
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Nadège Bellance,
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Metastasis is one of the important biological features of malignant tumors and one

of the main factors responsible for poor prognosis. Although the widespread

application of newer clinical technologies and their continuous development have

significantly improved survival in patientswith brainmetastases, there is no uniform

standard of care. More effective therapeutic measures are therefore needed to

improve prognosis. Understanding the mechanisms of tumor cell colonization,

growth, and invasion in the central nervous system is of particular importance for

the prevention and treatment of brain metastases. This process can be plausibly

explained by the “seed and soil” hypothesis, which essentially states that tumor

cells can interact with various components of the central nervous system

microenvironment to produce adaptive changes; it is this interaction that

determines the development of brain metastases. As a novel form of

intercellular communication, exosomes play a key role in the brain metastasis

microenvironment and carry various bioactive molecules that regulate receptor

cell activity. In this paper, we review the roles and prospects of brain metastatic

tumor cells, the brain metastatic tumor microenvironment, and exosomes in the

development and clinical management of brain metastases.
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Introduction

In the natural course, brain metastases occur in

approximately 20–40% of patients with malignancies. Lung

cancers are the most common source of brain metastases

(40%–50%), and are followed by cancers of the breast (15%–

20%), skin (mainly melanoma; 5%–10%), and gastrointestinal

system (4%–6%) (Figure 1) (1). The survival and quality of life of

patients with cancer have improved considerably in recent years

due to the advent of newer treatment methods, and especially

precision therapy. However, owing to the anatomical and

physiological peculiarities of the central nervous system

(CNS), it is difficult to achieve the desired effect of various

treatments; brain metastases are therefore known as the last

refuge of malignant tumors (2, 3). The median survival period in

patients with untreated brain metastases is 1-2 months, while

that of those who have been treated is approximately 6 months

(4). The currently available treatments for brain metastases

mainly include radiotherapy, systemic chemotherapy, and

surgery. In this context, the widespread use of targeted drugs
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has improved the prognosis of these patients to a certain extent

(5). However, the overall prognosis remains unsatisfactory.

Metastasis of tumor cells is one of the most important features

of malignant tumors, and the intra- and inter-cellular molecular

mechanisms involved in the metastasis process are considerably

complex. These include epithelial-mesenchymal transition,

survival of circulating tumor cells in blood vessels, tumor cell

dormancy, and tumor cell heterogeneity and stemness, among

others. The interaction between tumor and stromal cells, tumor-

related angiogenesis, and a series of events related to the tumor

microenvironment are also involved (6). The seed and soil

hypothesis suggests that a specific tumor cell can only survive in

a suitable tumor microenvironment; this explains the occurrence

and development of tumor-specific metastasis (7). In this context,

exosomes (a type of extracellular vesicles loaded with proteins,

nucleic acids, and other signaling molecules) are involved in

multiple processes leading to the development of brain

metastases (8). Metastatic lesions to the CNS are unique

compared to those in other organs (9). Evaluation of the

biological characteristics of tumor cells that metastasize to the
BC

D

A

FIGURE 1

Sources and formation processes of brain metastases. (A) The most common sources of brain metastases are lung cancer (40%-50%), followed
by breast cancer (15%-20%), skin cancer (mainly melanoma) accounting for 5%-10%, and gastrointestinal malignancy (4%-6%). (B) Tumor cells
and secreted vesicle contents can disrupt the integrity of BBB, thereby promoting tumor metastasis to intracranial, interacting with surrounding
astrocytes, microglia/macrophages, and then influencing the biological behavior of brain metastasis through various pathways such as secreting
cytokine networks, direct contact and exosomes, and establishing complex networks. (C) Tumor cells can produce mutual adaptive changes
with the components of the central nervous system microenvironment, and it is this interaction that determines the occurrence and
development of brain metastatic lesions. (D) Metastatic foci appear in the skull, producing obvious mass and edematic effects, which seriously
affects the quality of life of patients.
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brain and their interaction with the microenvironment is therefore

essential for the prevention and treatment of brain metastases.
Proposal of the tumor
microenvironment

The tumor microenvironment was first proposed in 1979,

and has been variably termed as the tumor niche or tumor stem

cell niche, among others (10). The tumor microenvironment

refers to the local homeostatic milieu associated with

tumorigenesis and metastasis, and is composed of tumor and

non-tumor cells. It mainly includes tumor cells, tumor stem

cells, endothelial cells, fibroblasts, immune cells, extracellular

matrix structural components (such as collagen and elastin,

among others) locally secreted cytokines, peptide growth

factors, and other soluble substances (11, 12). It is widely

accepted that the tumor microenvironment is a necessary

functional unit for protecting and supporting tumorigenesis,

development, metastasis, and recurrence; studies are also

increasingly demonstrating the vital role of the tumor

microenvironment in the evolution of tumors (13). Normal

cells reside in a relatively stable internal environment

(homeostatic milieu), and follow regulated processes for

proliferation, differentiation, apoptosis, and the secretion and

expression of related factors (14). Tumorigenesis involves a

process that persistently disrupts this balance to alter the

equilibrium in the local microenvironment, making it more

suitable for tumor cell proliferation (15). Tumor cells

proliferate indefinitely, and need to constantly shape an

external tissue environment suitable for their growth. This

involves the creation of tissue hypoxia and acidosis; formation

of interstitial hypertension; and the production of a large

number of growth factors, proteolytic enzymes, and immune

inflammatory responses (16, 17). The tumor microenvironment

provides shelter for metastatic tumor cells, protecting them from

differentiation stimulation, apoptosis stimulation, and immune

surveillance, thereby improving resistance to radiotherapy and

chemotherapy (18). The tumor microenvironment can also

induce tumor cell metastasis via secretion of cyclooxygenase-2

(COX2) and epidermal growth factor receptor (EGFR), the

factors responsible for the organophilic nature of tumor cell

metastasis. Tumor growth may therefore be inhibited by altering

the local microenvironment of the tumor (19, 20).
Characteristics of the
microenvironment of brain
metastases

