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Abstract

Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment 

resistance1–4. This phenomenon has been implicated in chemorefractory small cell lung cancer 

(SCLC) and resistance to targeted therapies5–8, but remains incompletely defined. Here we 

identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in 

these cells. Stimulated 3 Prime Antisense Retroviral Coding Sequences (SPARCS) are oriented 

inversely in 3′UTRs of specific genes enriched for regulation by STAT1 and EZH2. De-repression 

of these loci results in dsRNA generation following IFNγ exposure due to bi-directional 

transcription from the STAT1-activated gene promoter and the 5′ LTR of the antisense ERV. 

Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, 

sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with 

MHC class 1 expression, mesenchymal markers, and downregulation of chromatin modifying 

enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals 

strong association with an AXL/MET positive mesenchymal cell state. While SPARCS high 

tumors are immune infiltrated, they also exhibit multiple features of an immune suppressed 

microenviroment. Together, these data unveil a subclass of ERVs whose de-repression triggers 

pathologic innate immune signaling in cancer, with important implications for cancer 

immunotherapy.

Resistant SCLC undergoes a mesenchymal state switch induced by RAS/MET signaling or 

chemotherapy (e.g. H69M or H69AR subpopulations derived from H69 cell line) 

(Supplementary Fig. 1a)9,10. We noted enhanced innate immune and RAS signaling in 

H69M cells, including elevated phosphorylated-TBK1 (pTBK1), pIRF3, IKKε and NF-κB 

gene sets, and multiple secreted cytokines/chemokines (Figs. 1a,b and Supplementary Fig. 

1b,c). TBK1 activity was preferentially increased in additional mesenchymal SCLC cell 

lines (Supplementary Fig. 1d, e), and subpopulations of human and murine RbL/L/p53L/L 

SCLC tumors (Fig. 1c and Supplementary Fig. 1f–h). Because H69M cells also attracted T 

cells and monocytes (Supplementary Fig. 2a–e), we explored immune checkpoint activation. 
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This identified a PD-L1high, CD44high fibroblastic subpopulation responsible for pTBK1 and 

cytokine/chemokine production (Fig. 1d–f and Supplementary Fig. 3a, b).

H69M PD-L1high cells reverted phenotypically in culture and were genomically similar to 

parental H69 cells (Supplementary Fig. 3c, d), suggesting an epigenetic mechanism of innate 

immune activation. Since endogenous retroviruses (ERVs) undergo epigenetic silencing, we 

examined expression of a recently described ERV panel11,12. H69M-PD-L1high cells 

exhibited marked upregulation of MLT1C49 (Fig. 1g), an ERV poised to generate dsRNA 

due to antisense orientation in the 3′UTR of TRIM22, a STAT1 target gene13. Transfection 

of a 3′UTR construct containing this antisense ERV was sufficient to induce cytokine and 

PD-L1 expression in H69M-PD-L1low cells (Fig. 1h and Supplementary Fig. 4a, b), and in 

293T cells (Supplementary Fig 4c). Conversely, siRNA mediated knockdown of MLT1C49 

partially inhibited CXCL10 and CCL2 expression in H69M-PD-L1high cells (Fig. 1i and 

Supplementary Fig. 4d), validating a direct role in this innate immune phenotype, but 

suggestive of redundancy.

We therefore intersected all antisense 3′UTR ERVs from Ref Seq with H69M upregulated 

genes (Supplementary Dataset 1)9, to identify additional ERV family members in this 

mesenchymal state with this unique genomic feature. This analysis identified TRIM22/

MLT1C49 and 14 other genes/ERVs including TRIM38 which contained two (MLT1J, 

MLT1A), the majority of which were specifically induced in H69M-PD-L1high cells (Fig. 1j 

and Supplementary Fig. 5a). Similar to TRIM22, many of these genes contained STAT1 

motifs and/or binding sites13,14 in their promoters (Supplementary Fig. 5b), which suggested 

inducibility by the IFNγ or other STAT1-activating factors already present in H69M 

conditioned media (Fig. 1b, f). Indeed, in contrast to H69 cells IFNγ stimulation of the 

additional mesenchymal subpopulation, H69AR, induced expression of most, but not all of 

these genes/ERVs, (Supplementary Fig 5c) validating a role for STAT1 mediated regulation. 

Conversely, IL32/THE1D and F3/MLT1I were inducible by IFNγ in H69AR cells, but not 

upregulated in H69M-PD-L1high cells (Fig. 1j and Supplementary Fig. 5a, c), suggesting 

some differences in transcriptional state between mesenchymal subclones. Regardless, these 

studies uncovered a wider set of genes with 3′ antisense ERVs preferentially expressed in 

the mesenchymal cell state and regulated by STAT1 signaling. Because of the unique ability 

of interferons to trigger their expression, create dsRNA via bidirectional transcription, and 

spark feed-forward innate immune signaling, we term these ERVs Stimulated 3 Prime 

Antisense Retroviral Coding Sequences (SPARCS).

ERV dsRNAs are sensed by the RIG-1/MDA5-MAVS signaling pathway or reverse-

transcribed and detected via the cGAS-cGAMP STING pathway15. Indeed, we observed 

STING upregulation and increased cytoplasmic MLT1C49 dsDNA in H69M PD-L1high cells 

(Supplementary Fig. 5d–f). MAVS or combined MAVS/STING deletion in H69M cells 

strongly impaired TBK1 and IRF3 phosphorylation (Fig. 1k), decreased multiple cytokines/

chemokines, including CXCL10, CCL5, and CCL2 (Fig. 1l, m) and suppressed T cell and 

monocyte attraction (Supplementary Fig. 6a, b). Deletion of MAVS and/or STING also 

reverted the mesenchymal phenotype, increasing E-cadherin and decreasing Vimentin 

expression (Fig. 1k and Supplementary Fig. 6c,d). Thus, ERV sensing of SPARCS directly 

contributes to this cellular state.
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IFNγ also induced robust PD-L1 expression in H69AR cells, suggesting that differential 

chromatin accessibility could underlie this responsiveness (Fig. 2a). Indeed, even a 10 min 

IFNγ pulse in H69AR, but not H69 cells, resulted in marked induction of TRIM22 and 

MLT1C49, correlating with PD-L1 mRNA and cytokine/chemokine secretion (Fig. 2b, c and 

Supplementary Fig. 7a, b). H69AR cells showed specific gain of chromatin accessibility 

around SPARCS loci, but not PD-L1, CXCL10 or CCL2 (Fig. 2d and Supplementary Fig. 

7c). Because H69M and H69AR cells downregulated EZH216 (Fig. 2e), we examined 

whether EZH2 is involved in silencing SPARCS. EZH2 inhibitor treatment of H69 cells over 

6 days enhanced similar IFNγ induced cytokines (Fig. 2f), and de-repressed the same 

SPARCS as in H69AR cells (Fig. 2g and Supplementary Fig. 7d). Thus, SPARCS loci are 

normally silenced and protected from IFN-induced expression by EZH2, but de-repressed in 

mesenchymal H69 subpopulations.

