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A B S T R A C T

Purpose
Patients with locally advanced breast carcinoma (LABC) receive preoperative chemotherapy to
provide early systemic treatment and assess in vivo tumor response. Serial positron emission
tomography (PET) has been shown to predict pathologic response in this setting. We evaluated
serial quantitative PET tumor blood flow (BF) and metabolism as in vivo measurements to predict
patient outcome.

Patients and Methods
Fifty-three women with primary LABC underwent dynamic [18F]fluorodeoxyglucose (FDG) and
[15O]water PET scans before and at midpoint of neoadjuvant chemotherapy. The FDG metabolic
rate (MRFDG) and transport (FDG K1) parameters were calculated; BF was estimated from the
[15O]water study. Associations between BF, MRFDG, FDG K1, and standardized uptake value and
disease-free survival (DFS) and overall survival (OS) were evaluated using the Cox proportional
hazards model.

Results
Patients with persistent or elevated BF and FDG K1 from baseline to midtherapy had higher
recurrence and mortality risks than patients with reductions. In multivariable analyses, BF and FDG
K1 changes remained independent prognosticators of DFS and OS. For example, in the association
between BF and mortality, a patient with a 5% increase in tumor BF had a 67% higher mortality
risk compared with a patient with a 5% decrease in tumor BF (hazard ratio � 1.67; 95% CI, 1.24
to 2.24; P � .001).

Conclusion
LABC patients with limited or no decline in BF and FDG K1 experienced higher recurrence and
mortality risks that were greater than the effects of clinical tumor characteristics. Tumor perfusion
changes over the course of neoadjuvant chemotherapy measured directly by [15O]water or
indirectly by dynamic FDG predict DFS and OS.

J Clin Oncol 26:4449-4457. © 2008 by American Society of Clinical Oncology

INTRODUCTION

Up to 20% of breast cancer patients present with
locally advanced breast cancer (LABC) without dis-
tant metastases.1 The current standard of care for
LABC is preoperative chemotherapy. A limited
number of LABC patients achieve a pathologic com-
plete primary tumor response (pCR) to neoadju-
vant chemotherapy. These patients have improved
survival compared with patients achieving a less
than pCR.2-4

Positron emission tomography (PET) evalu-
ates in vivo tumor biology by measuring tumor

perfusion and tumor glucose utilization using ra-
diotracers [15O]water and [18F]fluorodeoxyglu-
cose (FDG), respectively, and has been useful for
evaluating breast cancer response.5-8 In previous
reports, we showed that PET measures of tumor
blood flow (BF) and glucose metabolism (measured
as FDG metabolic rate [MRFDG]) obtained before
initiation of neoadjuvant chemotherapy and at mid-
therapy predicted response among LABC pa-
tients.9,10 Patients with high pretherapy MRFDG
relative to BF were more likely to have tumors resis-
tant to therapy and were more likely to experience
relapse. We also reported that resistant tumors were
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more likely to have an increased BF over the course of therapy and that
patients whose tumors failed to have a decline in perfusion at mid-
therapy were more likely to have higher recurrence and mortality
risks. We documented that changes in PET measures also predicted
the likelihood of achieving a pCR to treatment.10 Further studies from
our institution11 examined the relationship between tumor glucose
metabolism and BF using more detailed analyses of [18F]FDG kinetics
and found that FDG glucose blood-to-tissue transport (K1) correlated
with [15O]water BF, in accord with other reports.12

We now present follow-up data to determine whether PET mea-
sures of tumor perfusion and metabolism were associated with
disease-free survival (DFS) or overall survival (OS) among LABC
patients. Such an assessment of in vivo tumor biology may provide
knowledge regarding the prognostic utility of quantitative PET mea-
surements and insight into factors associated with disease resistance
and recurrence.