The microenvironment of brain metastases has the following

unique properties compared with that of other tissues (1): the
Frontiers in Oncology 03
presence of two biological barriers, namely, the blood-brain

barrier (BBB) and blood-cerebrospinal fluid barrier (2), lack of

immune cells such as lymphocytes and macrophages (microglia

play an important role in the immune response) (3), lack of

mesenchymal tissues such as fibroblasts (but is rich in astrocytes

and oligodendrocytes), and (4) high expression of CNS-specific

molecules such as CXCL-12 and neuroserpin (with neutropenia)

(21–23). However, the role of the intracranial microenvironment

in the development of brain metastases is debated. Previous

studies have shown that tumor cells isolated from brain

metastases models or co-cultured in vitro in the CNS

microenvironment have stronger proliferation, invasion, and

metastasis capabilities than the protocellular line (24).

However, other studies have shown that astrocytes can secrete

plasminogen activators to promote apoptosis of tumor cells; this

is not conducive to tumor cell growth (Figure 1) (25). The

impact of the intracranial microenvironment on tumor cells

(based on the components that constitute the CNS

microenvironment and their interaction with tumor cells) has

been described below.
Astrocytes

Astrocytes are the most abundant glial cells in the CNS. They

are activated on stimulation, and appear morphologically

hypertrophied; this is accompanied by increased expression of

glial fibrillary acidic protein, a marker specific for astrocyte

activation (26). Astrocytes perform a variety of functions,

which include supporting nerve cells, nourishing nerve tissue,

maintaining CNS homeostasis, forming a BBB, and repairing

damaged CNS tissue (27). As the most important component of

the CNS microenvironment, astrocytes play an important role in

the formation of brain metastases (28). Following activation,

astrocytes secrete a variety of cytokines that affect the

proliferation, invasion, and metastatic ability of tumor cells

(29). Studies have suggested that astrocytes can secrete matrix

metalloproteinase (MMP)-2 and MMP-9, remove matrix

components on the surface of tumor cells and the surrounding

matrix, and promote the invasion and metastasis of tumor cells.

In this context, MMP-2 and MMP-9 can activate transforming

growth factor-b (TGF-b) (30), which in turn regulates cell

growth, angiogenesis, and other functions through vascular

endothelial growth factor (VEGF). Related clinical data show

that patients with MMP-2-positive in situ or metastatic tumors

of the brain have shorter survival times (31). A study on

melanoma brain metastases found that astrocytes can produce

interleukin (IL)-3, CD40L, CXCL 12, interferon-g, and other

cytokines that stimulate melanoma cells; in this context, IL-23

stimulates tumor cells to produce MMP-2, thereby promoting

tumor cell proliferation (32). The mechanism of interaction

between tumor cells and astrocytes (via cytokine networks) is

considerably complex. Studies have shown that tumor cells in
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the CNS can secrete macrophage migration inhibitory factor, IL-

8, and plasminogen activator inhibitor 1, thereby activating

astrocytes; activated astrocytes can secrete IL-6 and tumor

necrosis factor-a (TNF-a). TNF-a and IL-1b promote tumor

cell growth; however, IL-6 receptor expression is down-regulated

in these tumors (33, 34). However, as demonstrated by Sierra

et al. (35), astrocytes also inhibit the growth of tumor cells. This

is mainly mediated by fibrinolytic enzymes in the CNS that cause

shedding of Fas ligand from astrocyte membranes; the secreted

Fas ligand triggers apoptosis of tumor cells (36).

Astrocytes also protect tumor cells from the cytotoxic effects

of chemotherapy. This protection may be mediated by direct

contact with tumor cells and gap junctions (GJs); however,

fibroblasts do not play a similar role (37–39). In this context,

direct connexin 43-mediated intercellular communication

between astrocytes and melanoma cells protects the latter

against chemotherapy-induced apoptosis (40). Direct contact

between astrocytes and tumor cells can also promote the

secretion of IL-6 and IL-8 by tumor cells. Astrocytes then

produce endothelin 1, which binds to the endothelin receptor

of tumor cells to activate the AKT and mitogen-activated protein

kinase pathways; this affects the downstream expression of Bcl-

2-like protein 1, twist family basic helix-loop-helix transcription

factor 1, and glutathione s-transferase alpha 5, thereby

protecting the cells against chemotherapy drugs (41). Murphy

et al. (42) found that connexin 43 can induce resistance to

temozolomide by activating the AKT/AMP-activated protein

kinase/mammalian target of rapamycin signaling pathway in

malignant gliomas. However, studies have shown that connexin

43-mediated intercellular communication can enhance the

cytotoxic effect of chemotherapy drugs in testicular cancer

cells; in this context, studies suggest that GJs can transmit

certain small molecules to induce tumor cell apoptosis (43).

These findings suggest that specific GJ signaling molecules in

tumor cells and the microenvironment can affect tumor cell

sensitivity to chemotherapy in the CNS; they may block or

activate signaling between GJs and offer clinically significant

enhancement of chemotherapy drug effects.

As a key factor in the microenvironment, astrocytes can

interact with tumor cells to influence the biological behavior of

brain metastases via various channels such as cytokine networks

and direct contact. The interaction between the two is complex

and some mechanisms have not been fully understood; this

needs further evaluation (44–46).
Microglia/macrophages

Microglia play an important role in the CNS immune

response (47). They belong to the monocyte-macrophage

system, and it is difficult to distinguish them from circulating

macrophages based on morphological and molecular markers

after activation (48). Animal experiments have shown that in
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metastatic tumor models, microglia/macrophages are mostly

derived from circulating monocytes; original intracranial

microglia represent a minority. Certain studies therefore refer

to activated microglia as microglia/macrophages (49).