We next wondered if SPARCS promote positive feedback signal amplification. We detected 

high levels of dsRNA preferentially produced from MLT1C49, MLT1J and MLT1A in 10 

min IFNγ pulsed H69AR cells, even after 24 h (Fig. 2h). TAG-aided sense/antisense 

transcript detection (TASA-TD) PCR17 confirmed that dsRNA resulted from bidirectional 

transcription of MLT1C49, MLT1J, and MLT1A (Supplementary Fig. 8a). IFNγ pulse 

treatment activated and sustained pTBK1 and pIRF3 in addition to pSTAT1 in H69AR but 

not H69 cells (Fig. 2i), which further amplified SPARCS expression, pTBK1, and its 

effector cytokines over time (Fig. 2j and Supplementary Fig. 8b, c). Transfection of the 

dsRNA mimic Poly(I:C) induced type I/II IFNs in H69AR cells (Supplementary Fig. 8d) and 

direct IFNα/β exposure or Poly(I:C) itself induced SPARCS (Supplementary Fig. 8d, e), 

consistent with positive feedback induced by dsRNA and type I IFN. Furthermore, exposure 

of untreated H69AR cells to IFNγ primed conditioned medium activated TBK1 and STAT1 

and induced CXCL10, IFNβ and ERV expression (Supplementary Fig. 9a–d). These data 

confirmed feedforward signaling downstream of SPARCS activation (Supplementary Fig. 

9e). As expected, treatment with the JAK1/2 inhibitor Ruxolitinib disrupted this circuit, 

whereas TBK1/IKKε inhibition with MRT67307, partially inhibited downstream CXCL10 

expression (Supplementary Fig 9f–h). Finally, MAVS deletion also downregulated multiple 

cytokines/chemokines following Poly(I:C) or low dose IFNγ pulse treatment, especially 

when co-deleted with STING (Fig. 2k–m, Supplementary Fig. 9i, j), and impaired 

tumorigenicity in nude mice (Fig. 2n).

To determine the broader relevance of SPARCS and to begin to explore the relationship to 

immune contexture, we next ranked expression of a signature comprised of the 15 SPARCS-

containing genes across the Cancer Genome Atlas (TCGA) (Pancan12, n=3602 tumors)18 

using single sample gene set enrichment analysis (ssGSEA)19 (Fig. 3a and Supplementary 

Fig. 10 a, b). Top gene sets co-enriched with SPARCS-containing genes (p<0.01, 

FDR<0.01) included epigenetic, TNF/NF-κB, inflammation/innate immunity, and RTK/

KRAS signaling (Fig. 3a and Supplementary Dataset 2), also observed in the Cancer Cell 

Line Encyclopedia (CCLE) (Supplementary Fig. 11a and Supplementary Dataset 2). In 

contrast, none of these signatures correlated with a control gene set derived by intersecting 

3′ UTR antisense ERVs with H69M downregulated genes (Supplementary Fig. 11b and 

Supplementary Dataset 3). The SPARCS high state also co-associated with mutations on 
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chromosome 3p, including PBRM1 and SETD2, as well as oncogenic KRAS in CCLE 

(Supplementary Fig. 12a, b and Supplementary Dataset 4).

At the gene level, SPARCS-containing gene expression correlated with markers of T cell and 

myeloid infiltration uniquely in TCGA (Supplementary Fig. 12c and Supplementary Dataset 

2). In both CCLE and TCGA datasets SPARCS associated with expression of MHC, 

APOBEC, immune checkpoint, and EMT genes (Supplementary Fig. 12c, d and 

Supplementary Dataset 2). Expression of EZH2, DNMT3A, SETD2 and multiple SWI/SNF 

genes inversely correlated with SPARCS (Supplementary Fig. 12c, d and Supplementary 

Dataset 2). We next intersected the top 1000 genes from TCGA and CCLE, to isolate robust 

cancer cell autonomous genes co-regulated with SPARCS (Fig. 3b and Supplementary 

Dataset 5). This identified B2M as the top ranked gene, followed by multiple MHC class 1 

genes20, cytosolic RNA sensors. and antigen processing machinery, all markers of a virally 

infected state (Fig. 3b and Supplementary Dataset 5). TGFB1 and AXL were also top hits 

(Fig. 3b and Supplementary Dataset 5).

High expression of the SPARCS-containing gene signature in TCGA was enriched in 

distinct cancer histologies beyond SCLC, including clear cell renal (KIRC), lung 

adenocarcinoma (LUAD), head/neck squamous (HNSC), and glioblastoma (GBM) (Fig. 3c). 

SPARCShigh CCLE lines also included triple negative breast cancer (TNBC), and exhibited 

high relative expression of AXL, MET, VIM, TGFB1 and CD44, and low EZH2, SETD2 

and SWI/SNF component expression (Supplementary Fig. 13a and Supplementary Dataset 

6). SPARCShigh cell lines exhibited mesenchymal morphology and elevated AXL, MET and 

Vimentin relative to SPARCSlow cells (Fig. 3d and Supplementary Fig. 13b). Similar to the 

H69 model, SPARCShigh cells exhibited increased STING, but not MAVS levels (Fig. 3d 

and Supplementary Fig. 13a). IFNγ pulse treatment of SPARCShigh cells significantly 

induced MLT1C49, CXCL10 and PD-L1 expression relative to SPARCSlow cells, and 

inducible surface PD-L1 correlated with high baseline CD44 expression (Fig. 3e and 

Supplementary Fig. 14a).

We next used immune cell GSEA21 to assess whether certain immune infiltrates might be 

associated with elevated SPARCS-containing gene expression in TCGA (Fig. 4a). Despite 

markers of cytotoxic T cells and an adaptive immune response (AIR), the top associated 

signatures were innate immune response (IIR) and myeloid derived suppressor cells 

(MDSC), followed by neutrophils and macrophages (Fig. 4a). Grouping of TCGA tumors 

into discrete SPARCS high/low categories (Supplementary Fig. 14b), confirmed robust and 

significant association of SPARCShigh tumors with these signatures (Fig. 4b, c). Consistent 

with T cell and myeloid cell chemotaxis, CXCL10 and CCL2 gene expression in primary 

tumors was tightly associated with the SPARCShigh state (Fig. 4d and Supplementary 

Dataset 6). Thus, myeloid cell infiltration may further contribute to an immunosuppressed 

microenvironment in SPARCShigh tumors.