PATIENTS AND METHODS

Patient Selection

Patients who presented to the University of Washington Breast Cancer
Specialty Center with histologically confirmed breast carcinoma scheduled to
undergo neoadjuvant chemotherapy were eligible for the study. Patients were
clinically staged according to the TNM classification of malignant tumors.13

The enrollment period was from November 1995 to December 2005. Patients
were excluded if they were pregnant, unwilling, or unable to undergo PET
examinations. Patients were also excluded if they were not surgical candidates.
Prior enrollment periods yielded 35 patients with multiple PET scans who
underwent surgery and have been previously described.10 Since those reports,
30 additional patients were eligible for the study. Eleven patients underwent
pretherapy imaging only as follows: two elected not to receive chemotherapy;
three sought medical care elsewhere; four completed their neoadjuvant treat-
ment and definitive surgery but were unwilling to undergo midtherapy imag-
ing; and two had distant disease observed by computed tomography. One
patient with lobular histology had little or no tracer uptake on pretherapy
examination. Eighteen patients underwent serial PET scans and were analyzed
with 35 patients from prior analyses to yield a total of 53 patients included in
the study. Written informed consent for PET studies and follow-up was
obtained according to the University of Washington Human Subjects
Committee guidelines.

PET

PET radiotracer production, imaging methods, and data analysis have
been previously described.9-11,14,15 Briefly, images were acquired on the Ad-
vance tomograph (General Electric Medical Systems, Waukesha, WI) before
and at the midpoint of neoadjuvant chemotherapy. For [15O]water studies,
patients received 725 to 1,902 MBq in a 1- to 4-mL volume via bolus intrave-
nous injection. Dynamic images were acquired for 7.75 minutes after injec-
tion. For [18F]FDG studies, 218 to 396 MBq was infused over 2 minutes in
a 7- to 10-mL volume, and dynamic images were acquired for 60 minutes after
the start of infusion. Regions of interest were 1.5-cm diameter circles, drawn
over the tumor and the left ventricle of the heart to determine blood and tumor
time-activity curves. BF estimates from [15O]water and [18F]FDG kinetic
parameter estimates (MRFDG and K1) were obtained using model optimiza-
tion software (Berkeley Madonna, Berkeley, CA) as previously reported.11

Average FDG standardized uptake values (SUVs) of the tumor region were
also calculated as previously reported.16

Statistical Analysis

Our aims were to assess whether PET measures before neoadjuvant
chemotherapy, PET measures at midtherapy, or changes in PET measures
would predict DFS and OS. We also considered other patient and tumor
characteristics as potential predictors of patient outcome and then assessed the
effect of controlling for other factors in a multivariable model.

The primary outcomes were breast cancer recurrence and mortality.
Disease recurrence was classified as local or distant. Local recurrence was
defined as invasive disease limited to the ipsilateral breast, chest wall, or axillary
lymph nodes, and distant recurrence was defined as metastases to other parts
of the body. DFS was calculated in years, using the patient’s date of surgery and
one of the following: date of known recurrence, date of death, date last known
to have no evidence of disease, or date of most recent clinical follow-up. OS was
calculated in years, using the patient’s breast cancer diagnosis date and one of
the following: date of death, date last known to be alive, or date of most recent
clinical follow-up. Chart review for patient clinical follow-up dates and disease

Table 1. Selected Characteristics Among Patients With Locally Advanced
Breast Cancer

Characteristic
No. of Patients

(N � 53) %

Age at diagnosis, years
30-39 12 23
40-49 22 41
50-59 14 26
60-69 4 8
70-79 1 2

Race
Non-Hispanic white 43 81
African American 6 11
Asian/Pacific Islander 4 8

Tumor histology
Ductal 49 92
Lobular 4 8

Clinical tumor classification
T1 2 4
T2 11 21
T3 29 54
T4 11 21

Clinical lymph node classification
N0 11 21
N1 31 58
N2 10 19
N3 1 2

Tumor size, cm
0-1.9 3 6
2-5 25 46
� 5 26 48

ER
Positive 31 58
Negative 22 42

PR
Positive 28 53
Negative 25 47

HER-2/neu�

Positive 12 24
Negative 39 76

Ki-67 proliferative index†
Other than high 13 29
High 32 71

Palpable axillary lymph nodes
No 19 36
Yes 34 64

Menopausal status
Premenopausal 37 70
Postmenopausal 16 30

Abbreviations: ER, estrogen receptor; PR, progesterone receptor.
�Oncogene; unknown, n � 2.
†Unknown, n � 8.
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status determination was completed as of June 30, 2006. Dates of death were
also extracted from the Social Security Death Index.17