The immune system plays an important role in

tumorigenesis and development. Tumor macrophages can be

divided into two types, namely, M1 and M2; the M2

mononuclear macrophage surface antigens CD163 and CD204

lead to secretion of arginase, IL-10, lipopolysaccharide,

interferon g, and transforming growth factor-b1. Cytokines
such as transforming growth factor-b1 promote tumor growth.

Conversely, M1 macrophages show high levels of inducible nitric

oxide synthase expression and secrete IL-1, IL-12, nitric oxide,

and TNF-a, all of which have tumoricidal effect (50). Wei et al.

(48) studied the role of microglia/macrophages in glioma. They

found that the M2macrophages in the tumor microenvironment

promoted glioma cell invasion, angiogenicity, and the formation

of an inhibitory immune microenvironment, resulting in poor

prognosis. Microglia/macrophages serve as the most important

link for immune function in the CNS. It is therefore essential to

identify the types of microglia/macrophages and the

mechanisms of their production in brain metastatic tumors;

this may help to confirm the relationship between the immune

system and tumor cells in the CNS (51).

Data regarding the phenotypic changes of microglia/

macrophages in brain metastases and the related mechanisms

are lacking. Data regarding their impact on the treatment of

tumors are also considerably scarce compared to those on

current popular immunotherapy (52). In vitro experiments

have shown that zoledronic acid can promote phenotypic

changes in CNS microglia/macrophages to inhibit tumor

invasion; clinical data also suggest that zoledronic acid can

reduce the risk of recurrence in patients with breast cancer

(53). However, sufficient clinical evidence is lacking for patients

with brain metastases. Further trials are needed to evaluate the

effect of microglia/macrophages in the treatment of brain

metastasis (52, 54).

Recent research suggests that in addition to astrocytes and

microglia, neurons and neurotransmitters play an important

role in the occurrence and development of metastases (55). Zeng

et al. (56) found that elevated N-methyl-D-aspartic acid

(NMDA) receptor expression promotes the development of

intracranial metastasis in breast cancer. The process is

mediated by a protein subunit of the NMDA receptor, namely,

GIuN2B, which is required for synapse formation and alteration

of synaptic junction intensity; it is highly expressed in both

human and mouse breast cancer cells. NMDA receptors allow

calcium ions to enter the cells; this may be involved in the

development of some human cancers. Zeng et al. (56) also found

that human breast cancer cells express a protein known as

neuroligin, which contributes to intercellular adhesion; it

typically promotes the formation of synapes between neurons.

This suggests that similar to human glioma cells, human breast
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cancer cells may exploit neuronal machinery to establish

synaptic connections. Microscopy of mouse brain tissue

samples containing human breast cancer cells has shown that

the proteins that pack glutamate into vesicles are in close

proximity to NMDA receptors; it also demonstrated the

formation of synaptic structures between cancer cells and

neurons. Compared with the mice that were injected with

breast cancer cells having normal GIuN2B levels, the modified

mice produced smaller brain tumors; they also had longer

survival times with lower GIuN2B expression. This suggests

that GIuN2B-mediated NMDA receptor signaling occurs

through the formation of “pseudo” three-way synapses, which

promote tumor cell colonization and growth in the brain. Several

subsequent studies have shown that brain metastatic tumor cells

can establish synaptic connections with neurons by using the

molecular mechanisms involved in synapse formation between

neurons. Synaptic activity causes depolarization in neurons and

facilitates calcium ion flow, which is necessary for cell

differentiation, proliferation, and survival. In cancer cells, this

process promotes tumor colonization and progression (57, 58).
Blood-brain barrier

The BBB is the structure with which tumor cells first come

into contact during the development of brain metastases. It is

composed of capillary endothelial cells and the tight connections

between them, basal membranes, and dendrites of astrocytes

(59). Under physiological circumstances, the BBB maintains

CNS homeostasis and has an isolating effect on drugs, toxins,

ions, and other substances (60). The tight connections of the

BBB are the key to maintaining its integrity. These are composed

of transmembrane proteins and surrounding proteins; the

transmembrane proteins which constitute the connection

between cells comprise occludin, junctional adhesion

molecules, and the tight junction protein, claudin (mainly

claudin-5 on BBB). The surrounding proteins are distributed

on both sides of the tight junction (52, 61–63). Proteins such as

the atresia band (zonula occludin [ZO]) and the filamentous

actin-binding protein (afadin) maintain BBB stability (64).

Animal experiments have shown that a variety of tumor cell

lines can successfully pass through the BBB (65), and that the

passage of tumor cells through the BBB is the first step in the

formation of brain metastatic foci; however, the specific

mechanism is not fully understood. On comparing differences

in gene expression between brain metastatic lesions and

protocellular cells, Bos et al. (66) found that COX2, a2,6-
sialyltransferase (ST6Gal-I), and EGF can mediate passage of

breast cancer cells through the BBB; they speculated that

ST6Gal-I can specifically mediate brain metastasis by

promoting acidification of endothelial cell surfaces (67). In

patients with colon cancer, a single-nucleotide polymorphism

of ST6Gal-I RS1736858 is highly associated with the risk of brain
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metastasis. The COX2 produced by tumor cells can induce the

production of prostaglandins, which promote high expression of

MMP-1 in tumor cells and degrade claudin and ZO-1 on the

BBB (68). However, Lee et al. (69) suggested that the main

source of COX2 was not the tumor cells, but the endothelial cells

of the BBB. The neuropeptide, substance P, can also facilitate the

passage of tumor cells through the BBB by changing the

distribution and location of ZO-1 and claudin-5. In vitro

studies have shown that small cell lung cancer cells can secrete

placental growth factor after binding to VEGF-1 receptors,

activate the extracellular signal-regulated kinase 1/2 pathway,

promote occludin phosphorylation, and change the tight

connections of the BBB, all of which eventually aid the easy

transport of these cancer cells through the BBB (70).

