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The clinical success of immunotherapy has revolutionized the treatment of cancer
patients, bringing renewed attention to tumor-infiltrating lymphocytes (TILs) of various
cancer types. Immune checkpoint blockade is effective in patients with mismatched repair
defects and high microsatellite instability (dMMR-MSI-H) in metastatic colorectal cancer
(CRC), leading the FDA to accelerate the approval of two programmed cell death 1 (PD-1)
blocking antibodies, pembrolizumab and nivolumab, for treatment of dMMR-MSI-H
cancers. In contrast, patients with proficient mismatch repair and low levels of
microsatellite stability or microsatellite instability (pMMR-MSI-L/MSS) typically have low
tumor-infiltrating lymphocytes and have shown unsatisfied responses to the immune
checkpoint inhibitor. Different TILs environments reflect different responses to
immunotherapy, highlighting the complexity of the underlying tumor-immune interaction.
Profiling of TILs fundamental Indication would shed light on the mechanisms of cancer-
immune evasion, thus providing opportunities for the development of novel therapeutic
strategies. In this review, we summarize phenotypic diversities of TILs and their
connections with prognosis in CRC and provide insights into the subsets-specific
nature of TILs with different MSI status. We also discuss current clinical immunotherapy
approaches based on TILs as well as promising directions for future expansion, and
highlight existing clinical data supporting its use.

Keywords: tumor-infiltrating lymphocytes, tertiary lymphoid structures, microsatellite instability, immunotherapy,
colorectal cancer
INTRODUCTION

Colorectal cancer (CRC) is a clinically common malignant tumor of the digestive system. According
to Global Cancer Statistics of 2020, there are approximately 1.9 million newly diagnosed CRC
patients and 935,000 CRC-related deaths, accounting for 10% of cancer cases and 9.4% of cancer-
related deaths worldwide (1). With deeper understanding of pathophysiology in colorectal cancer,
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the optimization of screening and the application of various
treatments have effectively improved the 5-year survival rate (2–
5). However, nearly 40% of patients with CRC end up relapsing,
with recurrent or advanced metastasis. As a result, extensive
researches are now being conducted to overcome the barriers to
relapse and resistance, and to explore more effective targets.

In the past decade immunotherapy has achieved impressive
success in eradicating malignant cells by harnessing the inherent
mechanisms of the host immune system, transforming the
therapeutic landscape for a variety of solid and hematological
malignancies (6, 7). Among cancer immunotherapy strategies,
immune checkpoint blockade has shown significant benefits. It is
the most thoroughly studied class of immunotherapy to date,
increasing the overall survival (OS) rates of patients with
advanced melanoma, non-small-cell lung cancer (NSCLC),
urothelial cancer (8–10). Immune checkpoint therapy
rejuvenates T cells and allows the adaptive immune system to
block immune escape caused by cascade activation of tumor-
specific immune checkpoints, such as those controlled by
programmed cell death protein (PD-1), programmed death-
ligand 1 (PD-L1) or cytotoxic T lymphocyte-associated protein
4 (CTLA-4) (11, 12). In the treatment of CRC, the PD-1
inhibitors pembrolizumab and nivolumab, which have been
approved by the Food and Drug Administration (FDA), led a
to durable response in patients with metastatic CRC that is
mismatch-repair-deficient (dMMR) and microsatellite
instability-high (MSI-H) (dMMR-MSI-H). Another inhibitor,
ipilimumab, a fully-humanized monoclonal antibody that
blocks CTLA-4, has also been approved by the FDA for
combination with nivolumab in patients with dMMR-MSI-H
CRC who have previously received chemotherapy.

According to The Cancer Genome Atlas Project’s CRC study
based on the array and sequencing technologies, CRC can be
classified into two main types: (1) ~ 16% hypermutated (>12
mutations per 106 DNA bases) cancers with dMMR-MSI-H
signature and (2) ~ 84% percent non-hypermutated (<8.24
mutations per 106 DNA bases) with mismatch-repair-
proficient (pMMR) and have low levels of microsatellite
instability (MSI-L) or microsatellite stable (MSS) (pMMR-MSI-
L/MSS) signature (13). Patients with pMMR-MSI-L/MSS have a
worse prognosis than dMMR-MSI-H (14), and show unsatisfied
responses to immune checkpoint inhibitors (ICIs) (15). In
general, pMMR-MSI-L/MSS have low TMB, are often poorly
infiltrated by TILs. Accumulating evidence has shown that tumor
mutation burden and tumor-infiltrating-lymphocytes (TILs)
correlate with ICIs response (16–18). Therefore, it is important
to understand the relationship between genetic heterogeneity
and the molecular level of TILs in CRC. In this review, we discuss
the accumulating evidence about the fundamental feature of TILs
and their prognostic value in the tumor micro-environment of
CRC. We also review the clinical development of immune
checkpoint inhibition in CRC and discuss the emerging clinical
therapies for targeting TILs. Collectively, this work clarifies some
aspects of TILs subsets discrepancy, which provides a scientific
basis for a better understanding of the excessive interactions
between immune cells and different genetic types of CRC.
Frontiers in Immunology | www.frontiersin.org 2
THE ROLE OF TILS IN ANTI-
TUMOR IMMUNITY