Established breast cancer prognostic factors associated with DFS and
OS4,18-23 that were assessed included diagnosis age (continuous), tumor size
(0 to 1.9, 2 to 5, or � 5 cm), tumor grade (Nottingham histologic grading
system, grades I to III), stage (American Joint Committee on Cancer classifi-
cation system grouping, stages I to IV), axillary lymph node status (none, one
to three, or � 4 nodes), and pathologic tumor characteristics such as estrogen
receptor (ER; positive or negative), progesterone receptor (PR; positive or
negative), c-erb-b2 overexpression (HER-2/neu, yes or no), p53 overexpres-
sion (yes or no), Ki-67 proliferation index (high or other), and pathologic
response (pCR or other than pCR). We also assessed the possible influence of
tumor histology (ductal v lobular) because tracer uptake varies by tumor type
and tumor histology is associated with survival.24 Associations between patho-
logic response and PET measures or prognostic factors were evaluated using
the t test and Pearson’s �2 test.

Kaplan-Meier curves were examined with continuous PET measures
dichotomized above and below median values. Associations between PET
predictors and breast cancer DFS and OS were estimated using the Cox
proportional hazards model.25,26 Predictors with missing data were excluded
casewise from Cox models. MRFDG, BF, FDG K1, and SUV levels were log
transformed (base 2) so that hazard ratios based on a one-unit difference
would be associated with a doubling of PET measures. After examining uni-
variate models, we evaluated the contribution of PET parameters to multiva-
riable models that controlled for the effects of prognostic factors selected based
on prior research4,18-23 and univariate results. The proportional hazards as-
sumption was validated by inspection of log-log survival curves. Analyses were
performed using Stata for Macintosh, version 9.2 (StataCorp, College Station,
Texas) and R version 2.5.0 (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Patients and Response

The characteristics of the 53 women included in the study are
listed in Table 1. The mean age at diagnosis was 47 years (range, 32 to

76 years), and the average tumor size was 5.0 cm (range, 1.1 to 11 cm).
Most patients had tumors with a high proliferative index; however,
most tumors did not overexpress HER-2/neu. Patients were primarily
premenopausal and had clinically palpable axillary lymphadenopathy.
Five of 11 T4 carcinomas were inflammatory.

The majority of patients (83%) underwent weekly metronomic
doxorubicin-based chemotherapy with daily oral cyclophosphamide
(n � 40), daily oral cyclophosphamide and fluorouracil (n � 2), or
doxorubicin only (n � 2). Four (7%) of 53 patients received non-
weekly doxorubicin/cyclophosphamide. Three (6%) of 53 patients
received weekly cyclophosphamide, methotrexate, and fluorouracil.
One (2%) of 53 patients received paclitaxel/trastuzumab, and one
(2%) of 53 patients received docetaxel/vinorelbine. Mean chemother-
apy duration was 17 weeks (range, 8 to 28 weeks).

Surgery was performed a mean of 3.0 weeks after the last chem-
otherapy dose (range, 0.9 to 6.7 weeks) except for one patient whose
surgery was 12 weeks after treatment as a result of severe leukopenia.
Eleven (21%) of 53 patients underwent breast conservation surgery
(lumpectomy) and axillary lymph node dissection, and 42 (79%) of 53
patients underwent total mastectomy and axillary lymph node dissec-
tion. Eleven patients (20%) achieved a pCR to neoadjuvant therapy,
and 42 patients (80%) achieved other than pCR. Thirty-four of 53
patients had residual axillary nodal disease after therapy (median
number of nodes positive, four nodes; range, one to 18 nodes).