Cell-secreted vesicle contents can also mediate tumor cell-

induced destruction of the BBB. Studies have shown that miR-

105 secreted by breast cancer cells can be transported across

tight junctions via exosomes to destroy the integrity of the BBB;

this promotes intracranial metastasis of tumor cells (71).

However, some studies suggest that the destruction of the BBB

does not only involve the ZO-1 tight junction protein. Tominaga

and others found that breast cancer cell-secreted extracellular

vesicles can be specifically taken up by endothelial cells of the

BBB; miRNA-181c in the extracellular vesicles can inhibit the

expression of phosphoinositide-dependent protein kinase 1 on

endothel ia l ce l l s of the BBB. Down-regulat ion of

phosphoinositide-dependent protein kinase 1 can reduce

actinin phosphorylation levels and activate cofilin; this causes

conformational changes in actin, disrupts the tight connections

of the BBB, and prompts breast cancer cells to pass through the

BBB. Given the diversity and fragility of the mechanisms by

which tumor cells cross the BBB, it may not be a good

therapeutic target for resistance to tumor invasion (72, 73).

Previous research on the mechanisms of tumor cell penetration

of the BBB has mainly focused on breast cancer; studies on other

cancers are relatively lacking. The presence of different

mechanisms in various tumor cell types therefore warrants

further exploration.

Another component of the BBB, namely, vascular

endothelial cells, mainly interact with metastatic tumor cells

by intercellular adhesion. In the early stages of brain metastasis

in non-small cell lung cancer, tumor cells adhere with

endothelial cells through VLA-4/VCAM-1, ALCAM/ALCAM,

and LFA-1/ICAM-1 binding; these early adhesion molecules can

therefore be used as targets to prevent brain metastasis (74).

Other studies have shown that non-small cell lung cancer cells

that metastasize to the brain have high levels of CD15

expression; they interact with TNF-a-activated CD62E on

endothelial cells to mediate adhesion of tumor cells to

microvessels (74). In addition, the interaction between tumor

and endothelial cells can also promote tumor invasion and

angiogenesis. Activation of the Janus kinase-signal transducer

and activator of transcription pathway in tumor cells can cause
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them to secrete VEGF. In the vascular endothelium, this

pathway is activated after VEGFR2 binding; this increases

MMP-9 secretion and enhances the invasion ability of tumor

cells (75).

The BBB limits antigen presentation and immune cell

infiltration in the normal resting state. In order to enter the

CNS parenchymal space in an inflammatory environment, T cells

must first pass through the endothelial layer followed by the glial

boundary (76). The vascular structure loses its integrity in patients

with brain metastases, and may therefore promote other

restrictions on the entry of peripheral immune cells. However,

the more modern conceptual framework is that the BBB does not

break down, but forms a blood-tumor barrier (BTB) instead;

lymphocytes can pass through the intact BBB via the chemokine

axis and multi-step adhesion process (77). In this context, the BTB

has been shown to have heterogeneous permeability (regulated by

reactive astrocytes); this may drive variable immune cell

infiltration (78). The process of thrombotic inflammation, which

has been recently studied in mouse models of acute stroke,

provides new insights into the possibility of biological overlap

between brain metastases and BBB/BTB immune interfaces.

Studies have shown that clots form preferentially in cerebral

microvasculature and tumor cells form large metastases at the

site of stagnation in blood vessels; cancer cells embedded in the

clot have a higher rate of successful extravasation (79). To date,

minimal progress has been made on transformation strategies

involving the development of BBB/BTB destruction methods,

receptor agonists that alter permeability, radiosensitizing

nanoparticles, and novel delivery platforms, all of which have

been evaluated in phase I clinical trials (80). These focus areas for

future research will not only require increased understanding on

the BBB/BTB itself, but also specific knowledge of its role in

regulating CNS anti-tumor immunity.
Microvasculature in brain metastasis

Adequate blood supply is indispensable for tumor growth.

The microvasculature therefore plays an important role in the

metastasis and growth of tumor cells (81). Pathological findings

from animal models of brain metastases have shown that tumor

cells are mostly distributed around the microvasculature within a

radial distance of 75 mm; tumor cells located 100 mm away from

the microvasculature cannot not survive (82, 83). Kienast et al.

(84) traced the fate of all tumor cells in a brain metastases model

using fluorescence tracing; they found that the tumor cells that

were separated from blood vessels had all died. In this context,

Fidler et al. (85) found that the microvasculature of brain

metastases has low microvessel density. However, the lumen is

characterized by numerous abnormally dilated segments.

VEGF is a key factor in angiogenesis. Earlier experiments have

shown that although it is necessary, its presence is not sufficient

for the formation of brain metastases (86). Studies have shown
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VEGF levels in brain metastases tend to be higher than those of

primary lesions; the levels also correlate positively with

microvessel density (87). In addition to angiogenesis, VEGF can

activate a proportion of dormant cells during brain metastasis,

prompting proliferation to micrometastases (84). A retrospective

analysis showed that the use of bevacizumab can effectively reduce

the development of brain metastases in patients with lung cancer

without increasing the risk of CNS bleeding (88). However, it

should be noted that tumor vasculature formation is affected by

many factors; the regulatory role of other factors therefore need to

be considered (89).
Other cellular components of the brain
metastases microenvironment

Interactions of tumor cells with other cellular components

such as oligodendrocytes, circulating immune cells, and CNS

interstitial components have been less studied (90). Studies using

natural killer cells in animal models of breast cancer or glioma

showed that they inhibited the growth of glioma cells and human

epidermal growth factor receptor (HER)-positive breast cancer

cells. However, in animal models of breast cancer with brain

metastases, CD11b-positive myeloid cells have been found to

aggregate and form the “soil” for early tumor metastasis; this

further releases the inflammatory factors S100A8 and S100A9,

inducing tumor cell chemotaxis (91). Cancer associated

fibroblasts have been found in human tumors of the CNS;

research suggests that these fibroblasts promote tumor cell

invasion (7).
Biological characteristics of tumor
cells in the brain metastases
microenvironment

