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Abstract 

The present review aimed to discuss contemporary scientific literature involving differences between the tumor 
microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metasta‑
ses (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibro‑
blasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis 
via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and 
are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most 
frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and 
melanoma. Metastatic cancer cells have to adhere to and penetrate the blood–brain barrier (BBB). After traversing 
BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. 
The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic 
targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several 
factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the 
primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
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Background
The tumor microenvironment (TME) consists of cel-

lular and noncellular components. Cancer and noncan-

cerous cells, immune cells, blood and lymphatic vessels, 

and niche cells belong to the cellular component of TME. 

The noncellular component is encompassed by cytokines, 

chemokines, mediators, and growth factors and can 

influence and be influenced by cancer cell growth [1]. 

Further, the extracellular matrix (ECM) is an element of 

TME. Metastatic spread is a process wherein cancer cells 

move from their primary location to a distant site, colo-

nizing and growing in a new location, and is considered 

a cancer hallmark [2]. The tumor and the microenviron-

ment (ME) that surrounds it are necessary to initiate a 

series of steps to invade, colonize, and grow in a distant 

tissue for induce metastasis [1].

Early research on TME in metastases dates back to 

1889 with Stephen Paget’s theory of “seed and soil,” 

wherein seeds (tumor cells) prefer to grow on a different 

soil (organ), i.e., ME. This theory has been a cornerstone 

for the development of anti-angiogenic and immunologi-

cal therapies directed toward TME [3–5]. The ability of 

a cell to form a tumor is context dependent, where one 

environment may promote tumor growth but another 

will not [6]. Therefore, it is vital to understand the ME 

more completely.

For metastasis to occur, several steps should transpire: 

(1) Invasion (outside the basement membrane) by the 

promotion of cell motility, induction of epithelial-to-

mesenchymal type transition (EMT), and secretion of 
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molecules that modulate ME, (2) intravasation into local 

blood and lymphatic vessels, (3) survival and transit of 

cancer cells to the circulation/lymphatics, also known 

as circulating tumor cells (CTCs), (4) arrest/arrival and 

extravasation at a secondary or foreign tissue, and (5) 

colonization at secondary sites. These steps in which 

tumor cells are established at another cell niche are not 

an intrinsic program. Metastasis is a complex and multi-

faceted process that has an influence on the tumor cells 

(mutations, epigenetic changes, and characteristics) as 

well as on the availability of growth factors, interaction 

with other tumor cells, and new surrounding ME [1].

Brain metastases (BM) are more frequently observed 

in everyday practice, occurring in approximately 20% all 

patients with cancer [7]. The present review discusses 

contemporary medical literature involving differences 

between TME in melanoma, lung cancer, and breast 

cancer in their primary site and TME in their BM. We 

describe general concepts such as the primary TME, 

exosomes, EMT and mesenchymal-to-epithelial type 

transition (MET), CTC, and TME in BM.

The primary tumor microenvironment
The cellular component of TME includes cancer and 

noncancerous cells, immune cells, mesenchymal stem 

cells, endothelial cells, niche cells, cancer-associated 

fibroblasts, and adipocytes that can promote tumor 

growth [8]. Mesenchymal stem cells are adult stem cells 

that can be isolated from the bone marrow; are posi-

tive for CD105, CD73, and CD90; and can differenti-

ate into osteoblasts, adipocytes, and chondroblasts [9]. 

Mesenchymal stem cells support tumor growth through 

immunosuppression by downregulating the surface HLA 

class I and antigen-specific T cell recognition of cancer 

cells by cytotoxic T lymphocytes (CTLs) in vitro [10]. In 

addition, they suppress the proliferation, activation, and 

effector functions of CTLs through the generation of 

adenosine [11].

Immune cells in TME are important. An inflammatory 

infiltrate is essential for tumor development. The immune 

system selects cancer cells and helps them escape the 

immune surveillance system [12]. Cancer-associated 

macrophages, mast cells, monocytes, natural killer cells, 

and the innate immune system preserve carcinogenesis 

because the proinflammatory ME mediated by interleu-

kins (ILs), such as IL-6, and tumor necrosis factor (TNF) 

activate the nuclear factor (NF)-kB, which regulates other 

transcriptional factors for EMT to ensue [3].

Secretion of IL-8 by cancer-associated macrophages is 

one of the most relevant factors in EMT [3]. Cancer cells 

that undergo EMT and appear mesenchymal (m-cars) 

promote metastasis and neovascularization within the 

tumor. Angiogenesis is fundamental because it provides 

nutritive components and serves as a metastatic path-

way [3]. Vascular endothelial growth factor (VEGF)- and 

VEGF receptor 2 (VEGFR2)-mediated signaling play an 

important role in angiogenesis [13]. Additionally, oxygen 

is an essential factor for the occurrence of EMT.