The median follow-up time for DFS was 3.6 years (range, 0.1 to
9.7 years). Twelve patients had tumor recurrences; three patients ex-
perienced recurrence with both local and distant disease, and nine
patients presented with distant metastases. The OS median follow-up
time was 4.4 years (range, 0.5 to 10.4 years) with 10 deaths recorded.
Seven deaths were confirmed to be caused by breast carcinoma, two
were probable, and one was unknown. The estimated 4-year DFS and
OS probabilities for the entire cohort were 80% and 84%, respectively.
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Fig 1. Percent change in serial positron
emission tomography measurements ver-
sus pathologic response to neoadjuvant
chemotherapy (pathologic complete re-
sponse [pCR] or other than pCR) for (A)
fluorodeoxyglucose metabolic rate (MR-
FDG), (B) blood flow, (C) fluorodeoxyglu-
cose transport (FDG K1), and (D)
standardized uptake value (SUV; P val-
ues from two-sample t test).
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Among patients who achieved a pCR, the estimated probability of
surviving disease free for 4 years was 90% compared with 78% among
patients who achieved other than pCR. For OS, 4-year survival prob-
ability among patients with a pCR was 100% compared with 79% for
the other than pCR group.

PET Imaging

Pretherapy PET imaging was performed a mean of 5 days (range,
0 to 21 days) before the first chemotherapy dose, and midtherapy PET
imaging occurred a mean of 9 weeks (range, 6 to 20 weeks) after the
first chemotherapy dose. Changes in PET measures from baseline to
midtherapy examinations were associated with tumor response (Fig 1
and Appendix Fig A1 [online only]). Patients who achieved a pCR
had, on average, an 84%, 76%, and 79% decrease in MRFDG, BF, and
FDG K1 from baseline to midtherapy scans, respectively, whereas the
average changes for patients with other than pCR were 62%, 14%, and
19%, respectively (P � .01 or less for MRFDG, BF, and FDG K1).
Percent change in average SUV was not related to response (60%
pCR v 50% other than pCR; P � .12). In addition, pCR patients had
lower pretherapy MRFDG:BF ratios compared with other than pCR
patients (P � .003; Table 2). Other known prognostic markers were
not associated with tumor pathologic response in this small cohort.

High-grade, ER-negative, and PR-negative tumors had trends for
improved response.

Survival Analysis: Univariate

Individual pretherapy PET values did not predict relapse or mor-
tality; however, patients with a high pretherapy MRFDG:BF ratio were
more likely to experience relapse (Table 3). Also, changes in PET
values from baseline to midtherapy predicted those patients more
likely to experience recurrence.

Persistent or elevated MRFDG and BF at midtherapy were indi-
cators of poorer OS, with 1.4-fold and 1.7-fold increased mortality
risks observed for each doubling of MRFDG and BF, respectively. For
example, a patient whose tumor MRFDG is 4.0 has a 40% greater
mortality risk compared with a patient whose tumor MRFDG is 2.0.
Changes in PET values over the course of chemotherapy were also
associated with outcome, in that patients who did not experience a
decline in MRFDG, BF, FDG K1, or SUV from baseline to midtherapy
scans had elevated mortality risks compared with patients with de-
creased values between scans (Fig 2). Each 10% difference in the
percent change of MRFDG, BF, FDG K1, or SUV was associated with
a 1.0- to 1.9-fold higher mortality risk compared with smaller in-
creases or greater decreases in PET parameters. Although elevations in

Table 2. Association Between Clinical, Pathologic, and Baseline PET Data Versus Therapy Response

Parameter

No. of Patients

Test Statistic� PpCR (n � 11) Other Than pCR (n � 42)

Age 11 42 t � �0.43 .66
Tumor size 11 42 t � �0.22 .82
Positive nodes† �2 � 2.10 .14

Yes 6 13
No 5 29

Menopausal status �2 � 0.94 .33
Premenopausal 9 28
Postmenopausal 2 14

Tumor grade �2 � 4.63 .09
I 1 4
II 1 18
III 9 20

ER expression �2 � 2.79 .09
Positive 4 27
Negative 7 15

PR expression �2 � 3.63 .05
Positive 3 25
Negative 8 17

HER-2/neu‡ �2 � 0.10 .74
Negative 8 31
Positive 3 9

Ki-67 proliferative index§ �2 � 0.10 .74
Other than high 3 10
High 6 26

Baseline MRFDG 11 42 t � 0.01 .98
Baseline blood flow 11 42 t � 1.96 .07
Baseline MRFDG:blood flow 11 42 t � �3.18 .003

Abbreviations: PET, positron emission tomography; pCR, pathologic complete response; ER, estrogen receptor; PR, progesterone receptor; MRFDG, fluorode-
oxyglucose metabolic rate.