Finally, we utilized ex vivo culture of patient-derived organotypic tumor spheroids (PDOTS) 

with autologous tumor infiltrating lymphocytes22 to explore translational relevance of these 

findings. Using multiplexed immunofluorescence we confirmed T cell infiltration of two 

different KRAS mutant non-small lung cancer specimens (Fig. 4e), one with SPARCShigh 
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features including SETD2 inactivation and APOBEC mutation pattern (NSCLC-1), and the 

other with STK11/TP53 co-mutation (NSCLC-2) and T cell localization between tumor 

nests. IFNγ or Poly(I:C) treatment of NSCLC-1 PDOTS markedly enhanced production of 

multiple cytokines/chemokines, especially CXCL10, and sensitized them to ex vivo PD-1 

blockade with nivolumab, in contrast to NSCLC-2 (Fig. 4f–h and Supplementary Fig. 14c–

e). Thus, IFN signaling associated with the SPARCShigh state can be directly ascertained 

from patient samples and may promote sensitivity to PD-1 blockade.

Here we identify SPARCS as a novel subclass of ERVs silenced by EZH2 and poised to 

undergo positive feedback signal amplification due to antisense localization in 3′ UTRs of 

IFN stimulated genes. Whereas prior reports utilized DNMT inhibition to uncover ERVs 

more generally to induce a state of viral mimicry11,12, our data reveal that mesenchymal 

tumor subpopulations with high AXL/MET expression and low EZH2 levels trigger 

expression of a specific set of ERVs when exposed to IFNγ, with important implications for 

understanding tumor heterogeneity and oncogenesis. This SPARCS high state was also 

associated with downregulation of multiple SWI/SNF components and enriched in RCC, 

potentially contributing to the immunogenicity recently reported following PBRM1 

inactivation23,24. While SPARCS expression promotes MHC class 1 upregulation and T cell 

infiltration, activation of immune checkpoints and myeloid infiltration may promote tumor 

immune suppression, similar to a chronic virally infected state. Therapeutically, this may 

have important implications for drug combinations with PD-1 blockade. For example, in 

addition to blocking specific chromatin regulators23–25, therapies that hyperactivate JAK 

signaling26 or target TBK122,26 could alter SPARCS physiology to favor response.

Methods

Patients samples

SCLC and NSCLC human tumor samples were collected and analyzed according to Dana-

Farber/Harvard Cancer Center IRB-approved protocols. These studies were conducted 

according to the Declaration of Helsinki and approved by Dana-Farber and Brigham and 

Women’s Hospital IRBs.

Cell lines

The human SCLC cell lines NCI-H69, H69M, H69AR, NCI-H841, SHP77, NCI-H187, 

NCI-H345 and NCI-H524 were obtained from the laboratory of Dr. Joan Albanell and were 

authenticated following Short Tandem Repeat (STR) genotyping. Clear cell renal carcinoma 

(ccRCC) cell lines A704, A498, 786-O, 769-P and Caki-2 were obtained from the laboratory 

of Dr. William G. Kaelin Jr. and were authenticated following STR genotyping. HCC44 cell 

line was obtained from Broad Institute and was authenticated following STR genotyping. 

Jurkat T cells, THP-1 monocytes, NCI-H196, MDA-MB-231, HCC1143, MDA-MB-468, 

NCI-H522, T47D, MDA-MB-453, NCI-H1436, NCI-H2081 and 293T cells were obtained 

from the American Type Culture Collection (ATCC) (Rockville, MD) and used for all 

experiments before reaching 10 passages.
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H69, H69M, H69AR, H841, SHP77, H187, H345, H524, H196, HCC44, MDA-MB-231, 

MDA-MB-453, MDA-MB-468, T47D, HCC1143, H522, H1436, H2081, THP-1, Jurkat and 

769-P were cultured in RPMI-1640 (Thermo Fisher Scientific, #11875-119) containing 10% 

FBS (Gemini Bio-products, #100-106) and 1X pen-strep (Gemini Bio-products, #400-109). 

786-O, A498 and 293T were maintained in Dulbecco’s Modified Eagles Medium (DMEM) 

(Thermo Fisher Scientific, #11965-118) containing 10% FBS and 1X pen-strep. Caki-2 cells 

were maintained in McCoy’s 5A medium (Life Technologies #16600108) supplemented 

with 10% FBS and 1X Penicillin-Streptomycin. A704 cell lines was maintained in Eagle’s 

Minimum Essential Medium (EMEM) (Sigma, #M4780) supplemented with 2mM 

Glutamine (Life Technologies, #25030081), 1% Non Essential Amino Acids (NEAA) (Life 

Technologies, #11140-050), 1mM Sodium pyruvate (Life Technologies, #11360-070), 15% 

FBS and 1X Penicillin-Streptomycin.

Immunohistochemical staining

After deparaffinizing tissue blocks, antigen retrieval was achieved by wet autoclave (121 

degrees Celsius, 15 min) in Antigen Retrieval Solution, pH 9 (Dako, S2367) for p-TBK1. In 

order to block endogenous peroxide enzyme, tissue sections were incubated for 30 minutes 

using Peroxidase-Blocking Solution (Dako, S2023). Then, to block non-specific background 

staining, tissue sections were incubated for 20 minutes with Protein Block (Dako, X0909) 

(human tissue) or Mouse on Mouse blocking reagent (Vector Laboratories, MKB-2213) 

(mouse tissue). Primary antibody specific for pTBK1 (Cell Signaling Technology, 5483; 

1:50 dilution) was applied, and slides were incubated for 16 hours at 4°C. Visualization was 

achieved using EnVision™+/HRP, Rabbit (Dako, K4003) for pTBK1, followed by 

diaminobenzidine (Dako, K3468), and hematoxylin counterstain. Expression levels of 

pTBK1 were evaluated by two pathologists who were blinded to other data.

SCLC GEM model

All mouse experiments were conducted in accord with a Dana-Farber Cancer Institute 

Institutional Animal Care and Use Committee (IACUC) approved protocol. Primary tumor 

and metastasis tissue sections used in this study were from the genetically engineered mouse 

(GEM) model of SCLC consisting of the RbL/L/p53L/L allelic genotype 27. A total number 

of 24 slices of 1 mm thickness were collected providing a sufficient number to cover the 

lung volume. Tumor volume per animal was quantified using 3D Slicer by manual 

quantification of at least 8 consecutive axial image sequences. MRI was performed to follow 

tumor volume and weights were monitored bi-weekly. Mice were euthanized and lungs and 

livers were perfused with 10% formalin, stored in fixative overnight, and embedded in 

paraffin. For further staining with hematoxylin and eosin (H%E) and antibodies, sections of 

5 μm were cut.