In the process of tumor metastasis, a series of biological

changes occur in cells of distant metastatic foci to enable

adaptation to the microenvironment (92–94). The alterations

may manifest at the deoxyribonucleic acid (DNA) or epigenetic

levels, thereby influencing phenotypic changes in tumor cells

(Figure 1). The biological characteristics of brain metastatic

tumor cells have been explained from the aspects of genetic

alteration, post-translational modification, and metabolic

characteristics of brain metastatic tumors (95).
Gene changes in brain metastatic tumor
cells

Brastianos et al. (96) examined 86 metastatic brain lesions

and their matching primary lesions based on focal point
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mutations and copy number variations (CNVs), which map the

evolutionary tree of tumor cells by calculating the individual

cancer cell fraction. They estimated the homology between cells

by measuring the number of gene copies near the mutation at

the checkpoint, and found that although the tumor cells from the

metastases and primary lesion originated from the same

ancestor, they had different subclones. They also found

homology between subclonal tumor cells from multiple

intracranial foci. A series of other related studies (Table 1)

have confirmed different genotypic changes such as single

nucleotide variations, CNVs, deletion, and amplification,

among others, between the primary and metastatic brain

lesions. The changes mainly involve activation of multiple cell

signaling pathways, apoptosis, and cell adhesion, and partially

explain the mechanism of development of brain metastases (100,

101, 103, 104).

Studying the patterns of change and the mechanisms by

which they arise may provide promising therapeutic targets for

brain metastases (99). In this context, a study on 86 patients
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with breast cancer showed the presence of clinically relevant

therapeutic mutations in metastatic lesions from the brain;

these included mutations of HER2, EGFR, the B-Raf proto-

oncogene, and AKT. These genes were not detected in the

primary lesion. The CNVs of HER1 and HER2 were higher in

the metastatic brain lesions than in the primary lesion;

however, the CNVs of hormone receptors including the

estrogen and progesterone receptors had decreased (105).

Genetic alterations such as fibroblast growth factor receptor

amplification and B-Raf proto-oncogene and neuroblastoma

RAS hotspot mutations can also be detected in brain metastases

(Table 1) (98, 106).
Epigenetic changes in the brain
metastases microenvironment

A study had compared the whole genome methylation

levels of tumor cells in brain metastases of nude mice with
TABLE 1 Gene profile changes in brain metastasis tumor Microenvironment.

Study Primary tumor
(number)

Matched brain
metastasis

Gene profiles Implication

Sherise
D.Ferguson et al.
(97)

lung cancer (8178)
Breast cancer(7064)
Melanoma(757)

293
99
101

Mutation: RRM1,TS,ERCC1,TOPO1 DNA synthesis and repair and implicated in
chemotherapy resistance

Brastianos PK
et al. (94)

Lung cancer (38)
Breast cancer (21)
Renal carcinoma
(10)
Others (17)

15
12
3
8

Mutation : CDK,MLC1,HER2,EGFR,BRAF,MEK Cell cycle proteins;
PI3K/AKT/mTOR pathway;
HER family;
RAF/MEK/ERK pathway;

Bollig-Fischer
et al. (98)

Breast cancer (10) 4 Amplification : HER2 HER family

Li F
et al. (95)

Breast cancer(1) 1 CNV : Gain:Gain: 1p33-p34, 1q22, 5p13,
14q11
Loss:3p, 4q31, 5q, 11p15, Xp21-22,
Xq21

CNV Gain: leukocyte migration
and organ development;
CNV Loss: proteolysis, negative
regulation of cell proliferation
and cell adhesion

Preusser M et al.
(99)

Lung cancer(175) 175 Amplification : FGFR1 FGF/FGFR pathway;

Chen G et al. (96) Melanoma (74) 30 CNV:generally identical BRAF,NRAF,CTNNB1 hot
spot; Mutation : TP53;Loss : PTEN

CNV and hot spot mutations:
generally identical

Lo Nigro C et al.
(100)

Breast cancer (23) 23 Mutation : TP53 Anti-oncogene mutation

Wikman H et al.
(37)

Breast cancer (128) 15 Loss : PTEN PI3K/AKT/mTOR pathway

Ding L et al. (93) Breast cancer (1) 1 WWTR1, SNV : NRK, PTPRJ,CNV:80.65% overlaps SNV missense mutation;
19.35% of CNV difference

Gaedcke J et al.
(101)

Breast cancer (102) 85 CNV : Gain:EGFR,HER2;Loss : ER,PR HER pathway;
Estrogen and progesterone
receptors

Arai T et al. (103) Lung cancer (11)
Gastric cancer (9)
Esophageal cancer
(1)
Breast cancer (1)

7
6
1
1

Amplification : HER2,EGFR HER family
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those of subcutaneous tumor models of melanoma, lung

cancer, stomach cancer, and other cell lines; the methylation

levels of a series of transcription factors such as transcription

factor 4, purine rich element binding protein B, one cut

homeobox 2, estrogen related receptor gamma, nuclear factor

IB, and myocyte enhancer factor 2C were found to differ

significantly in the brain metastases model. In particular, the

difference in transcription factor 4, a transcription factor

related to neurodevelopment, was the most obvious (107).

Tumor cells that metastasize to the brain have unique gene

expression profiles owing to these changes (108). Marzese et al.

(109) also observed an inconsistency in methylation levels

between brain metastases and extracranial lesions of human

melanoma; methylation levels were significantly increased in

the promoter range of the homeobox A9 gene (among

members of the homeobox family), a transcription

component that encodes multiple genes and induces changes

in neuro development-related genes (110). In a study on breast

cancer, the methylation levels of genes such as polypeptide N-

acetylgalactosaminyltransferase 9, coiled-coil domain

containing 8, and basonuclin 1 were significantly higher in

brain metastases than in the primary lesions; in vitro silencing

of the mentioned genes could enhance the invasion ability of

tumor cells (Table 1) (111). Changes in methylation levels of

tumor cells in the CNS may be responsible for changes in

tumor phenotype; however, the mechanism for the changes is

not fully understood.