�t � Student’s t test; �2 � Pearson’s �2 statistic.
†Binary: yes or no.
‡Unknown, n � 2.
§Unknown, n � 8.
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Table 3. Univariate Cox Proportional Hazard Analyses of Breast Cancer Recurrence and Mortality Risk Among Women With LABC

Characteristic

Disease-Free Survival Overall Survival

No. of Patients
at Risk

No. of
Recurrences

Hazard
Ratio 95% CI P

No. of Patients
at Risk No. of Deaths

Hazard
Ratio 95% CI P �

Age at diagnosis 53 12 0.96 0.90 to 1.03 .28 53 10 0.95 0.88 to 1.03 .18
Tumor size, cm .83 .91

0-1.9 3 1 1.00 3 1 1.00
2-5 25 5 0.49 0.05 to 4.30 25 4 0.63 0.07 to 5.67
� 5 25 6 0.54 0.06 to 4.64 25 5 0.76 0.09 to 6.57

Tumor grade .95 .90
I 5 1 1.00 5 1 1.00
II 19 5 1.18 0.14 to 10.38 19 3 0.82 0.08 to 7.98
III 29 6 0.98 0.12 to 8.34 29 6 1.12 0.13 to 9.46

Tumor stage .62 .84
I 2 1 1.00 2 1 1.00
II 11 1 0.15 0.01 to 2.48 11 1 0.29 0.02 to 4.67
III 29 6 0.32 0.04 to 2.70 29 5 0.55 0.06 to 4.82
IV 11 4 0.38 0.04 to 3.75 11 3 0.59 0.06 to 5.73

No. of axillary lymph node positive .10 .09
0 19 2 1.00 19 1 1.00
1-3 16 3 1.86 0.31 to 11.24 16 3 4.04 0.42 to 38.87
� 4 18 7 4.44 0.92 to 21.46 18 6 6.96 0.84 to 57.98

ER .36 .14
Positive 31 6 1.00 31 4 to
Negative 22 6 1.70 0.54 to 5.31 22 6 2.53 0.71 to 9.00

PR .26 .07
Positive 28 5 1.00 28 3 1.00
Negative 25 7 1.93 0.61 to 6.11 25 7 3.16 0.81 to 12.24

HER-2/neu† .66 .96
Negative 39 8 1.00 39 7 1.00
Positive 12 4 1.32 0.38 to 4.52 12 3 1.04 0.26 to 4.21

p53‡ .29 .13
Negative 25 5 1.00 25 3 1.00
Positive 19 5 1.98 0.57 to 6.88 19 5 2.96 0.70 to 12.47

Ki-67 proliferative index§ .88 .82
Other than high 13 4 1.00 13 3 1.00
High 32 7 1.10 0.32 to 3.81 32 6 1.17 0.29 to 4.72

Tumor histology .86 .81
Ductal 49 11 1.00 49 9 1.00
Lobular 4 1 1.22 0.15 to 9.63 4 1 1.30 0.16 to 10.38

Primary tumor pathologic response .75 .93
pCR 10 2 1.00 11 2 1.00
� pCR 43 11 1.27 0.28 to 5.86 42 8 1.06 0.22 to 5.04