Immunoblotting, antibodies and ELISA

Protein was isolated from cell lines and measured by BCA (Pierce Biotechnology). Protein 

extracts were subjected to polyacrylamide gel electrophoresis using the 4%–12% NuPAGE 

gel system (Invitrogen, Carlsbad, CA), transferred to PVDF (Millipore) membranes, and 

immunoblotted using antibodies that specifically recognize TBK1 (#3013), S172 pTBK1 

(#5483), pERK1/2 (#4370), ERK1/2 (#9107), S473 pAKT (#4060), AKT (#9272), S396 
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pIRF3 (#4947), IRF3 (#4302), Y701 pSTAT1 (#9171), STAT1 (#9172), AXL (#8661), 

EZH2 (#5246), STING (#13647), MAVS (#3993), E-Cadherin (#3195), Vimentin (#5741), 

β-Actin (#4970), Tubulin (#2144), Lamin A/C (#2032) (Cell Signaling Technologies, 

Danvers, MA) and IKKε (#I4907) (Sigma-Aldrich, St. Louis, MO).

Secondary antibodies were from LICOR Biosciences (Lincoln, NE): IRDye 800CW Goat 

anti-Mouse IgG (H + L) (#926-32210), IRDye 800CW Goat anti-Rabbit IgG (H + L) 

(#926-32211). LICOR blocking buffer (#927-40000) was used to dilute primary and 

secondary antibodies, with the exception of phosho-specific antibodies, which were diluted 

in HIKARI Signal Enhancer Solutions 1 and Solution 2 (Nacalai USA, Inc. # NU00101). 

Imaging of blots and quantitation of bands was performed using the LICOR Odyssey 

system.

Proteome Profiler™ Human Cytokine Array Kit (#ARY005B) and CXCL10 ELISA 

(#DIP100) (R&D Systems, Minneapolis, MN), were performed according to manufacturer’s 

instructions. For cytokine array, conditioned media (CM) from SCLC cells at basal 

conditions was collected after 48 and 72 hours. For CXCL10 ELISA, CM from IFN–γ 
pulsed cells was collected after 72 hours.

Microfluidic culture

Microfluidic device design and fabrication was performed as described 28, with 

modifications of device dimensions to accommodate larger volumes of media. DAX-1 3D 

cell culture chip (AIM Biotech, Singapore) was also used for select studies. H69, H69M and 

H69AR cell suspensions (2.5 × 104 cells) were pelleted and resuspended in type I rat tail 

collagen (Corning, Corning, NY) at a concentration of 2.5 mg/mL following addition of 10× 

PBS with phenol red with pH adjusted using NaOH. pH 7.0–7.5 confirmed using PANPEHA 

Whatman paper (Sigma-Aldrich, St. Louis, MO). The cell-collagen mixture was then 

injected into the center gel region of the 3D microfluidic culture device. Microfluidic culture 

devices were designed with a central region containing the cell-collagen mixture, surrounded 

by 2 media channels located on either side formed by bonding a coverslip to a patterned 

polydimethylsiloxane (PDMS) substrate. Collagen hydrogels containing cells were 

incubated 30 minutes at 37°C and then hydrated with media with or without 2.5 × 104 cells 

CFSE labeled Jurkat T cells and THP1 monocytes in the side media channels. Jurkat T cells 

or THP1 monocytes were labeled with the CFSE Cell Division Tracker Kit (BioLegend, San 

Diego, CA) following manufacturer’s instructions. Following 48 hours of incubation, images 

were captured on a Nikon Eclipse 80i fluorescence microscope equipped with Z-stack 

(Prior) and CoolSNAP CCD camera (Roper Scientific). Image capture and analysis was 

performed using NIS-Elements AR software package. Whole device images were achieved 

by stitching in multiple captures. Cell quantitation was performed by measuring total cell 

area of CFSE dye.

Flow cytometry analysis and cell sorting

Cells were stained with anti–PD-L1 (Biolegend, Cat# 329717), anti-CD44 (Biolegend, Cat# 

103011) or isotype IgG control antibodies (Biolegend, Cat# 400326 and Cat#400611), in 

PBS containing 2% FBS for analysis and cell sorting. Briefly, cells were washed and further 
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incubated with the indicated antibodies at 2 μg/mL. After 3 washes with PBS, cells were 

resuspended in PBS containing 2% FBS and analyzed on BD FACSCanto II or sorted to 

>95% purity using a BD FACSAria II. Levels were compared with isotype control 

antibodies. PD-L1 and CD44 mean fluorescence intensity (MFI) was normalized to isotype 

control. The data analyses were performed with FlowJo software (TreeStar).

Cytokine profiling

Multiplex assays were performed utilizing the bead-based immunoassay approach Bio-Plex 

Pro™ Human Cytokine 40-plex Assay (Cat# 171AK99MR2) on a Bio-plex 200 system 

(Cat# 171000201) (Bio-Rad Laboratories, Hercules, CA) and the Human Cytokine/

Chemokine Maganetic Bead Panel (Cat# HCYTMAG-60K-PX30) on a Luminex MAGPIX 

system (Merck Millipore, Billerica, MA). Conditioned media concentration levels [pg/ml] of 

each protein were derived from 5- parameter curve fitting models. Fold changes relative to 

the corresponding control were calculated and plotted as log2FC. Lower and upper limits of 

quantitation (LLOQ/ULOQ) were imputed from standard curves for cytokines above or 

below detection.

Quantitative RT-PCR

Total cellular RNA was extracted using the miRNeasy Mini Kit (Qiagen, Hilden, Germany) 

according to manufacturer’s instructions. After extraction, 1 μg total RNA was used to 

generate cDNA with the SuperScript III First-Strand Synthesis SuperMix for qRT-PCR kit, 

which includes both oligo-dT and random primers (Thermo Fisher Scientific, Waltham, 

MA). Quantitative reverse transcription PCR (qRT-PCR) of the indicated genes 

(Supplementary Dataset 7) was performed using SYBR green PCR Master Mix (Applied 

Biosystems, Foster City, CA) and the Applied Biosystems 7300 Fast real-time PCR system 

and software. The relative expression was normalized with the expression of the 

housekeeping gene 36B4. The sequences of primers used have been listed in Supplementary 

Dataset 7.

Nuclear/cytoplasmic fractionation and DNA purification

Nuclear/cytoplasmic fractions from H69M PD-L1low and H69M PD-L1high cells were 

obtained according to the manufacturer’s instructions (Nuclear/Cytosol Fractionation Kit, 

#K266-25, BioVision). Cleared extracts were treated with 20 mg/mL RNase A (Qiagen) for 

30 minutes at 37ºC, 20 mg/mL Proteinase K (Thermo Fisher Scientific, Waltham, MA) for 1 

hour at 55ºC and then extracted with phenol:chloroform (Invitrogen, Carlsbad, CA). DNA 

was isopropanol precipitated, washed with 70% Ethanol, air-dried and resuspended in water.