Recent studies have confirmed that micro ribonucleic acids

(miRNAs) are one of the key factors affecting protein

expression after transcription (112). By comparing miRNA

levels between the primary lesion and brain metastases, Zhao

et al. (113) identified a group of down-regulated miRNAs in

patients with lung cancer; these included miR-145, miR-214,

miR-9, and miR-1471. Among these, miR-145 was the most

obviously down-regulated. In this context, the down-regulation

of miR-145 may promote the proliferation of the A549 and

SPC-A1 cell lines in lung cancer. Previous studies have shown

that miR-145 can affect the proliferation and invasion of lung

cancer cells by participating in the regulation of c-Myc, EGFR,

and nudix hydrolase 1 expression (114). MiR-145-5p, another

member of the miR-145 family, was also found to be

significantly down-regulated in patients with brain

metastases from lung cancer; this increased the expression

levels of downstream EGFR, octamer-binding transcription

factor 4, mucin 1, c-Myc, and tumor protein D52. In this

context, the down-regulation of miR-145-5p was caused by

initiation of interval methylation (115). MiR-141-3p and miR-

200b-3p of the miR-200 family have also been found to be

significantly up-regulated in metastatic brain lesions than in

primary tumors; they down-regulate zinc finger E-Box binding

homeobox 2 expression, thereby affecting the proliferation and

invasion ability of tumor cells (116).
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Characteristics of tumor cell metabolism
in the microenvironment of brain
metastases

The CNS has an abundant blood supply, with a blood flow

that accounts for 1/5 of the total body volume; blood and energy

supplies to the CNS are therefore relatively sufficient (117). Due

to the presence of the BBB, the levels of glucose in the interstitial

fluid of the CNS are lower than those in the blood. However, it

has abundant levels of branched-chain amino acids such as

leucine, valine, isoleucine, and glutamic acid (118).

Compared to the invasion and proliferation characteristics

of brain metastases, the metabolic characteristics of tumor cells

in the CNS have been relatively underexplored (119). Chen et al.

(120) compared the levels of protein expression related to energy

metabolism between tumor cells in brain and bone metastasis

models; they found that unlike common tumor cells which rely

predominantly on anaerobic metabolism, tumor cells in the CNS

actively demonstrate tricarboxylic acid cycle-oxidative

phosphorylation with activation of the pentose phosphate

pathway. This may induce resistance of tumor cells to certain

antimetabolite chemotherapy drugs such as D-2-deoxyglucose

(121). Chen et al. (122) found that breast cancer cells that

metastasize to the brain have greater tolerance to low sugar

levels than their parent cells; they also express more glutamate

dehydrogenase and a-ketoacid dehydrogenase to use the

glutamic acid and branched-chain amino acids available in

the environment.

In terms of lipid metabolism, Chen et al. (120) found fatty

acid-b oxidation-related enzyme profile expression to be higher

in the animal brain metastases model than in the bone

metastases model. However, the human breast cancer brain

metastases tissue chip showed the expression levels of acetyl-

CoA oxidase-1 and fatty acid synthase to be higher than those of

metastases to other sites. This suggests that the processes of lipid

synthesis and catabolism were more active in the metastatic

brain lesions (123).
Tumor cells in the brain metastases
microenvironment acquire nerve cell
properties

Park et al. (107) found that tumor cells in animal models of

brain metastasis from lung cancer, melanoma, and colon

cancer showed certain characteristics of neuronal cells; the

levels of glutamate signaling pathway proteins and

neurotransmitter complex proteins such as synaptosomal-

associated protein 25 and synaptosomal-associated protein 91

were significantly increased. Similarly, brain metastases models

of human breast cancer showed the expression of g-
aminobutyric acid (GABA) receptors and transaminase
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sources to have increased; this allows tumor cells to use the

available GABA in the CNS for various metabolic activities

(124, 125). Nygaard et al. (126) found the expression of

glutamate-related signaling pathway signaling proteins,

glutamate receptor ionotropic AMPA 2 and glutamate

metabotropic receptor 4, to have increased in patients with

melanoma brain metastases and animal models; this promotes

the growth of tumor cells. Studies have also shown that plasmin

found in the CNS can induce apoptosis of tumor cells; however,

breast and lung cancer cell lines highly express neuroserpin, a

neuronal inhibitor of plasminogen activator, thereby evading

the pro-apoptotic effect of plasmin (127). This finding may be

based on the fact that high levels of chloride in the interstitial

fluid have a damaging effect on non-neuronal cells; coupled

with the abundant neurotrophic factors, glutamate, and other

substances in the CNS, this may induce certain neuronal

properties in tumor cells to make them more suitable for

survival in the CNS microenvironment (128).
Role of exosomes in the brain
metastases microenvironment

Exosomes are membranous vesicles with a diameter of

between 30-100 nm; they have a lipid bilayer; can be secreted

from all kinds of cells; are present in serum, urine, saliva, and
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other human body fluids; and can be separated and purified by

ultracentrifugation, density gradient centrifugation, and other

methods (129). Exosomes have a considerably complex

composition, and include a variety of lipids, proteins, mRNAs,

miRNAs, long non-coding RNAs, circular RNAs, and DNA.