It is an increasing variety of investigations that support the
importance of tumor immune infiltration, including lymphocytes
[T cells, B cells, and natural killer (NK) cells], macrophages,
dendritic cells, and neutrophils, revealing a wide patient-patient
diversity (19, 20). For a long time in the past, colorectal cancer
was regarded as immunogenic and difficult to be treated
by immunotherapy. However, advances in the molecular
characterization of tumor-associated antigens defined by T cells
and methods for detecting antigen-specific T cell responses have
changed the scientific community’s view of this issue. Tumors with
microsatellite instability, including CRC, accumulate inserts and
deletions in DNA repeat sequences. About two-thirds of MSI
tumors are sporadic, and one-third are hereditary (Lynch
syndrome). The high mutational load and frequent frameshift
mutations in MSI tumors lead to the production of many
neoantigens recognized by the immune system, which can trigger
the lymphocytic infiltrates. Although a portion of TILs is composed
of immunosuppressant cells, these cells are specifically recruited
and/or directed by the tumor to maintain the immune-privileged
microenvironment. In contrast, some TILs reflect attempts by the
immune system to counter tumor responses (21, 22).

It is noteworthy that several studies have identified a broad
association among TILs, different histological characteristics of
cancer, disease-free survival (DFS), cancer-specific survival (CS)
and OS (23–26). A meta-analysis of 43 trials describing 21,015
CRC patients showed that high generalized tumor inflammatory
infiltrate was associated with good OS (hazard ratio (HR), 0.65;
95% confidence interval (95% CI, 0.54-0.77), CS (HR, 0.58; 95%
CI, 0.46-0.73) and DFS (HR, 0.72; 95% CI, 0.60–0.88) (27).
Similarly, Rozek et al. found that high TILs (HR = 0.76, 95% CI =
0.64 to 0.89, p < 0.001) was favorable prognostic factors for
specific and OS in colorectal cancer through a multivariate
analysis of 2,369 cases (28). However, the quantity and quality
can significantly vary among CRC patients within CRC different
MSI statue (29, 30). Next, we reviewed the association between
TILs and survival in patients with CRC and the characteristics of
major subsets of TILs in the literature with different MSI statue.
CD8+ CYTOTOXIC T CELLS

CD8+ cytotoxic T lymphocytes (CTLs), a key component of the
adaptive immune system, play an important role in immune
defense against intracellular pathogens such as viruses, bacteria
and tumors, which were regarded as a major driver of anti-tumor
immunity (31, 32). The cytotoxicity process is carried out by several
substances produced by CD8+ T cells, such as perforin, granzymes,
granulysin, Fas ligand, and tumor necrosis factor a (TNF-a) (33,
34). CD8+ CTLs mediates tumor rejection by recognizing tumor
antigens and directly kill transformed cells. Effector CD8+ T cells in
the tumor microenvironment generate Interleukin-2 (IL-2), IL-12
and Interferon-g (IFN-g), which enhance CD8+ CTLs, leading to
targeted tumor cell killing (35, 36).
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A recent study of most tumor-infiltrating immune cell
subtypes revealed that CD8+ T cells had the greatest impact on
patient survival (37). The role of CD8+ CTLs in prognosis was
first analyzed in a large cohort of CRC more than 10 years ago
(24, 32). Several studies have shown that elevated levels of CTLs
in the tumor microenvironment are associated with antitumor
effects and improved prognosis in various cancers (30, 38–40).
Moreover, tumors from the patient cohorts categorized by a high
or low density of immune infiltrate and presence or absence of
metastases revealed that adequate immune infiltration with
successful initiation and differentiation of CD8+ T cells is vital
for successful suppression of metastasis development (41).

Microsatellite instability is a good predictor of the prognosis
of colorectal cancer, and there is a close relationship between
microsatellite instability and the abundance of tumor-infiltrating
T-cells (Table 1). It is noteworthy that a study of automatic
image analysis on 768 colorectal cancers has identified the
density of T cell subsets in neoplastic epithelial areas was
positively correlated with MSI-H (39). In particular, several
immunohistochemistry studies have revealed an especially high
infiltration of intraepithelial activated CD8+ T cells within
microsatellite instability colorectal tumors (42–45). Dolcetti
et al. using immunohistochemistry found that there were many
cytotoxic infiltrating structures in tumor epithelial cells in MSI-
H patients. Moreover, granase B expression showed that these
Frontiers in Immunology | www.frontiersin.org 3
cytotoxic effects were more active in MSI-H tumors (5.3 ± 4.5 vs
0.6 ± 1.3, p < 0.001) (46). Similarly, in another study evaluating
the number of multiple immune cells in an in situ immune
response of 490 patients with CRC, the total density of cytotoxic
T cells was significantly higher in MSI samples than in MSS
samples. Interestingly, due to the importance of accurate
intratumoral localization of infiltrating immune cells, the study
also measured the density within the tumor glands
(intratumoral) or stroma. The group reported that MSI-H and
MSS patients showed similar stromal CD8+ T cell densities and
there was a significant increase in the density of CD8+ T cells
within the tumor glands in MSI patients, in both the core and
invasive margin of tumor (all p < 0.05) (47). The same conclusion
was also found in the study of Smedt et al., which identified high
numbers of intra-epithelial CD8+ cells in MSI compared with
MSS tumors (48, 49).
T HELPER CELLS

CD4+ helper T lymphocytes are mediators of cellular immunity
and play a key role in the activation of other immune cells, such
as B cells and cytotoxic T cells, modulating immune responses.
CD4+ helper T cells further differentiate into subsets with broad
functions characterized by cytokine secretion and effector
TABLE 1 | The association of tumor infiltrating lymphocytes with microsatellite stability status in colorectal cancer.