Digital droplet PCR

PCR reactions (25 μl) that comprised ddPCR™ Supermix for Probes, custom-made Taqman 

primer/probe mix and appropriate DNA template were prepared in a 96-well PCR plate and 

subsequently loaded onto the Automated Droplet Generator (Bio-Rad). After droplet 

generation, the new 96-well PCR plate was heat-sealed, placed on a conventional thermal 

cycler, and amplified to the end-point. After PCR, the 96-well PCR plate was read on the 

QX100 droplet reader (Bio-Rad). Analysis of the ddPCR data was performed with 
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QuantaSoft analysis software (Bio-Rad) that accompanied the droplet reader. The sequences 

of primers used have been listed in Supplementary Dataset 7.

ERV over-expression and knockdown

The 3′UTR TRIM22 region including the antisense MLT1C49 ERV was amplified with 

PCR from H69M cells RNA and cloned into pLX_307 vector. H69M PD-L1low cells were 

transfected by nucleofection (Amaxa™ 4D-Nucleofector X Unit) according to the 

manufacturer’s instructions (Lonza, Basel, Switzerland). RNA was isolated after 24 hours 

and conditioned media after 72 hours post-nucleofection with this construct versus pLX 

307-GFP. 293T cells, which lack STING, were transduced with these same constructs using 

X-treme Gene 9 (Roche, Basel, Switzerland) according to the manufacturer’s instructions, 

followed by isolation of both RNA and conditioned media after 72 hours to maximize 

sensitivity.

For knockdown experiments, H69M PD-L1high cells were transfected with a scrambled 

negative control siRNA or two siRNAs targeting MLT1C49 (each 40nM) using 

Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific, Waltham, MA). RNA was 

isolated after 72h post-transfection to ensure knockdown.

CRISPR-Cas9 gene editing and lentiviral infection

Oligonucleotides coding for guide RNAs that target STING and MAVS genes were chosen 

from the Avana library and the Brunello library 29. A non-targeting sgRNA from the Gecko 

library v2 was used as a dummy sgRNA for control 30. Lenti CRISPRv2 vectors were cloned 

as previously described 30,31. sgRNA target sequences are described on Supplementary 

Dataset 7.

293T cells were transduced with lentiCRISPRv2 using X-treme Gene 9 (Roche, Basel, 

Switzerland) according to the manufacturer’s instructions. On day 2, target cells were 

seeded, and allowed to adhere overnight. On day 3 the supernatant of transduced 293T cells 

was collected and added to the target cells through a 0.45 μm filter. Supernatant from 

transduced 293T cells was again collected and added to target cells on day 4. On day 5, 

puromycin or blasticidin was added to select infected cells (for four days).

Compounds and treatments

Recombinant human IFN-γ (#285-IF) IFN-α (#11100-1) and IFN-β (#8499-IF) proteins 

were purchased from R&D Systems (Minneapolis, MN) and reconstituted in sterile, 

deionized water. MRT67307 and Ruxolitinib were synthesized and purchased from Shanghai 

Haoyuan Chemexpress Co. Both drugs were reconstituted at 10 mM in DMSO and stored at 

−20ºC. GSK126 (#S7061) was purchased from Selleck chemicals (Houston, TX) and 

reconstituted at 5 mM in DMSO and stored at −20ºC.

For IFN pulse experiments, cells were pulsed 10 minutes with IFN–γ (200 ng/mL or 10 ng/

mL), IFN-α (10 000 U/mL) or IFN-β (10 000 U/mL), extensively washed, and chased in 

fresh media for an additional 24, 48 or 72 hours. To test drug effects on gene expression or 
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protein secretion, IFN–γ pulsed H69AR cells were treated with DMSO, 1μM MRT67307 or 

100 nM Ruxolitinib for 24, 48 and 72 hours.

For EZH2 inhibition experiments, H69 cells were treated with 5 μM GSK126 for 6 days. 

Drug was replenished every 3 days with both suspension and adherent cells carried each 

time. After the GSK126 treatment period, equal numbers of DMSO-treated and GSK126-

treated cells were exposed to either H2O or 200 ng/mL IFN-γ for 24 hours before harvesting 

of RNA or conditioned media (CM).

dsRNA enrichment

For dsRNA enrichment, RNA was first treated or not for 30 min with 50 μg/ml RNase A 

(Qiagen, Hilden, Germany) in high-salt concentration (NaCl, 0.35 M) to prevent dsRNA 

degradation. After treatment, RNase A was removed by ethanol precipitation and the 

product was resuspended in sterile water. Next, RNase A-treated RNA was 

immunoprecipitated (IP) using the J2 dsRNA-specific antibody (English and Scientific 

Consulting Kft, Szirák, Hungary). In brief, the product of 9 μg of RNase A-treated RNA was 

incubated in binding buffer (150 mM NaCl, 50 mM TRIS pH8.0, 1 mM EDTA, 1% NP-40) 

with 5 μg of J2 antibody rotating overnight at 4°C. J2-bound dsRNA was incubated in biding 

buffer with 25 μL of Dynabeads Protein G (Thermo Fisher Scientific, Waltham, MA) for 4 

hours at 4°C, followed by 5 washes in cold binding buffer. RNA was then extracted with 

TRIzol Reagent and expression levels of indicated genes were analyzed by qRT-PCR.

Enrichment of dsRNA over ssRNA was then calculated by normalizing the delta Ct of ERVs 

(dsRNA) against beta-actin (ssRNA).

First strand cDNA synthesis and strand specific PCR for detection of sense and antisense 

ERV transcripts using TASA-TD methodology

Components from the SuperScript III First-Strand Synthesis System for RT-PCR (Thermo 

Fisher Scientific, Waltham, MA) were adapted to perform reverse transcription with RNA 

from H69AR previously pulsed with IFN–γ 10 minutes. For first strand cDNA synthesis 

400 ng RNA was used for β-actin, MLT1C49, MLT1A and MLT1J. 1μM of a gene specific 

primer ligated to a TAG-sequence not specific for the human genome (GSP sense/antisense 

(RT) TAG) was implemented in the reaction. RNA and primers were preheated at 65°C for 

5min. For the total reaction: the GSP-TAG, 0.5mM dNTP, 5mM MgCl2, 10mM DTT, 40U 

RNaseOUT, 100U SuperScriptIII® RT and 240ng Actinomycin D (Sigma-Aldrich, St. 

Louis, MO) were added with the RNA for a 20μl reaction. Synthesis was performed at 50°C 

for 50 min and terminated at 85°C for 5 min. RT with extremely low intrinsic RNase H 

activity (for cleavage of RNA from RNA/DNA duplexes) and Actinomycin D was added to 

prevent second strand cDNA RT resulting in antisense artifacts 32. After cDNA synthesis 2U 

recombinant RNase H was added to each reaction and incubated 20 min at 37°C. Finally, the 

first strand cDNA mix was ethanol precipitated and resuspended in 10 μl sterile water. 

Afterwards gene and strand specific qRT-PCR was performed using SYBR green PCR 

Master Mix. To amplify sense cDNA and antisense cDNA a TAG-primer and GSP sense-

primer and a TAG-primer and GSP antisense-primer were used, respectively. We performed 

sense and antisense specific qRT-PCR using both sense and antisense cDNA of beta-actin as 
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an internal negative control that was previously demonstrated to have no antisense transcript 
33. The sequences of primers used have been listed in Supplementary Dataset 7.

