morphological and immunohistochemical data are diffi-

cult to understand functionally. Our results regarding

IFNG and IL10 expression should be considered merely

exploratory, and other experimental approaches, such as

detailed cytometry of functional subpopulations [44] or

immune mediators expression arrays [42], are warranted

to obtain further insights on the clinical relevance of

breast cancer immune balance. However, our finding of a

predominantly low IL10 expression combined with high

IFNG expression in the highly responsive cluster group B,

might be consistent with a high Th1/Th2 balance, a

known marker of an appropriate anti-tumor immune re-

sponse [50]. Although limited by the categorical analysis

and the lack of evaluation of other Th1/Th2 mediators,

these data, taken together with the results showing that

those patients with a larger immune modulation by NCT

also had a better response, might support the cooperation

of immune response with chemotherapy anti-tumor ef-

fects [10].

Conclusions
An IHC-based profile of immune cell subpopulations in

breast cancer is able to identify a group of tumors highly

sensitive to NCT. This morphometric approach seems

technically feasible and might be preferable to traditional

TIL evaluation. The study of chemotherapy-related im-

mune changes and the lymphocytic subpopulation profile

of post-NCT residual tumor also allows prognostic strati-

fication of this group of high-risk patients independently

of nodal residual disease. Further research of the mecha-

nisms underlying these findings may ease the pathway for

developing new immunity-targeted therapeutic strategies

in breast cancer patients.

Additional files

Additional file 1: Figure S1. Distribution of individual immune cell
populations in pre- and post-treatment breast cancer biopsies. A) pre-
chemotherapy distribution of immune cell populations (absolute counts/mm2).
B) post-chemotherapy distribution of immune cell populations (absolute
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counts/mm2). C) percentage distribution of immune cell populations in
pre- and post-treatment biopsies, showing a chemotherapy-induced inversion
of CD4/CD8 ratio and a decrease of CD20; percentages calculated over total
immune cell counts (CD4 +CD8+ CD20+ Foxp3 +CD68).

Additional file 2: Table S1. Distribution of TIL subpopulations according
to breast tumor characteristics. Table S2. Association of post-chemotherapy
immune cell infiltration with clinical and pathological characteristics.
Table S3. Association of post-chemotherapy immune cell subpopulations
with breast cancer disease-free (DFS) and overall survival (OS). Table S4.

Prognostic effect (DFS) of post-treatment immune infiltrate in residual
tumor according to tumor subtypes. Table S5. Association of HE-based
classification of lymphocyte infiltration and immunohistochemistry-based
assessment of CD3 and other immune cell subpopulations. Table S6.

Impact of chemotherapy-induced changes (high versus low) on pCR
(multivariate model including tumor phenotype).

Additional file 3: Figure S2. Relative contribution of CD4 and CD8
expression to pCR in public genomic datasets. A) distribution of cases
among the whole series (n = 1001 patients; genomic datasets: GSE 16446,
GSE 20194, GSE 20271, GSE 22093, GSE 23988, GSE 41998) according to
high or low expression of CD4 and CD8 (cut-point: median value); pCR
rates are shown for each subgroup. B) CD4 expression was associated
with pCR both in the CD8 low group (P = 0.0001) and in the high CD8
group (P = 0.05). C) significant association of pCR with CD8 was found
neither in the low CD4 group (P = 0.09) nor in the high CD4 expression
group. Statistical analysis: χ2 test. *, P ≤0.05. NS, non significant.

Additional file 4: Figure S3. Disease free and overall survival analysis of
post-NCT clusters (Y and Z) stratified by lymphocytic (CD3) infiltration.
Kaplan-Meier curves showing the prognostic impact of post-NCT
tumor-infiltrating immune cell profiles in tumors with low and high
lymphocytic infiltration (defined as CD3 under or over P75). The difference
was significant for DFS (P = 0.008; log-rank stratified by CD3 infiltration),
while only a trend was found for OS (P = 0.16; log-rank). Stratified Wilcoxon
test was significant both for DFS (P = 0.03) and OS (P = 0.03).

Additional file 5: Figure S4. Pre-chemotherapy IFNG and IL10
expression. A) pattern of IFNG level of expression (over or below the
median value) according to pre-NCT clusters (P = 0.025), B-C) pattern of
IL10 expression (P75) according to pre-NCT clusters (P = 0.116; A-C versus
B, P = 0.087). D) box-plot showing the level of IL10 expression among
pre-treatment cluster groups (A-C); expression levels normalized to lower
group (NS). E) level of IFNG expression according to pre-NCT cluster
group (NS). F) association of IFNG level of expression (over or below
median) with pCR (P = 0.023). G) association of IL10 expression (over or
below P75) with pCR (NS). Statistical analysis: Mann–Whitney U-test or
χ
2 test . NS, non significant. *, P ≤0.05.
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