Author Markers Sample size
(dMMR-MSI-H |
pMMR-MSI-L/

MSS)

Disease
stage

TILs feature

Liu et al. (42) CD3, CD4,
CD8, CD56

167/163 I-IV dMMR group displayed higher CD8 cells (p < 0.01). CD56+ cells CD4+ cell than pMMR group (both
p < 0.05).

Flahec et al.
(43)

CD3, CD4,
CD8, CD20,
CD68, FOXP3

35/34 I-IV dMMR tumors have more numerous intraepithelial (CD3+, CD8+, FOXP3+) and stromal (CD8+)
lymphocytes

Michael-
Robinson
et al. (44)

CD3, CD8,
CD20

32/70 Duke’s
stage A-
D

TILs were most abundant in MSI-H colorectal cancers in which 23/32 (72%) scored as TILs positive.
Only 5/40 (12.5%) MSS tumours and 9/30 (30%) MSI-L cancers were TILs positive (p < 0.0001).

Phillips et al.
(45)

CD3, CD4,
CD8

26/138 NA MSI-H tumours showed significantly higher counts for CD3+ and CD8+ cells, but no differences were
found in CD4 counts.

Dolcetti et al.
(46)

CD3, CD4,
CD8, CD56

18/37 Duke’s
A-D

MSI cases carried significantly higher numbers of cytotoxic lymphocytes infiltrating within neoplastic
epithelial structures (p < 0.001)

Mlecnik et al.
(47)

CD8, CD20,
CD68, IL-17,
NKp46,
CD45RO

186/114 I-IV A significant increase in cytotoxic T cell, B cell in tumors from MSI patients. MSI tumors had higher
densities of Th1. The MSS patients showed a significantly increased Th17 infiltration in the core and
invasive margin of tumor (p < 0.05)

Smedt et al.
(48)

CD3, CD4,
CD8, CD20,
CD68

29/27 I-IV An increased number of tumor-infiltrating cytotoxic T-lymphocytes (CD8+) in MSI compared with MSS
tumors for both the tumor and peritumoral area. Quantification showed high numbers of intra-epithelial
CD3+, CD4+, CD8+, CD20+ and CD68+ cells in MSI compared with MSS cancers (all p <= 0.01).

Nestarenkaite
et al. (49)

CD8, CD20,
CD68

39/48 I-IV The CD8+ densities within tumor-stroma interface zone (IZ) and the intratumoral densities were higher
in MSI than in MSS tumors, whereas no differences in IZ and intratumoral CD20+ cell densities were
observed comparing MSI and MSS tumors

Gouvello et al.
(50)

IL-17 10/11 I-IV Higher tumoral expression of Foxp3, IL-17, IL1-beta, IL-6 and TGF-b was associated with the MSS
phenotype, and the IL-17 T/TN (colon cancers/autologous normal colon mucosa) ratio was higher in
MSS tissues than in MSI-H tissues.

Michel et al.
(51)

CD3, CD8,
FOXP3

37/33 I-IV and
NA

The elevated number of CD8+ lymphocytes found in MSI-H colorectal cancers is paralleled by an
enhanced infiltration with CD8- FOXP3+ cells
Th, T helper; Treg, regulatory T cell; dMMR-MSI-H, mismatch-repair-deficient and microsatellite instability-high; pMMR-MSI-L/MSS, mismatch-repair-proficient and microsatellite-stable
or have low levels of microsatellite instability; TILs, tumor infiltrating lymphocytes.
January 2022 | Volume 12 | Article 808964

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bai et al. Fundamental Indication of Tumor-Infiltrating Lymphocytes
function, including T helper 1 (Th1) cells, T helper 2 (Th2) cells,
T helper 17 (Th17) cells, follicular helper T (Tfh) cells (reviewed
in the later section) and regulatory T (Treg) cells.

The main effector function of Th1 cells lie in cell-mediated
immunity and inflammation, including the activation of other
immune cells such as macrophages, B cells and CD8+ CTLs lysis
and other effector functions, which play an important role in
clearing intracellular infection and assisting in killing tumor cells.
Th1 cells and their derived cytokines (e.g., IFN-g, TNF-a, etc.) are
strongly associated with good clinical outcomes in almost all
cancer types (21, 25, 41, 52). In contrast to the effects of Th1,
analysis of the effect of other CD4+ T cell subsets on clinical
outcomes has yielded apparent contradictory results, remaining a
matter of debate (Table 2). The prognostic effects of other T-helper
cell populations (Th2, Th17, and Treg cells) are also different across
cancer types and stages. Th2 cells are usually associated with
aggressive tumors, either by activating B cells or producing the
immunosuppressive cytokine IL-10 (55, 56, 86). However, it is not
a universal phenomenon. Multiple studies have shown that Th2
cells are associated with a good prognosis in Hodgkin’s lymphoma
(53) and breast cancer (54), but not in ovarian (55), gastric (57)
and pancreatic cancer (56). There were also conflicting results
regarding the role of Th17 cells, which are associated with poor
prognosis [e.g., NSCLC (62) and hepatocellular carcinoma (63)]
and improved survival [esophageal cancer (58), gastric cancer (59),
ovarian cancer (60), cervical cancer (61)]. Th17 cells recruitment
have been observed in a variety of malignancies in comparison
with normal tissue. On the one hand, the potential of Th17 cells to
transdifferentiate into a more immunosuppressive phenotype plays
a role in tumor immune evasion. IL-17 (a cytokine produced by
Th17 cells) cytokines are associated with increased vascular growth
and thus increase tumor growth and metastasis in some models.
On the other hand, Th17 cells recruit CTLs and dendritic cells to
the tumor site to promote tumor clearance, similar to their ability
to convert to a Th1 phenotype that secretes IFN-g under specific
environmental factors (87). The role of Th17 cells in cancer
progression appears to be highly dependent on the specific
tumor microenvironment. Harnessing this plasticity to control
them and improve anti-tumor responses may be a useful strategy
Frontiers in Immunology | www.frontiersin.org 4
for developing cancer immunotherapies. Treg cells can inhibit anti-
autoimmune reactions, and there are different subsets (including
thymic-derived Treg, peripheral Treg, etc.). Similarly, the role of
regulatory T cells has been a matter of debate for the past decade.
Curiel et al. first demonstrated a correlation of intratumoral Treg