Poly(I:C) treatment

For Poly(I:C) dsRNA treatment experiments, H69ARsgCTRL and H69ARsgMAVS cells 

were plated in RPMI media, transfected with 0.5 μg/mL Poly(I:C) HMW (InvivoGen, Sand 

Diego, CA) using XtremeGene HP transfection reagent (Sigma-Aldrich, St. Louis, MO) and 

cultured for 72 hours. On day 3 after transfection, conditioned media was recovered and 

CXCL10 protein expression was quantified using Human CXCL10/IP-10 Quantikine ELISA 

kit (R&D Systems, Minneapolis, MN). RNA was extracted and expression levels of relevant 

genes were analyzed by qRT-PCR.

Xenograft studies

H69AR xenograft model was established by subcutaneous (s.c.) injection of 2.5 × 105 

sgCTRL or sgMAVS-H69AR cells in matrigel (Corning, Corning, NY) into the flank of 

nude mice (Charles River Laboratories, Wilmington, MA). Tumor volume was determined 

from caliper measurements of tumor length (L) and width (W) according to the formula L × 

W2/2. Both tumor size and body weight were measured three times per week.

Multiplexed Immunofluorescence

Multiplex Immunofluorescent staining was performed overnight for approximately 12 hours 

on BOND RX fully automated stainers (Leica Biosystems) as previously described 34. 

Briefly, tissue sections of 5-μm thick FFPE were baked for 3 hours at 60°C before loading 

into the BOND RX. Slides were deparaffinized (BOND DeWax Solution, Leica Biosystems) 

and rehydrated with series of graded ethanol to deionized water. Antigen retrieval was 

performed in BOND Epitope Retrieval Solution 1 (ER1, Leica Biosystems) at pH 6 for 10 

minutes at 98°C. Deparaffinization, rehydration and antigen retrieval were all 

preprogrammed and executed by the BOND RX. Next, slides were serially stained with 

primary antibodies, such as anti-CD8 (clone C8/144B; DAKO, dilution 1:5000). Incubation 

time per primary antibody was 40 minutes. Subsequently, anti-rabbit Polymeric Horseradish 

Peroxidase (Poly-HRP, BOND Polymer Refine Detection Kit, Leica Biosystems) was 

applied as a secondary label with an incubation time of 10 minutes. Signal for antibody 

complexes was labeled and visualized by their corresponding Opal Fluorophore Reagents 

(PerkinElmer) by incubating the slides for 5 minutes. The same process was repeated for the 

following antibodies / fluorescent dyes. Slides were air dried, mounted with Prolong 

Diamond Anti-fade mounting medium (#P36965, Life Technologies) and stored in a light-

proof box at 4 °C prior to imaging. The target antigens, antibody clones, and dilutions for 

markers included in this report and details of controls are listed in Supplementary Table 1.

Image acquisition and analysis—Image acquisition was performed using the Mantra 

multispectral imaging platform (Vectra 3, PerkinElmer, Hopkinton, MA) as previously 

described 34. Areas with non-tumor or residual normal tissue (i.e. residual lymph node) were 

excluded from the analysis. Representative regions of interest were chosen by the 

pathologist, and 5–7 fields of view (FOVs) were acquired at 20× resolution as multispectral 
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images. Image Analysis was performed using the Inform 2.3 Image Analysis Software 

(PerkinElmer, Hopkinton, MA).

Ex vivo culture of patient-derived organotypic tumor spheroids (PDOTS)

PDOTS from human NSCLC resection specimens were generating according to our recent 

publication22. Briefly, fresh tumor specimens were minced and resuspended in media with 

collagenase type IV (Life Technologies, Carlsbad, CA). After digestion, samples were 

strained over 100 μm filter and 40 μm filters to generate S1 (>100 μm), S2 (40–100 μm), and 

S3 (<40 μm) spheroid fractions. S2 spheroid fraction was pelleted and resuspended in type I 

rat tail collagen (Corning, Corning, NY) at a concentration of 2.5 mg/mL. The spheroid-

collagen mixture was then injected into the center gel region of the 3D microfluidic culture 

device. Collagen hydrogels containing PDOTS were hydrated with media and treated with 

anti-PD-1 (Nivolumab, 100 μg/mL), IFNγ (200 ng/mL), Poly (I:C) (0.5 μg/mL) or 

combination (Nivolumab + IFNγ, Nivolumab + Poly (I:C)). The number of Live/Dead cells 

in each treatment condition was determined by Trypan Blue Exclusion method and plotted 

as percentage of viability. Nivolumab (Opdivo; Bristol-Myers Squibb) was obtained from 

the DFCI pharmacy.

OncoPanel assay

Somatic mutations, copy number variations and structural variants in parental H69 cells and 

H69M-PD-L1low/H69M-PD-L1high subpopulations were evaluated by performing the 

OncoPanel assay from the Center for Advanced Molecular Diagnostics from Brighman and 

Women’s Hospital.

This OncoPanel assay surveys exonic DNA sequences of 300 cancer genes and 113 introns 

across 35 genes for rearrangement detection. DNA was isolated from cell lines and analyzed 

by massively parallel sequencing using a solution-phase Agilent SureSelect hybrid capture 

kit and an Illumina HiSeq 2500 sequencer.

The 300 genes are listed in Supplementary Dataset 8.

Genomic analysis and SPARCS gene set derivation

The H69 vs H69M expression microarray data analyzed in this study were obtained from the 

publicly available dataset GSE451209. The list of 452 top genes upregulated and 

downregulated in H69M versus H69 is available in Supplementary Dataset 1.

ChIP-seq data for STAT1 and IRF1 data on CD14+ monocytes were retrieved from GEO 

database (GSE43036). Replicates data for each ChIP were aggregated into a single wiggle 

file and visualized in IGV genome browser at the locus of TRIM22 gene35.

For SPARCS gene set derivation, genomic coordinates of all 3′UTR from NCBI RefSeq 

transcripts were intersected with all repeat elements that are 50bp or longer and have its 

family name containing a string ‘ERV’ from UCSC Repeat Masker. Those 5880 3′UTRs 

that overlap with any ERVs were collapsed to the gene level (Supplementary Dataset 1). 

Those 1,080 unique genes were further used to find overlaps with differentially expressed 

gene from an analysis comparing H69M vs H69. Of 452 significantly upregulated genes 
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(adjP<1E–4 and logFC>2) in H69M, 22 genes were found overlapped (Supplementary 

Dataset 1). From this list of 22 overlapping genes, we manually curated them using a UCSC 

genome browser (https://genome.ucsc.edu). Of the 22 ERVs, 15 of these were encoded in 

antisense orientation which were chose for further studies.