Baseline MRFDG� 53 12 1.14 0.63 to 2.04 .66 53 10 1.25 0.69 to 2.26 .47
Baseline BF� 53 12 0.51 0.24 to 1.08 .07 53 10 0.79 0.36 to 1.73 .54
Baseline FDG K1� 53 12 0.51 0.23 to 1.12 .10 53 10 0.76 0.30 to 1.92 .56
Baseline MRFDG:BF 53 12 1.04 1.01 to 1.06 .007 53 10 1.03 1.00 to 1.06 .06
Baseline SUV� 53 12 0.86 0.39 to 1.91 .71 53 10 1.10 0.50 to 2.43 .81
Midtherapy MRFDG� 53 12 1.32 0.95 to 1.85 .08 53 10 1.40 0.99 to 1.99 .04
Midtherapy BF� 53 12 1.60 0.94 to 2.73 .09 53 10 1.74 1.00 to 3.02 .05
Midtherapy FDG K1� 53 12 1.61 0.90 to 2.90 .10 53 10 1.70 0.92 to 3.15 .08
Midtherapy SUV� 53 12 1.41 0.74 to 2.67 .32 53 10 1.84 1.00 to 3.39 .07
Change in MRFDG¶ 53 12 1.14 1.01 to 1.29 .06 53 10 1.15 1.02 to 1.30 .04
Change in BF¶ 53 12 1.19 1.07 to 1.31 .001 53 10 1.17 1.05 to 1.31 .005
Change in FDG K1¶ 53 12 1.19 1.08 to 1.32 .001 53 10 1.18 1.06 to 1.32 .004
Change in SUV¶ 53 12 1.31 0.95 to 1.80 .08 53 10 1.49 1.03 to 2.16 .03

Abbreviations: LABC, locally advanced breast cancer; ER, estrogen receptor; PR, progesterone receptor; pCR, pathologic complete response; MRFDG,
fluorodeoxyglucose metabolic rate; BF, blood flow; MRFDG:BF, MRFDG/BF ratio; FDG K1, fluorodeoxyglucose transport; SUV, standardized uptake value.

�Likelihood ratio test.
†Unknown, n � 2.
‡Unknown, n � 9.
§Unknown, n � 8.
�Log base 2.
¶1 unit � 10% change.

Blood Flow, Glucose Metabolism, and Survival in LABC Patients

www.jco.org © 2008 by American Society of Clinical Oncology 4453



tumor recurrence and mortality risk were observed among women
whose tumors were ER-negative, PR-negative, HER-2/neu-positive,
or highly proliferative or whose tumors achieved other than pCR,
these elevations were within the limits of chance in this cohort.

Survival Analysis: Multivariable

The risks of recurrence and mortality associated with MRFDG,
BF, FDG K1, and SUV, each adjusted for tumor ER and PR status, size,
histology, pathologic response, and axillary lymph node status are
listed in Table 4. The baseline MRFDG:BF ratio predicted relapse, and
a one-unit increase inferred a 5% greater risk. BF and FDG K1 changes
from baseline to midtherapy also remained prognostic indicators of
the likelihood of tumor recurrence. Each 10% lesser decrease (or
greater increase) in BF or FDG K1 was associated with a 1.4-fold
greater relapse risk.

Elevated mortality risk was observed for higher midtherapy
BF. Each doubling of tumor BF was associated with a 3.4-fold
higher mortality risk. Greater mortality risks were observed for
patients with little to no change or a proportionate increase in
tumor BF or FDG K1. Specifically, a 10% smaller decline in BF from
baseline to midtherapy examination (or a 10% greater increase)
was associated with a 1.67-fold higher mortality risk (95% CI, 1.24
to 2.24), and each 10% lesser decrease (or greater increase) in FDG
K1 was associated with a 1.77-fold higher mortality risk (95% CI,
1.12 to 2.78). Changes in SUV were univariately related to OS;
however, multivariably, the risks were within the limits of chance
(hazard ratio � 1.25; 95% CI, 0.80 to 1.96; P � .31).

DISCUSSION

In prior studies, we reported that MRFDG and BF PET measures
before and at the midpoint of neoadjuvant chemotherapy predicted

response among LABC patients.9 This study expands on our previous
studies by exploring the long-term end points of breast cancer recur-
rence and mortality. We observed that patients whose tumors had
increases or small reductions in BF and FDG K1 from pretherapy to
midtherapy examinations had elevated recurrence and mortality risks
compared with patients with greater reductions in BF and FDG K1.
We also found evidence for higher mortality risk associated with
higher BF on midtherapy examinations. Differences in DFS and OS by
PET parameters were observed even after adjusting for multiple prog-
nostic factors, such as tumor ER and PR status, size, histology, and
pathologic response. Our results suggest that PET data, especially
changes in tumor perfusion over the course of neoadjuvant
chemotherapy, measured directly by [15O]water or indirectly by
dynamic FDG PET as FDG K1, provide information distinct
from standard markers.