cells and poor survival in ovarian cancer (70). However,
subsequent studies have reported inconsistent results, with Treg

cells having no effect on survival of anal squamous cell carcinoma
(67), glioma (68), and glioblastoma (69), while showing positive
effects on nasopharyngeal cancer (64), head and neck cancer (65),
and hematological malignancies (66).

A growing number of studies have investigated the
characteristics and prognostic potential of T helper cells in CRC
adaptive immune response (Table 1). A study conducted by Liu and
his colleagues showed that the dMMR group displayed much less
CD56+ cell, CD4+ cell andMHC class I expression (all p < 0.05) and
higher CD8 expression (p < 0.01) than the pMMR group. Besides, in
the dMMR group, low CD4 and CD56 expression were risk factors
for low MHC class I expression in the univariate model (42).
However, due to helper cells exhibiting a great diversity in
phenotype, identification of the T helper cell subsets in tumors
requires evaluation of some specific markers (including, but not
limited to, mRNA and key cytokines) in addition to CD4+. A study
of 52 patients with CRC showed that IL-17 was co-stained with
CD4 and CD68 by confocal microscopy analysis, which indicated
IL-17 in colorectal cancer was expressed by macrophage and Th17.
Compared to Treg cells, other T-helper cell subsets generally do not
express distinct surface markers. As a result, several studies have
assessed T helper cell abundance through gene expression profiles.
In 2013, Bindea et al. performedmicroarray expression experiments
in tumors from 105 CRC patients showed that CD8+ and Th1 were
associated with a good prognosis (DFS, HR < 1) (88), confirming
previous reports from the same group (24). In this report, Th17 cells
were also found to negatively influence the patient outcome (DFS,
HR > 1, p < 0.05). In a large study of 125 frozen colorectal tumor
specimens, immune-related genes indicated that patients with high
expression of the Th17 cluster had a poor prognosis, whereas
patients with high expression of the Th1 cluster had prolonged
disease-free survival. In contrast, their results did not support the
TABLE 2 | The association of different types of TILs with tumor prognosis.

The types of
TILs

Reference Prognosis Tumor types

CD8+ cell (30, 37–40) Good Colorectal cancer etc.
Th1 cell (21, 25, 41, 52) Good Colorectal cancer etc.
Th2 cell (53, 54) Good Hodgkin lymphoma; Breast cancer

(55–57) Poor Ovarian cancer; Pancreatic cancer; Gastric cancer
Th17 cell (58–61) Good Esophageal squamous cell carcinoma; Gastric adenocarcinoma; Ovarian cancer; Squamous cervical cancer

(62, 63) Poor Non-small cell lung cancer; Hepatocellular carcinoma
Treg cell (64–66) Good Nasopharyngeal carcinoma; Head and neck cancer; Urinary bladder cancer

(67–69) None Anal squamous cell carcinoma; Glioma; Glioblastomas
(70) Poor Ovarian carcinoma

NK cell (71–76) Good Metastatic prostate cancer; Non-small cell lung cancer; Colorectal cancer; Mantle cell lymphoma
(77, 78) Poor Infiltrating ductal carcinoma of breast; Digestive cancer

B cell (79–83) Good Hepatocellular carcinoma with lymphocytic infiltration; Melanoma; Ovarian cancer; Non-small cell lung cancer; Stage IB
cervical squamous cell carcinoma

(84, 85) Poor Ovarian cancer; Breast cancer
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primary role of Th2 cells in patient outcomes (52). Using single cell
RNA-seq, Zhang et al. (89) found that among CD4+ T cells, most
tumor-infiltrating Treg cells showed clonal exclusivity, while certain
Treg cell clones were associated with the development of several T
helper cells clones by single T cell transcriptome analysis (89).
Notably, two IFNG+ Th1-like cell clusters were also found in this
study, only CXCL13+ BHLHE40+ Th1-like cells were preferentially
enriched in patients with microsatellite-instable tumors.