As we identified only 86 genes at the same threshold, the same number of genes (452) most 

significantly downregulated genes at logFC<1 were used to find overlaps with the genes 

containing ERV in its 3′ UTR (25 genes) (Supplementary Dataset 1).

SPARCS gene set enrichment analysis

The resulting list of SPARCS genes were used to perform ssGSEA analysis36 of 585 

carcinoma samples across CCLE (www.broadinstitute.org/CCLE) or 3219 samples from 

TCGA18 RNAseq datasets. In brief, in ssGSEA, gene expression values are first rank-

normalized ranked by their absolute expression, followed by calculation of an enrichment 

score (ES) of individual samples derived by evaluating the differences in the Empirical 

Cumulative Distribution Functions (ECDF) of the genes in the gene set (in this case the 

SPARCS gene set) relative to the remaining genes. A positive ES denotes significant overlap 

of the gene set with groups of genes at the top of the ranked list, while a negative ES denotes 

a significant overlap of the signature gene set with groups of genes at the bottom of the 

ranked list. These resulting ssGSEA scores for individual samples across CCLE or TCGA 

datasets were then sorted from highest to lowest and used to identify top genomic features 

associated with respective datasets. These included genes, mutations/copy number variations 

and pathways (MsigDB database). To quantify the degree of association, an information-

theoretic measure of Information Coefficient (IC)19 was calculated and an empirical 

permutation test for statistical significance calculations. The top 1000 genomic features 

significantly associated with the SPARCS signature are depicted in the heatmap.

ATAC-sequencing and analysis

We performed ATAC sequencing on H69 and H69AR cells according to 37. Briefly, we 

sorted 40–50,000 cells per biological replicate, which were then washed once in cold PBS 

and lysed in 50μL cold lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 

0.1% IGEPAL CA-630). Lysed nuclei were incubated in Tn5 transposition reaction mix and 

purified using MinElute Reaction Cleanup kit (Qiagen). ATAC-seq fragments from one set 

of replicates for H69 and H69AR cells were size selected for fragments between 115 and 

600 bp using Pippin Prep 2% Agarose Gel Cassettes and the Pippin Prep DNA Size 

Selection System (Sage Science). Post size-selection, ATAC libraries were amplified and 

Nextera sequencing primers ligated using Polymerase Chain Reaction (PCR). Finally, PCR 

primers were removed using Agencourt AMPure XP bead cleanup (Beckman Coulter/

Agencourt) and library quality was verified using a Tapestation machine. High quality 

‘multiplexed’ DNA libraries were sequenced on the Illumina HiSeq2000.

The ends of the paired-end fragments are used as cut sites and enriched peaks were called 

with MACS2 with following parameters (--nomodel --extsize 200 --shift -100 -g hs -B --

nolambda). For IGV visualization, shifted bedGraph were converted to wig files at 10bp 

resolution and normalized to read counts by wigmath tool of JavaGenomic toolkit.
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Statistical analyses

All graphs depict mean ± s.e.m unless otherwise indicated. Tests for differences between 

two groups were performed using two-tailed unpaired Student’s t-test or Mann-Whitney’s 

two-tailed test, as specified in the figure legends. Two-way ANOVA was performed where 

applicable using the Sidak post hoc test. P values were considered significant if less than 

0.05. Asterisks used to indicate significance correspond with: *p<0.05, **p<0.005, 

***p<0.001. GraphPad Prism7 was used for statistical analysis of experiments, data 

processing and presentation.

Data Availability

Expression Arrays Data from H69 and H69M cells are available at the Gene Expression 

Omnibus (GEO) under accession number GSE451209. ChIP-seq data for STAT1 and IRF1 

data on CD14+ monocytes are available at GEO database under accession number 

GSE4303635. Raw data for Figure 1j, Figures 3a–c, Figures 4a–d and Supplementary 

Figures 10–14 can be accessed in Supplementary Dataset 1–6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Discovery of an IFN-inducible subclass of ERVs. (a) Immunoblot of pTBK1, TBK1, IKKε, 

pIRF3, pERK, ERK, pAKT, AKT and tubulin levels in H69 and H69M cells after 24 or 72 h 

culture. (b) Log-2 fold change cytokine/chemokine differences between H69M/H69 CM. (c) 

H&E and pTBK1 IHC of a patient-derived SCLC brain metastasis. Scale bar indicates 20 

μm. (d) Isotype control versus PD-L1 or CD44 surface expression on H69 and H69M cells 

± 200 ng/mL 24 h IFNγ stimulation (representative of n=3 biological replicates). (e) 

Immunoblot of pTBK1, TBK1, pERK, ERK, pAKT, AKT and β-actin levels in H69, H69M, 

H69M-PD-L1low, and H69M-PD-L1high cells. (f) Log-2 fold change cytokine/chemokines 

differences between H69M-PD-L1high or H69M-PD-L1low/H69 CM. (g) qRT-PCR of ERVs 

in H69M-PD-L1high normalized to H69M-PD-L1low cells. Numeric values on each bar 

represent the fold change in expression of a DNMT regulated ERV enriched panel11,12 of 

previously published ERVs. Error bars are mean ± s.e.m of n=3 biological replicates. 

TRIM22 promoter and antisense orientation of MLT1C49 in the 3′UTR are represented 

below the qRT-PCR graph. (h) qRT-PCR of CXCL10 and CCL2 in H69M PD-L1low cells 

transfected with pLX-307-GFP control or pLX_307-MLT1C49 construct for 72h. Mean ± 

s.e.m of n=3 biological replicates shown. (i) qRT-PCR of CXCL10 and CCL2 in H69M PD-
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L1high cells transfected with scrambled negative control siRNA or siRNAs specific for 

MLT1C49. Mean ± s.e.m of n=3 biological replicates shown. (j) Overlap of 3′UTR 

antisense ERVs with H69M upregulated genes (log-2 fold change relative to H69 >2) and 

table showing the fold change in expression of these genes/ERVs in H69M-PD-L1high 

normalized to H69M-PD-L1low cells. (k) Immunoblot of STING, MAVS, pTBK1, TBK1, 

pIRF3, IRF3, E-Cadherin, Vimentin and β-actin levels in H69M cells after CRISPR 

mediated deletion of MAVS and/or STING. (l) Log-2 fold change cytokine/chemokine 

differences in CM from H69M cells after CRISPR mediated deletion of MAVS and/or 

STING compared to sgCTRL (Scramble). (m) CXCL10 Luminex absolute levels (pg/mL) in 

Scramble, STING KO, MAVS KO and double KO (dKO) H69M cells. Mean ± s.e.m of n=2 

biological replicates shown.