Low oxygen regions within the tumor generate 

hypoxia-induced factor (HIF) expression. HIF1 and 

HIF2 promote the expression of other transcription fac-

tors including Twist, Snail1, Zeb-1, BMI1, and Notch 

[3]. Twist1 is associated with the acquisition of stem 

cell properties and enhancement of metastasis [14, 15]. 

Hypoxia generates the differentiation of m-cars into 

endothelial cells. Moreover, m-cars promote the process 

of angiogenesis by secreting VEGF, IL-8, and fibroblast 

growth factor (FGF), improving the nutritive and oxy-

genation conditions of the ME, and promoting the meta-

static cascade, because the new vessels are permeable to 

both cells and macromolecules [16, 17]. VEGF stimulates 

vascularity and miRNA-105 secretion that interrupts the 

zonula occludens-type cell junctions in the endothelium 

as well as the interaction with the α2β1-Cadherin integ-

rin complex, which favors the contact of the metastatic 

cells with the endothelium [16, 17]. Once m-cars are dis-

seminated into the circulatory system as CTCs, it is cru-

cial that they follow the continuous endothelial signals 

for their survival. Signals including the epidermal growth 

factor (EGF), transforming growth factor beta 1 (TGF-

β1), and thrombospondin 1 mediate the proliferation and 

quiescence of cancer cells during dissemination [18].

TME promotes lymphangiogenesis, which in turn pro-

motes cancer cell dissemination. Lymphangiogenesis 

and the remodeling of lymphatic networks significantly 

enhances metastasis by secreting VEGF-A/C/D, IL-1β, 

FGF, and periostin and activating the sympathetic nerv-

ous system [1].

Exosomes

Exosomes are 30–200-nm membrane vesicles filled 

with proteins, soluble factors, ribonucleic acid (RNA), 

or micro-RNA (miRNA). Exosomes can be secreted 

by some cancer cells to communicate with other cells. 

Exosomes are capable of inducing ME changes in a dis-

tant cellular niche, including the cellular matrix, and 

inducing adhesion molecule and integrin expressions 

[18]. In cell lines, compared with non-BM cell-derived 

exosomes, a dysregulation in miRNAs and proteins 

in BM cell-derived exosomes has been demonstrated; 

increased adhesion and invasion properties in non-BM 

cells were observed when they were incubated with BM 

cell-derived exosomes [19]. Some long noncoding RNA 

(lncRNAs) are enriched in exosomes, whereas their 

endogenous expression is low. Interestingly, microRNAs 
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perform cell-independent biogenesis within cancer cell 

exosomes [17].

miRNA

miRNA are small noncoding RNA molecules, ranging 

from 20 to 25 nucleotides in length, that can function as 

gene regulators by the inhibition of target mRNA transla-

tion and deregulation of several bioprocesses, such as cell 

development, cell differentiation, cell proliferation, and 

apoptosis [20]. Over 2000 miRNA have been identified 

in humans and regulate approximately 30% of all human 

genes. miRNA can both inhibit cancer development 

and enhance oncogenic mechanisms (i.e., oncomiRNA). 

Table  1 describes specific miRNAs associated with 

the suppression or promotion of BM and the primary 

tumor. Metastatic cells harbor an endogenous deregu-

lated expression of miRNA and other noncoding RNA 

(ncRNA) to promote their mobility and survival [17].

In breast cancer cells, several miRNA expression pro-

files have been found to modify the process of initiation, 

progression, and maintenance [21]. The expressions of 

miR-31, miR-126, and miR-335 have been shown to sup-

press metastases in vivo [20]. miRNA-509 [22] is another 

metastasis-suppressive miRNA that downregulates the 

expressions of the RhoC and TNF-α genes. RhoC is a 

well-known oncogene that enhances the migration and 

invasive ability of cancer cells, and TNF-α increases the 

blood–brain barrier (BBB) permeability and penetration 

of cancer cells into the brain [22]. In  vivo experiments 

have shown that low expression of miRNA-509 leads to 

high secretion of matrix metalloproteinase (MMP)-9 

induced by the RhoC and TNF-α pathways, which have 

not yet been completely elucidated. MMP-9 is a protein-

ase involved in cancer cell migration and extravasation. 

Cancer stem cells that are highly metastatic to the brain 

express lower miRNA-7, modulating the stem-like capac-

ity of cancer cells through KLF4 expression in breast 

cancer cell lines and nude mice [23]. KLF4 is one of the 

induced pluripotent stem cell (iPS) genes required for the 

maintenance of stemness of progenitor cells [23].