PET as a predictor of patient outcome has been reported for
numerous other cancers including sarcoma and head and neck,
esophageal, and lung cancers.27-30 For breast cancer in the metastatic
setting, qualitatively positive FDG PET tumor uptake after treatment
was associated with shorter median DFS or OS.31-33 Prior studies have
not examined and compared PET measures of breast tumor BF and
FDG tumor kinetics with breast cancer recurrence or mortality risk in
the neoadjuvant setting. To our knowledge, our study is the first to
show that parameters estimated from kinetic analysis of dynamically
acquired PET examinations predict outcome among LABC patients.
The standard clinical and pathologic factors also evaluated did not
correlate with DFS or OS in this relatively small study, suggesting that
quantitative PET imaging provides predictive data independent of
these established factors. We observed that persistent MRFDG uptake
could indicate tumor resistance to therapy and that greater decreases
in BF predicted favorable survival. The standard static measure used
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Fig 2. Kaplan-Meier curves of change in
positron emission tomography measures
divided greater than (blue) and less than
(yellow) median values for (A) fluorode-
oxyglucose metabolic rate, (B) blood flow,
(C) fluorodeoxyglucose transport, and (D)
standardized uptake value.
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for most FDG PET studies, SUV, did not retain predictive value after
accounting for other risk factors associated with DFS or OS.

Although a number of tumor and host factors play a role in
tumor sustainability, tumor vasculature is necessary for growth and
spread. Several different imaging modalities, such as dynamic
contrast-enhanced magnetic resonance imaging (MRI), [99mTc]sesta-
mibi (MIBI), Doppler ultrasound, and dynamic FDG PET have the
ability to assess in vivo tumor BF and vascularity and have shown
utility in measuring treatment response.34-40 Our observations of
higher relapse and mortality risks associated with higher tumor BF at
therapy midpoint parallel our previous work using MIBI imaging41

and MRI findings that evaluated LABC response to antivascular treat-
ment.42 Persistent MIBI uptake, MRI contrast enhancement, and BF
in breast tumors after therapy may all indicate the inability of the
chemotherapeutic agent to disrupt tumor vasculature, thus allow-
ing continued tumor growth and potential spread, portending a
poorer prognosis.

In accordance with previous works that demonstrated a relation-
ship between BF and FDG K1 both before and after therapy,11,12 we
observed similar relapse and mortality risks associated with propor-
tionate changes in tumor BF and FDG K1 over the course of chemo-
therapy. These results suggest that it may be feasible to substitute K1,
the transport rate constant of [18F]FDG from blood to tissue, for
[15O]water studies, which require an on-site cyclotron.

[18F]FDG scans acquired in the clinical setting are typically static
whole-body images in which semiquantitative tumor uptake mea-
sures are dependent on the time interval between tracer injection and
scanning,43 which are factors important to replicate when using
[18F]FDG studies for monitoring patient therapy response. Dynamic
[18F]FDG data acquisition is not dependent on image time. Full ki-
netic analysis provides insights into tumor patterns of glucose metab-
olism that include transport and phosphorylation measures,44 which
are predictive indicators that may not be visualized by static whole-
body imaging.

Table 4. Multivariable Cox Proportional Hazard Analyses of Breast Cancer Recurrence and Mortality Risk Among Women With LABC

Characteristic

Disease-Free Survival Overall Survival

HR 95% CI P � HR 95% CI P

Tumor size, cm† .65 .81
0-1.9 1.00 1.00
2-5 0.32 0.02 to 4.24 0.64 0.03 to 12.99
� 5 0.56 0.05 to 5.39 1.15 0.09 to 14.22

No. of axillary lymph node positive‡ .04 .01
0 1.00 1.00
1-3 2.45 0.37 to 16.06 6.69 0.66 to 67.55
� 4 7.32 1.28 to 41.73 14.96 1.39 to 160.53

ER§ .94 .89
Positive 1.00 1.00
Negative 0.91 0.08 to 10.16 1.19 0.07 to 17.92

PR� .94 .14
Positive 1.00 1.00
Negative 6.01 0.47 to 76.70 9.88 0.56 to 173.86

Tumor histology¶ .78 .56
Ductal 1.00 1.00
Lobular 1.39 0.13 to 14.26 2.11 0.16 to 26.82