*p<0.05; **p<0.005; ***p<0.001; n.s., not significant (All P values were calculated using an 

unpaired two-tailed Student’s t test).
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Figure 2. 
SPARCS expression is inducible and triggers positive feedback amplification. (a) Isotype 

control versus PD-L1 or CD44 surface expression on H69AR cells ± 200 ng/mL 24 h IFNγ 
stimulation (representative of n= 3 biological replicates). (b) Schematic of IFNγ pulse 

treatment (200 ng/mL) of H69 or H69AR cells. (c) qRT-PCR of MLT1C49 in H69 and 

H69AR cells ± 200 ng/mL IFNγ pulse – 24 h chase. Mean ± s.e.m of n=3 biological 

replicates shown (Two-way ANOVA; Sidak’s multiple comparisons tests). (d) ATAC-seq 

insertion tracks of H69 and H69AR cells around TRIM22, TRIM38 and PD-L1. 

Differentially accessible regions indicated with arrows. (e) Immunoblot of EZH2 and β-actin 

in H69, H69M and H69AR cells. (f) Log-2 fold change cytokine/chemokine differences 

between EZH2i treated H69 cells after IFNγ pulse, EZH2i treated cells, and IFNγ pulsed 

H69 cells relative to untreated control cells. *same as H69M-PD-L1high cytokine profile in 

Fig. 1f. (g) Log-2 fold change comparison of IFNγ induced expression of SPARCS ERVs in 

EZH2i treated H69 cells versus H69AR cells. (h) qRT-PCR of 36B4 control, MLT1C49, 

MLT1J and MLT1A in H69AR cells + 10 min IFNγ pulse - 24 h chase. RNA was treated 

with RNase A and immunoprecipitated with anti-dsRNA J2 antibody, values normalized 

against beta-actin. Mean ± s.e.m of n=3 biological replicates shown (Unpaired two-tailed 

Student’s t test). (i) Immunoblot of pTBK1, TBK1, pIRF3, IRF3, pSTAT1, STAT1 and β-

Cañadas et al. Page 20

Nat Med. Author manuscript; available in PMC 2019 January 23.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



actin levels in H69 and H69AR cells ± 200 ng/mL IFNγ 10 min pulse - 24 h chase. (j) qRT-

PCR of MLT1C49, IFN-β and CXCL10 in H69AR cells ± 10 min IFN-γ pulse - 24 h chase. 

Mean ± s.e.m of n=3 biological replicates shown (Unpaired two-tailed Student’s t test). (k) 

qRT-PCR and ELISA of CXCL10 in sgCTRL and sgMAVS-H69AR cells 72 h following 

Poly(I:C) transfection. Mean ± s.e.m of n=2 biological replicates shown (Unpaired two-

tailed Student’s t test). (l) Log-2 fold change cytokine/chemokine differences in CM 

between CRISPR-H69AR cells after 10 min IFNγ 10 ng/mL pulse relative to sgCTRL cells 

(Scramble). (m) CXCL10 ELISA in Scramble, STING KO, MAVS KO and dKO H69AR 

CM following 10 min IFNγ 10 ng/mL pulse and chase for 3 days. Mean ± s.e.m of n=3 

biological replicates shown (Unpaired two-tailed Student’s t test). (n) Photograph of 

representative excised tumors from sgCTRL and sgMAVS H69AR cells and tumor volumes 

measurements after 38 days of injection. Each data point represents mean ± s.e.m. tumor 

volumes (n=6 in sgCTRL group and n=6 in sgMAVS group; Two-way ANOVA; Sidak’s 

multiple comparisons tests).

*p<0.05; **p<0.005; ***p<0.001; n.s., not significant.
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Figure 3. 
Expression of SPARCS-containing genes across cancers. (a) ssGSEA of SPARCS-gene 

containing signature across TCGA (n=3602 tumors) and significantly associated gene sets 

grouped based on biological annotations. IC = information coefficient. FDR = false 

discovery rate. (b) Intersection of top 1000 genes co-regulated with SPARCS-containing 

gene signature in TCGA and CCLE datasets. MHC class I pathway genes in top 40 

highlighted in red, EMT related genes in blue and immune evasion markers in green. (c) 

Distribution of high versus low SPARCS-containing gene expression by TCGA cancer 

histology. (d) Immunoblot of AXL, MET, Vimentin, STING, MAVS and β-actin levels in 

cell lines with high, intermediate, or low SPARCS gene signature expression after 72 h 

culture. (e) qRT-PCR of MLT1C49, CXCL10, PD-L1 and CD44 in SPARCShigh and 

SPARCSlow cell lines ± IFNγ 10 min pulse - 24 h chase. p values indicated for comparison 

of SPARCShigh versus SPARCSlow groups. Mean ± s.e.m of n=2 biological replicates shown 

(Two-tailed Mann-Whitney U test).

*p<0.05; **p<0.005; ***p<0.001; n.s., not significant.
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Figure 4. 
SPARCS-containing gene expression is associated with adaptive and immune suppressive 

signatures. (a) ssGSEA of immune signatures in SPARCShigh and SPARCSlow primary 

tumors across TCGA (n=3602 tumors) and ranked based on q value significance. (b) 

Scatterplot representing difference in SPARCShigh vs SPARCSlow tumors of ssGSEA of 

immune signatures. –log10(FDR q-value) for a Student’s t test with equal variances for 

enrichment of ssGSEA of immune signatures in SPARCShigh vs SPARCSlow tumors shown 

on the y-axis. Signatures more highly represented in SPARCShigh tumors shown on right, 

versus SPARCSlow tumors shown on left. (c) q value significances of ssGSEA of immune 

signatures in SPARCShigh vs SPARCSlow tumors across TCGA. (d) TCGA RPKM values of 

CXCL10 and CCL2 in primary tumors grouped in SPARCShigh (n=50) and SPARCSlow 

(n=50) tumors. (e) Multiplexed immunofluorescence staining of cytokeratin, CD8 and CD4 

in KRAS mutant NSCLC human specimens used to generate PDOTS. Scale bar indicates 

100 μm. (f) Cytokine/chemokine heatmap for NSCLC PDOTS treated with Nivolumab 

(Nivo) (100 μg/mL), IFNγ (200 ng/mL), or Nivo + IFNγ plotted as Log-2 FC relative to 

control. * indicates values above assay for all conditions; # indicates max CXCL10 value 

used to calculate Log-2FC (g) CXCL10 Luminex absolute levels (pg/mL). Mean ± s.e.m of 

Cañadas et al. Page 23

Nat Med. Author manuscript; available in PMC 2019 January 23.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



duplicate samples shown. # indicates max CXCL10 values. (h) Phase contrast images and 

viability quantification analysis of NSCLC PDOTS performed on Day 6 following treatment 

with Nivolumab (100 μg/mL), IFNγ (200 ng/mL), or Nivo + IFNγ. Scale bar indicates 100 

μm.

*p<0.05; **p<0.005; ***p<0.001; n.s., not significant (All P values were calculated using an 

unpaired two-tailed Student’s t test).
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