Treg cell is characterized by high expression of CD25 and the
transcription factor fork head box protein P3 (FOXP3) (64, 90).
Using quantitative reverse transcription-PCR (qRT-PCR)
quantified for the expression of 15 markers of the immune
response, Cui et al. found that higher expression of FOXP3,
IL-17, IL1-b, IL-6 and TGF-b were associated with the MSS
phenotype (50). Moreover, a large study of 1,420 tumor samples
found a significantly higher amount of FOXP3+ tumor-
infiltrating Treg in pMMR CRC samples (38). This study also
observed an association between a high frequency of tumor-
infiltrating FOXP3+ Treg and improved survival in CRC patients,
which is in accordance with the results reported by Gunnarsson
et al. and Frey et al. (91, 92). In contrast, several studies have
challenged the characterization of Treg cells in CRC. In MSI-H
CRC, Michel et al. found a significant increase in intraepithelial
infiltration of FOXP3+ cells and in the ratio of intraepithelial to
stromal infiltration. Similarly, in another study, CD45RO+ and
FOXP3+ cell densities were significantly correlated with MSI-H
and the densities of CD8+, CD45RO+ and FOXP3+ cells were
significantly associated with patient survival in CRC (43). Given
the diversity of Treg populations observed in cancer, it is a great
challenge of studying T helper cell subpopulations in the context
of immunopathology.
NK CELLS

In recent years, the rapid and potent anti-tumor function of innate
immunity, which even occurs at a very early stage of tumor
progression, has attracted increasing attention. NK cells, as a
subset of innate lymphoid cells, are able to control tumor growth
as well as the initial stages of metastatic dissemination (93–95).
Unlike other lymphocytes (including B cells, T cells, and natural
killer T cells), NK cells do not express antigen-specific receptors
such as B cell receptor/T cell receptor or CD3. Instead, NK cells
possess cytotoxic abilities similar to CD8+ T cells, acting in an
antigen-independent manner in the adaptive immunity. In addition
to cytotoxic effects, NK cells have been reported to produce a large
number of cytokines similar to T cells, including IL-2 (96), IL-7 (97),
IL-15 (98), and IFN-g (99), to modulate adaptive immune responses
and participate in other related pathways. Despite many similarities,
compared with effector T cells, NK cells are more cytotoxic to
tumors, possess lower immunogenicity and respond to target cells
more quickly (100, 101). NK cells are highly heterogeneous,
characterized by the abundance of surface receptors. According to
surface CD56 expression, NK cells can be divided into 2
developmentally related, but functionally distinct, subsets:
CD56bright and CD56dim. CD56dim NK cells are comprise 80%–
Frontiers in Immunology | www.frontiersin.org 5
95% of peripheral blood NK cells, and are always also CD16+,
expressing high levels of KIR and LFA-1 and showing cell killing
ability (102). However, CD56bright NK cells are traditionally
considered ineffective antitumor responders that instead function
primarily in immunomodulation, which mainly secrete cytokines
such as IFN-g, TNF-b, and granulote-macrophage colony-
stimulating factor (GM-CSF) (103–105). Nevertheless, NK cells in
various tissues (106–108), even in the same organ and tissue (109),
have diverse features.

The specific role of NK cells, with the complexity of intrinsic
signaling pathways, remains controversial in distinct cancer
types (Table 2). Due to the complex and variable functional
status, NK cells were shown to vary survival and therapeutic
response in different types of cancer (71, 77, 78, 110–112). In
CRC, NK cells have been consistently associated with increased
survival in patients (72–76). It is noteworthy that CRC patients
with dMMR-MSI-H and pMMR-MSI-L/MSS also seem to
display different NK cell features (Table 1). The surface
markers of NK cells vary greatly and it is difficult to accurately
identify NK cell type by one or two simple molecules. However,
in many studies, NK cells have been detected using CD56 as a
phenotypic marker. Liu et al. assessed for the presence of NK cell
infiltration in CRC tissues using the expression of CD56, and
found that CD56+ cells were reduced in the dMMR group (p <
0.05) through immunohistochemical (42). In apparent contrast
with these observations, Mlecnik et al. quantified the number of
cells by detecting NKp46 and found no significant difference in
NK cells between MSI and MSS patients (47). The mechanism of
NK cells is complex and variable, and its actual role in the tumor
microenvironment remains to be further clarified.
B CELLS, TFH, AND TERTIARY
LYMPHOID STRUCTURES

Tumor-Infiltrating B Lymphocytes
B cells, with a variety of immune functions, are recognized as the
main effector cells of the humoral adaptive immune response.
However, TIBs can be observed in various solid tumors, but their
role in cancer remains controversial (Table 2). In HCC (79),
melanoma (80), high-grade serous ovarian cancer (81), NSCLC
(82) and stage IB cervical squamous cell carcinoma (83),
increased B cell count is associated with improved clinical
outcomes. However, in epithelial ovarian cancer (84) and
breast cancer (85), B cell infiltration is correlated with poor
prognosis. At present, studies on the prognostic potential of B
cells are limited. It is worth noting that most of the current
studies quantify TIBs by CD20. A recently reported systematic
review of TIBs into CRC showed that patients whose tumors
were highly infiltrated by CD20+ B lymphocytes had a
significantly improved DFS improvement DFS (HR = 0.45,
95% CI 0.28-0.73, p = 0.001). Moreover, the author also found
that CD20+ B lymphocytes were highly and positively associated
with CD8+ T lymphocytes (p < 0.001) (113). Interestingly, a
report demonstrated that an increase in the number of TIBs was
associated with improved clinical outcomes for CRC (88).
January 2022 | Volume 12 | Article 808964
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However, another report has given a complex interpretation of
the roles of TIBs in CRC (49). It was observed that CD8+ and
CD20+ immunogradient indicators, that reflect cell migration
towards the tumor, were associated with improved patient
survival, while the infiltrative tumor growth pattern was linked
to worse patient outcomes. In addition, this study also found that
high numbers of intra-epithelial CD20+ cells were observed in
MSI tumors compared with MSS tumors and MSS
colorectal tumors were characterized by elevated levels of
intratumoral CD20+.