Advances in exosome-related research in recent years is

gradually revealing the causes for organ propensity of

metastatic tumors (102). Hoshino et al. (130) found that

tumor exosome integrin expression profiles determine the

organ propensity of tumor metastasis; they also found that

ingestion of exosomes in the brain can create a pre-metastatic

microenvironment for tumor metastasis. This suggests that

exosomes can alter the pre-metastatic microenvironment to

help target tumor localization (Figure 1). Studies also suggest

that CD46 found on endothelial cells of human cerebral

microvasculature is a receptor that mediates melanoma

exosome uptake; this further confirms the role of exosomes in

tumor targeting (131). Exosomes can also help target the

localization of tumors by altering the manner by which energy

is metabolized. Fong et al. (130) found that cancer cells inhibit

glucose uptake by non-tumor cells; they down-regulate pyruvate

kinase, and thereby glycolysis, in the pre-metastatic

microenvironment by secreting high levels of exosomal miR-

122. This suggests that exosomes can also promote tumor brain

metastasis by changing glucose uptake in the pre-metastatic

microenvironment (Table 2) (134).
TABLE 2 The role of exosomes in brain metastasis.

Study Exosomal original Exosomal
cargo

Role in brain metastatic process

Umeze et al.
(132)

Multiple myeloma miR-135b promotes neoangiogenesis

Fong et al.
(130)

Breast cancer miR-122 Reduces glucose uptake in normal brain cells

Wu et al. (133) Non-small cell lung cancer Lnc-MMP2-2 Destroys the tight junctions of the BBB

Tominaga et al.
(72)

Breast cancer miR-181c Destroys the BBB by modulating the actin
dynamics

Zhang et al.
(134)

Normal astrocytic cells PTEN targeting
miR-19a

Reduces PTEN expression in brain metastatic
tumor cells

Lu et al. (65) Breast cancer Lnc GS1-
600G8.5

Disrupts the BBB by targeting the tight junction
proteins

Zhou et al.
(133)

Breast cancer miR-105 Destroys the endothelial cell barrier by down-
regulating ZO-1 tight junctions

Satelli et al.
(135)

Lung cancer Vimentin promotes vimentin expression in the brain
metastatic and induces EMT

Xing et al.
(136)

Breast cancer miR-503 Induces the release of tumoral growth
factors and microglial reprograming
leading to immune suppression microenvironment

Zhi et al. (137) Lung cancer S100A16 Improves the survival of SCLC metastatic cells in
cerebrum

Rodrigues et al.
(138)

Lung and breast cancer CEMIP Induces a proinflammatory vascular niche,
promoting metastasis

Puigdelloses
et al. (139)

Lung cancer, breast cancer, colorectal cancer, melanoma, pancreatic cancer,
gastroesophageal cancer, bladder cancer

RNU6-1 Regulates tumoral growth rate
frontiersin.org

https://doi.org/10.3389/fonc.2022.983878
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Aili et al. 10.3389/fonc.2022.983878
The role of exosomes in the proliferation
of brain metastases

Stromal cell exosomes promote the
proliferation of brain metastases

Phosphatase and Tensin homolog deleted on chromosome

ten is a tumor suppressor gene with phosphorylation activity,

that regulates the apoptosis and proliferation of tumor cells

(140). Zhang et al. (141) found that exosomal miRNA-19

produced by astrocytes can target the inhibition of

Phosphatase and Tensin homolog tumor suppressor genes,

resulting in increased secretion of chemokine ligand-2 and

nuclear factor kappa-B; this promotes the growth of brain

metastases. This shows that stromal cell exosomes found in

the microenvironment can promote tumor cell growth by

carrying miRNAs to influence tumor cell proliferation and

inhibit apoptosis (Table 2; Figure 2).
Exosome-regulated immune mechanisms
promote tumor cell proliferation

Metastatic exosomes can change the microenvironment to

promote tumor cell proliferation (142). A study on breast cancer

brain metastases found that X-inactive specific transcript deletion
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increased the secretion of exosomal miR-503, which was

transmitted to microglia; this led to M1-M2 transformation and

inhibition of T cell proliferation, enabling tumor immune evasion

(136, 137). This confirms that tumor cell exosomes can regulate

immune cells to enable tumor cell immune escape mechanisms and

provide conditions for tumor cell proliferation (Table 2; Figure 2).

Exosomes regulate the stability of tumor cells
A variety of apoptotic mechanisms are often accompanied

by a decrease in mitochondrial membrane potential (143). Xu

et al. (144) found that exosomes can prevent the loss of

mitochondrial membrane potentials through the prohibitin 1

protein present on mitochondrial membranes; tumor cells can

therefore tolerate apoptosis in a stressed environment. This

indicates that exosomes can regulate tumor cell stability and

promote tumor cell proliferation by influencing mitochondrial

membrane potential (Figure 2).
Diagnostic significance of exosomes in
brain metastases

Liquid biopsy technologies are rapidly gaining attention

because of their rapid and non-invasive characteristics.
FIGURE 2

The role of exosomes in brain metastases. The first mechanism of primary tumor exosomes is that they can promote their own progression and
metastasis. The second general mechanism is that exosomes derived from primary tumor cells promote the proliferation of brain metastases,
regulated immune mechanism to promote tumor cell proliferation, and regulate the stability of tumor cells, and can be useful diagnostic and/or
prognostic biomarkers.
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Common techniques for tumor fluid biopsy include traditional

circulating tumor cell detection, circulating tumor DNA

detection, and tumor cell exosome detection (144, 145).
Advantages of exosomes in diagnosis
Exosome-based diagnosis offers the following advantages:

(1) exosomes exist in almost all body fluids, are easier to enrich,

and are more sensitive to current detection methods, and (2)

they have high stability, allowing a large number of specific

proteins to be isolated at temperatures as low as -80°C. However,

exosome-related research has started recently and there is a

paucity of cumulative data from studies; further in-depth

research and analysis is required (146).
Prospects of exosomes in the diagnosis of
brain metastases

In recent years, studies have focused on the role of exosomes

in brain metastases (147). Camacho et al. studied the miRNA

and protein profiles of brain metastasis-competent exosomes

(148). Multiple proteins pertaining to cell communication, the

cell cycle, and key signaling pathways involved in cell invasion

and metastasis are promising biomarkers for brain metastases.