Primary tumor pathologic response# .14 .19
pCR 1.00 1.00
� pCR 4.22 0.52 to 34.14 4.36 0.39 to 48.25

Baseline MRFDG:BF 1.05 1.02 to 1.08 .01 1.04 1.00 to 1.07 .03
Midtherapy MRFDG�� 1.22 0.82 to 1.81 .29 1.51 0.94 to 2.42 .05
Midtherapy BF�� 1.53 0.79 to 2.94 .19 3.42 1.07 to 10.93 .01
Midtherapy FDG K1

�� 1.44 0.67 to 3.13 .34 2.30 0.85 to 6.24 .08
Midtherapy SUV�� 1.19 0.46 to 3.05 .72 2.90 0.80 to 10.55 .07
Change in MRFDG†† 1.12 0.91 to 1.38 .26 1.24 0.92 to 1.67 .11
Change in BF†† 1.48 1.20 to 1.83 � .001 1.67 1.24 to 2.24 � .001
Change in K1†† 1.43 1.13 to 1.80 � .001 1.77 1.12 to 2.78 � .001
Change in SUV†† 1.20 0.82 to 1.76 .34 1.25 0.80 to 1.96 .31

Abbreviations: LABC, locally advanced breast cancer; HR, hazard ratio; ER, estrogen receptor; PR, progesterone receptor; pCR, pathologic complete response;
MRFDG, fluorodeoxyglucose metabolic rate; BF, blood flow; MRFDG:BF, MRFDG/BF ratio; FDG K1, fluorodeoxyglucose transport; SUV, standardized uptake value.

�Likelihood ratio test.
†HRs adjusted for ER, PR, histology (ductal v lobular), pCR (pCR v other than pCR), and axillary lymph node status (0, 1-3, or � 4 nodes).
‡HRs adjusted for ER, PR, tumor size (0-1.9, 2-5, or � 5 cm), histology, and pCR.
§HRs adjusted for PR, tumor size, histology, pCR, and axillary lymph node status.
�HRs adjusted for ER, tumor size, histology, pCR, and axillary lymph node status.
¶HRs adjusted for ER, PR, tumor size, pCR, and axillary lymph node status.
#HRs adjusted for ER, PR, tumor size, histology, and axillary lymph node status.
��Log base 2; HRs adjusted for ER, PR, tumor size, histology , pCR, and axillary lymph node status.
††1 unit � 10% change; HRs adjusted for ER, PR, tumor size, histology, pCR, and axillary lymph node status.
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Potential limitations to our study include a relatively small cohort
with a recruitment time frame spanning 10 years. Second, although
the majority of patients received similar neoadjuvant chemotherapy,
there was some heterogeneity of treatment regimens. Third, there was
some variability in scan timing and length of treatment before defini-
tive surgery. The difference in treatment lengths and the broad time
point range for midtherapy PET examinations is reflective of the
ongoing changes in our clinical practice for LABC patients. These
findings may not be necessarily generalizable to other populations;
further analysis in a larger series is warranted.

Our findings suggest that a small group of breast cancer patients
identified by PET experience poor outcome. Early response monitor-
ing would play a critical role for these patients. Prior PET studies
indicate that early response monitoring is feasible.7,8 Our study also
suggests that targeting tumor vasculature of patients who have resis-
tant tumors may be helpful. Current studies at our institution are
evaluating the role of dynamic FDG PET and dynamic contrast-
enhanced MRI in early response prediction of antivascular therapies
for breast cancer.

Our results suggest that information provided by PET imaging is
complementary to standard clinical end points based on surgical
pathology.27-30 Therefore, functional imaging may be helpful in clin-
ical trials as an adjunct in measuring tumor response and predicting
patient outcome.

Overall, we observed that patients with smaller declines in BF and
FDG K1 experienced higher risks of recurrence and mortality that were

largely independent of patient and tumor characteristics assessed in
this study. Our findings suggest that changes in tumor perfusion over
the course of neoadjuvant chemotherapy measured directly by
[15O]water or indirectly by dynamic FDG PET are predictive of out-
come in LABC patients.
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