Tfh and TLSs
Tfh cells, a T helper cells subset, are essential for the maturation
and activation of B cells, which are characterized by the expression
of CXCR5, an inducible T-cell co-stimulator. B cells, Tfh and
related pathways also maintain the structure and function of the
tertiary lymphoid structure. The interactions among Tfh cells, B
Frontiers in Immunology | www.frontiersin.org 6
cells and follicular dendritic cells are the basis of the adaptive
immune response, which results in B cells differentiating into
memory B cells and long-term surviving plasma cells. In addition,
B cells can infiltrate into tumors and affect tumor progression
through CXCL13 secreted by Tfh and follicular dendritic cells
(114, 115). B cells, Tfh and related pathways also maintain the
structure and function of the TLS. The current consensus is that
the Tfh cell and B cell axis within tumor-associated TLSs
contribute to the formation of anti-tumor immune structures
(116). TLSs are transient ectopic lymphoid organs that share
several structural and functional features with secondary
lymphoid organs (117), and consist of B cell follicle and T-cell-
rich areas that are sites for the differentiation of T cells and B cells
(118) (Figure 1). B cell follicle, composed of a core germinal centre
containing mostly B cells, but also Tfh cells, follicular DCs and
macrophages, surrounded by a ring of naive B cells; and a T-cell-
rich area, composed of clusters of T cells and mature DCs (119).
FIGURE 1 | The main tumor-infiltrating lymphocytes and tertiary lymphoid structures components in cancer. The schematic representation shows the features of the
immune contexture, including tumor-infiltrating lymphocytes and tertiary lymphoid structures (TLSs). TLSs are usually located in the invasive margin or in the stroma
rather than the tumor core. Tfh cells are the most important sources of CXCL13, induced TLSs formation. Th17 cells, B cells have been shown to be able to initiate
of TLSs genesis in various pathological contexts. The synergistic effect of CD8+ cytotoxic effector T cells and B cells, generated in TLS, enable to direct kill tumour
cell. Central memory B cells generated in TLSs protect against metastasis. TH, T helper cell; Treg, regulatory T cell; Tfh, follicular helper T; CTL, cytotoxic T cells; DC,
dendritic cell.
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There is increasing evidence that TLS is an effective modulator of
immune responses. TLSs are often [NSCLC (120), HER2+ breast
cancer (121), melanoma (122)], but not always [HCC (123)],
associated with favourable clinical outcomes in most types of
cancer. In local and metastatic CRCs, TLSs are associated with
improved survival and may represent activation of an adaptive
immune response to malignant cells (124, 125). In a cohort study
involving a consecutive series of 351 patients with stage II and III
colorectal cancer, the TLSs density and infiltration of patients with
stage II are correlated and coordinated to predict better patient
outcomes (126). In addition, the murine model showed an active
role of TLSs in the recruitment of lymphocytes to tumor areas.
Moreover, certain heterogeneities exist among TLSs from different
cancer types, locations and stages. Posch et al. performed a
comprehensive molecular, tissue, laboratory, and clinical analysis
of 109 patients with stage II/III CRC (127). TLSs were found to be
formed in most tumors and were more prevalent in CRC with MSI-
H and/or BRAF mutations. In addition, the authors also found that
TLSs maturation contained important prognostic information
about the risk of disease recurrence. In a recent report examing
the cellular composition and association with patients’ prognosis in
each TLSs, the authors reported that the densities of T helper cells
and macrophages in TLSs were significantly higher in relapsed
patients than in not-relapsed patients (p = 0.043 and p = 0.0076)
(128). Multivariate analysis also showed that a high proportion of T
helper cells was the most significant independent risk factor for
disease recurrence. In contrast, there is little data available regarding
Tfh cells supporting anti-tumor responses in CRC. A high
expression of Tfh and B cell genes was found strongly associated
with a good prognosis in CRC according to Bindea et al. (88). The
authors also found that Tfh and intrinsic cell density increased with
tumor progression. Obviously, there are clearly interesting
complexities to Tfh-associated biology in the context of cancer,
and the available data show that much more needs to be learned.
TILS AND IMMUNOTHERAPY

T-Cell-Based Immunotherapy
In CRC, T cell infiltration into the tumor has been associated with
good outcomes, and prevention of its exhaustion and apoptosis in
tumors is the goal of immunotherapy, especially immune
checkpoint inhibitors. ICIs target negative costimulation receptors
or their ligands of TCR signals, such as CTLA4, PD-1 and PD-L1, to
prevent tumor cells attenuate T-cell activation (129).