Although exosomes are still in their infancy as biomarkers for

the diagnosis of brain metastases, they are already in use for the

diagnosis of lung cancer. Exosome Diagnostics made a major

breakthrough in 2016 with the ExoDx™ Lung (ALK) technology

for detection of exosomal miRNA by analysis of blood samples;

this is being widely used. Combining exosomal miRNA and

circulating tumor DNA analysis can increase diagnostic

sensitivity by approximately 3-fold compared to circulating

tumor DNA-based diagnosis alone (149).
Exosomes can be used as targets and tools for
the treatment of brain metastases

Exosomes are involved in almost all processes of brain

metastasis including cell genesis, metastasis, and proliferation.

It is possible to target exosomes and the corresponding nucleic

acids and proteins to treat the corresponding tumors; this

provides new concepts for the treatment of brain metastases

(150). In a recent study, Yang et al. (151) found that exosomes

secreted by tumor cells contain functional programmed death-1

(PD-L1) protein, which can be transferred to other cells to

inhibit T-cell resistance; binding of PD-1 to T cells inhibits

anti-tumor immunity and protects the tumor cells. Inhibiting

the secretion of PD-L1-containing exosomes by knocking down

Rab27a or applying the inhibitor GW4869 can lead to

meaningful anti-cancer effects. This offers a major step

towards precision and individualized treatment of brain

metastases (152).

The BBB has always been the greatest challenge in the

treatment of brain metastases. Most traditional chemotherapeutic

drugs and large molecule targeted drugs are denied entry by the
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BBB, thus making the CNS a sanctuary for survival and

multiplication of metastatic cells (153). As a drug delivery

system, exosomes may effectively address the issue BBB

permeability to chemotherapy drugs (154). There are two main

types of drug delivery methods for exosomes: exogenous and

endogenous (155). Exogenous drug delivery requires the

extraction of exosomes from donor cells and the delivery of

small molecules (paclitaxel, adriamycin, and curcumin, among

others) or gene-based drugs (e.g., small interfering RNA) into the

exosome by electroporation (156). The endogenous drug delivery

method carries the drug out of the cell via exosome secretion after

the drug enters the donor cell; the drug-loaded exosome is finally

extracted (157). Reversible protein-protein interaction molecules

have been designed for large molecule proteins; these are

controlled by blue light to allow integration into the endogenous

pathway of exosome production, and are successfully loaded as

“cargo proteins” into the new exosomes. This provides an

important method for carriage of large molecule proteins by

exosomes (158). Yang et al. (159) reported that exosomes

derived from endothelial cells of mouse brain microvasculature

can effectively deliver antitumor drugs in vivo across the BBB to

inhibit tumor growth. This is indicates the advantages and

possibilities of exosome treatment for brain metastases.
Discussion

Changes in the biological properties of brain metastatic

tumor cells and the interaction between tumor cells and their

microenvironment may explain the relatively inefficient

metastatic process of tumor cell colonization and growth in

the intracranial “soil.” However, it is unclear whether the cranial

microenvironment plays a screening or inducing role in the

altered biological behavior of tumor cells in metastatic lesions

(160). A study that examined genome-wide methylation levels of

lung cancer and melanoma cells co-cultured with astrocytes

partially replicated the altered methylation profile in animal

models of brain metastasis; this suggests that astrocytes can

cause changes in methylation levels in tumor cells (161).

However, McDermott (162) proposed a model in which CNS

microenvironment components such as astrocytes and microglia

interacted with tumor cells to produce certain cytokines; these

cytokines altered miRNA levels in tumor cells, which in turn

affected the expression of the corresponding target genes.

Several studies have shown that tumor cell exosomes are

closely related to tumor metastasis. The alteration of the cranial

microenvironment and targeted migration of cancer cell exosomes

are particularly important for the development of lung cancer

brain metastases. In this context, exosomes play an important role

in the tumor microenvironment and are directly or indirectly

involved in intercellular signal transduction, tumorigenesis, and

progression in the tumor microenvironment (163). For example,

exosomes secreted by lung cancer cells contain oncogenes and
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they target the tumor microenvironment, thus promoting tumor

progression (164). Exosomes are involved in DNA methylation,

histone modification, post-transcriptional regulation, and RNA

regulation. The relevant substances delivered by exosomes reflect

the state of the cell, and exosomes originating from tumor cells

may alter the tumor and promote the expression of tumor

suppressor genes in recipient cells. Thus, exosomes in body

fluids (including blood) may serve as biomarkers of cancer, and

the detection of these biomarkers may be used for diagnosis or

prognostic assessment of cancer.

As a target system, exosomes are expected to effectively

promote the development of medical oncology. The relationship

between exosomes and brain metastases needs to be explored

further to understand the intrinsic mechanisms of exosome

structure and their interactions with regulatory proteins (165–

167). Along with the in-depth study of exosomes in brain

metastases, their monitoring can aid the screening of

susceptible or high-risk groups, clinical diagnosis, molecular

staging, prognosis assessment, recurrence or metastasis

prediction, and efficacy evaluation. In particular, the

monitoring of exosomes may aid the formulation of brain

metastases prevention strategies and the establishment of a

risk evaluation system.
Conclusion

In conclusion, the metastatic tumor microenvironment is a

complex biological system. The mechanisms of metastasis

formation and regulation that are associated with the

microenvironment are areas of particular interest in cancer

research. Findings indicate that the factors in the

microenvironment that promote the formation of metastases

are interrelated and interdependent. The proposed “seed and

soil” hypothesis provides a broad framework for addressing the

growth of brain metastases. As metastasis is almost always

closely related to the formation and alteration of the

microenvironment in a large number of cancers, continuous
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research on the microenvironment will improve understanding

on the mechanisms of metastasis development and provide new

targets for their diagnosis and treatment. Finally, as new

therapeutic tools, exosomes are expected to be ideal markers

for the early diagnosis of brain metastases and new targets for

their treatment.
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