ICIs have shown very limited clinical activity in early studies of
CRC treatment (130, 131). In 2015, a phase II study investigated
the efficacy of pembrolizumab, a humanized IgG4 antibody
directed against surface-expressed PD-1, in three separate cohorts
of 41 patients with MSI-H and MSS CRC tumors, and MSI-H
tumors from other sites (non-CRC). Results showed that the
immune-related objective response rate was 40% (4 had a partial
response and 5 had the stable disease) with dMMR-MSI-H patients,
whereas there was no objective response in patients with MSS CRC.
Frontiers in Immunology | www.frontiersin.org 7
The median progression-free survival (PFS) and OS were not yet
reached in the dMMR-MSI-H cohort but were 2.2 months and
5.0 months, respectively, in the pMMR-MSI-L/MSS cohort (HR for
disease progression 0.10 (p < 0.001); HR for death 0.22 (p = 0.05)
(14). Similarly, another study of 53 patients treated with
pembrolizumab showed the benefit of immune checkpoint
blockade in dMMR-MSI-H tumors. The response rate was 50%
(95% CI 31–69%), and the disease control rate was 89% (25/28) in
the 28 patients with dMMR-MSI-H tumors. At 24 months, PFS was
61%, and OS was 66%. None of the 18 patients with pMMR-MSI-L/
MSS CRC responded and the disease control rate was 16% (4/25)
(132). On May 23, 2017, FDA approved pembrolizumab based on
the data from 149 patients (84% for colorectal cancer) for the
treatment of adult and pediatric patients with unresectable or
metastatic, dMMR-MSI-H solid tumors, regardless of tumor site
or histology (133) (Figure 2). In addition to pembrolizumab,
nivolumab, another PD-1 inhibitor, was tested in 74 patients with
dMMR-MSI-H metastatic colorectal cancer (134). At a median
follow-up duration of 12 months, the objective response rate was
31% (23/74), and in 69% (51/74) patients who had disease control
for 12 weeks or longer were observed. In July 2017, FDA expedited
approval of nivolumab for the second-line treatment of patients
with dMMR-MSI-H CRC.

Compared with patients with dMMR-MSI-H CRC,
immunotherapy alone has not shown a clinical benefit in patients
with pMMR-MSI-L/MSS CRC. As a result, alternative approaches
to immune modulation studies are ongoing. Tumor immune
microenvironment, as a critical obstacle to the development of
immunotherapy, has been studied with medications that have
immunomodulatory properties. Indomethacin 2,3-double
oxygenase 1 (IDO1) is an intracellular enzyme that can cause
tryptophan depletion, has been reported to play multiple roles in
cancer, including inhibiting T and NK cells, producing active Treg
and myeloid-derived suppressor cells and promoting tumor
angiogenesis (135). Kitsou et al. found that IDO1 was significantly
overexpressed in CRC and exhibited anticancer activity (136). In
murine intestinal adenomas cell-specific Stat1 deletion models, loss
of IDO1+ Paneth cells had profound effects on the intratumoral
immune cell composition. Moreover, the patient samples and
TCGA expression data supported corresponding cells in human
colorectal tumors, suggesting IDO1+ Paneth cells as a target for
immunotherapy (137). Epacadostat, an IDO1 inhibitor, was
planned to combinate with pimuzumab and azacytidine in the
MSS CRC study. However, this study has been terminated at an
early stage. Overall, the molecular of IDO1 inhibitor shows
promising anti-tumor potential.

With the knowledge in CRC biology improved, another
immunomodulatory strategy, the combination of MEK and
PD-L1 inhibition, was developed. In many preclinical studies,
inhibition of MEK, a downstream effector of the RAS-MAPK
pathway, was found to induce PD-L1 upregulation (138).
Preclinical data reported in 2016 showed that 4 of 23 patients
with CRC had a partial response, in which three patients had
confirmed pMMR-MSI-L (139). In addition, many clinical trials
are also studying the combination of MEK inhibitor with anti-
PD1 antibody and other chemotherapeutic drugs.
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The Emergence of Natural Killer Cells as a
Target in Cancer Immunotherapy
NK cells, as an important natural immune effector, are effector
lymphocytes that control several types of tumors and microbial
infections. In recent years, research on NK cell-related
immunotherapy has been developing vigorously, and a number of
NK cell-based therapeutic studies achieved favorable results. Recently,
several studies have shown that cytokine supplementation can
promote the development and cytotoxicity of NK cells. It has been
revealed that direct contact with membrane-bound IL-15 on adjacent
stromal cells could induce stronger cytotoxic effects in NK cells in the
mice model (140). In a humanmulticenter phase I study, NKTR-214,
a novel IL-2 pathway agonist, showed clinical activity including
tumor shrinkage and durable disease stabilization in heavily
pretreated patients (141). Moreover, in parallel with CD8+ T cells,
NK cells can also be suppressed by immune checkpoint molecules.
NKG2D, an essential receptor for the activation of NK cells, has been
reported to be upregulated by many ligands in tumor cells (142).
Andrade et al. designed antibodies targeting the MICA a3 domain
and found that these antibodies prevented human cancer cells from
loss of cell surface MICA and MICB (NKG2D ligands). In addition,
these antibodies inhibited tumor growth in multiple fully
immunocompetent mouse models and reduced human melanoma
metastases in a humanized mouse model (143). Monalizumab, a
clinically used antibody targeting NKG2A, has been developed to
promote NK cell function and has shown the potential to enhance the
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efficacy of anti-PD-1 therapy in MSS metastatic CRC (144). In
addition, other antibodies designed specifically for NK cells, such as
lirilumab, are also under clinical trials. Overall, a number of studies
have elucidated the possible mechanisms of NK cells, paving the way
for clinical research into NK cell-based cancer therapies, and
lighting up hope for patients currently resistant to T cell-
based immunotherapy.

B Cell-Based Cancer Immunotherapy
In addition to T and NK cells, the development of B cell-based
immunotherapy strategies may be effective. By bulk and single-cell
RNA sequencing, Helmink et al. observed significantly higher levels
of B-cell-related gene (such as MZB1, JCHAIN and IGLL5)
expression, increased BCR diversity, and clonal expansion in
tumor samples from melanoma patients who responded to ICB
treatment than patients who did not (145). Besides, a study of gene
expression profiles of 608 different subtypes of soft tissue sarcomas
found that B cells are the strongest prognostic factor even in the
context of high or low CD8+ T cells and cytotoxic contents (146).
Considering the relationship between B cells and patient prognosis,
enhancing anti-tumor B cell activity or may have an anti-tumor
effect. It has been established that TIL B cells support antitumor
immunity and promote immunotherapy responses by acting as
APCs, producing high-affinity antibodies and secreting antitumor
cytokines. Katoh et al. identified sulfated glycosaminoglycans as the
main functional B cell antigen and its natural antibodies showed
FIGURE 2 | Rationale for the current FDA-approved CRC immune checkpoint inhibitor strategies. TCR, T cell receptor; MHC, major histocompatibility complex;
CTLA4, cytotoxic T lymphocyte antigen 4; PD1, programmed cell death 1; PD-L1, programmed cell death 1 ligand 1.
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robust growth-suppressive functions against a wide variety of
human malignancies (147). Intra-tumoral injection of IL-12 was
also shown to activate B cells, leading to good outcomes in HNSCC
patients (148). Interestingly, Lu et al. found a subpopulation of B
cells, ICOSL+ B cells, in breast cancer patients who received
neoadjuvant chemotherapy. Moreover, using B-cell specific
deletion mice, ICOSL+ B cells were found to enhance anti-tumor
immunity by enhancing effects that modulate T cell proportions
(149). Over the past decade, a population of suppressor B cells,
regulatory B (Breg) cells, have been shown to play a pivotal role in
regulating immune responses involved in cancer. Schioppa et al.
identified a population of splenic IL-10 producing Breg cells
implicated in the suppression of CD8+ T cells, which promoted
papilloma development and cancer growth in a mouse model of
induced skin carcinogenesis (150). The presence of tumor-induced
Breg cells has also been reported. In a variety of tumor types, IL-21
induced Granzyme B-Expressing Breg cells has been found to
modulate cellular adaptive immune responses by promoting
tumor avoidance mechanisms against anti-tumor immune attack
(151). On the other hand, in PDAC mice models with KRAS-
mutations, IL35-producing B cells have been reported to play a
protumorigenic role, which could be inhibited by CD20 specific
monoclonal antibody (152). In advanced CRC, Rituximab, a
humanized monoclonal antibody targeting human CD20,
apparently reduced the tumor burden (153). All of the above
evidence points to the potential of B cell immunotherapy. In the
future, new immunotherapy strategies should focus on activating
TIL B cells, and how to exploit plasma B cells to promote
lymphocyte infiltration and stimulate cytotoxic T cell activation to
increase the antitumor immune response.
CONCLUSION

In recent years, significant achievements have been witnessed in
the field of CRC immunotherapy. CD8+ TILs are essential for an
effective anti-tumor immune response. Monoclonal antibodies
that block immune checkpoints to prevent T cell exhaustion and
promote tumor destruction by cytotoxic CD8+ T cells, have been
shown to be effective in mCRC patients with dMMR-MSI-H. In
2017, pembrolizumab was approved by the FDA for the
treatment of all dMMR-MSI-H metastatic solid tumors,
becoming the first biomarker-based cancer treatment regimen.
However, not all dMMR-MSI-H CRC cases respond to ICIs.
Compared with dMMR-MSI-H, pMMR-MSI-L/MSS, which
accounts for the majority of CRC with a lower mutation load,
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also shows an unsatisfactory response to ICIs. In tumors without
active immune responses, active induction of immune responses
by other immunotherapy methods may be required to achieve
tumor control in the vast majority of patients with pMMR-MSI-
L/MSS.

Increasing evidence supports the major role of infiltrating
immune cells, especially TILs, in tumor control. In addition to
CD8+ T cells, other TILs also have shown the potential in
immunotherapy. CD4+ T cells play a key role in enhancing
tumor control, both during effector T cell initiation and in the
tumor microenvironment. Vaccines designed to induce a CD4
response have shown significant promise in improving clinical
outcomes in subgroups of patients with melanoma and breast
cancer (154). While several early trials have yielded promising
data, further studies are needed to verify its safety and
effectiveness. Moreover, a growing number of studies have the
potential to improve our understanding of NK and B cells
antitumor functions, promising positive research in related
fields. With insights gained from trials based on NK and B
cells, novel therapeutic strategies will likely help to guide
clinicians towards a more personalized treatment for
CRC patients.

In conclusion, tumor-infiltrating lymphocytes play a
significant role in the tumor immune environment. As the
regulatory role of TILs in CRC continues to be elucidated, we
anticipate that personalized immunotherapy for CRC patients
will be realized, and these advances will further drive the clinical
success of immunotherapy.
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