In lung cancer, studies have shown that miR-328 pro-

motes brain metastasis in non-small cell lung cancer, 

possibly by the upregulation of protein kinase C alpha 

(PRKCA). High levels of PRKCA have been correlated 

with an increased migration in cancer cells, which is sig-

nificantly reduced after the suppression of miR-328 [17] 

[24]. Moreover, miRNA-378 has been implicated in pro-

moting BM and appears to increase its risk by promoting 

cancer cell migration, invasion, and angiogenesis [25]. In 

contrast, miRNA-145 was observed to be low in BM and 

directly targets mucin 1 (MUC1), a gene associated with 

the metastatic ability of cancer cells. The suppression of 

MUC1 decreases the levels of ß-catenin and cadherin 

11, which correlate with a decreased cell invasion capac-

ity [26]. miRNA-210 is overexpressed in BM cell-derived 

exosomes from melanoma, ovarian, and breast cancer 

cell lines, and a downregulation of miRNA19a and miR-

NA29c has been observed in BM exosomes [19].

lncRNA

lncRNA are RNA molecules with a length of > 200 nucle-

otides. Although they do not encode proteins, lncRNA 

can alter gene expressions, even after transcription. 

Furthermore, lncRNA affects mRNA splicing, transpor-

tation, and translation. Metastasis-associated lung ade-

nocarcinoma transcript 1 (MALAT1) is overexpressed in 

some tumors, including non-small cell lung cancer that 

metastasizes to the brain by inducing EMT [27]. The 

exact mechanism remains unknown. Moreover, BM from 

non-small cell lung cancer exhibits a high expression of 

HOX transcript antisense intergenic RNA (HOTAIR). 

In  vitro studies have reported that HOTAIR enhances 

cell migration and anchorage-independent cell growth 

[28]. The exact role and target remain unknown.

Cancer cells secrete noncoding RNA. In addition, 

tumor-associated macrophages reportedly deliver 

miRNA-223 to cancer cells through exosomes or 

microvesicles in vitro and in vivo, which correlates with 

its invasion ability [29]. miRNA-223 increases the inva-

siveness in numerous co-cultivated cancer cells, includ-

ing melanoma, lung, and breast cancer cells [30]. The 

following aspects have been associated with the secre-

tion of exosomes by cancer cells and tumor-associated 

macrophages: modulation of the ME to support tumor 

growth and survival, angiogenesis, evasion of immune 

surveillance, invasion and metastasis, acquisition of an 

aggressive phenotype and multidrug resistance through 

drug efflux from cells [29].

Epithelial‑to‑mesenchymal type 
and mesenchymal‑to‑epithelial type transitions
A key concept for the occurrence of metastasis is EMT. 

Most neoplasms originate within an epithelium and then 

invade the adjacent connective tissue to reach deep tis-

sues (a carcinoma–mesenchymal-type cell). In EMT, 

malignant epithelial cells express properties similar to 

fibroblasts and exhibit increased cell adhesion and motil-

ity, which facilitates the escape of tumor cells from the 

primary niche [31]. Metastatic cells from several carci-

nomas appear less dedifferentiated compared with their 

corresponding primary tumors [31], which is inconsist-

ent with the EMT-only theory. Therefore, a MET pro-

cess is required as part of the progression of metastatic 

tumor formation. EMT is critical for the initial transfor-

mation of benign to invasive carcinoma, whereas MET 

is critical for later stages of metastasis [31]. The greater 
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Table 1 Different protein expression (A), miRNA expression (B), epigenetic changes (C) and  mutations (D) 

between the primary tumor and their brain metastasis

PD-1 programmed cell death protein 1, PDL-1 programmed death‑ligand 1, EGFR epidermal growth factor receptor, Her-2 human epidermal growth factor receptor 2, 

A.R. androgen receptor, E.R. estrogen receptor, P.R. progesterone receptor, PTEN phosphatidylinositol‑3,4,5‑trisphosphate 3‑phosphatase, TOP2A DNA topoisomerase 

2‑alpha, TOPO1 topoisomerase I, ERCC1 repair protein by excision of the cross‑complementation group 1, cMET tyrosine‑protein kinase Met, RRM1 ribonucleotide 

reductase catalytic subunit M1, TS thymidylate synthetase, GABA-R γ‑aminobutyric acid, TrkB tropomyosin receptor kinase B, P75NTR neurotrophin receptor p75, STAT3 

signal transducer and transcription activator 3, GAD-1 glutamate decarboxylase 1, MALAT-1 metastasis associated lung adenocarcinoma transcript 1, DNMT1 DNA 

(cytosine‑5)‑methyltransferase 1, DNMT3B DNA (cytosine‑5)‑methyltransferase 3B, MGMT O6‑methylguanine‑DNA methyltransferase, BRAF B‑Raf protein gene, ABL-1 

serum albumin 1, EGFR epidermal growth factor receptor gene, KRAS K‑ras protein gene, PIK3CA phosphatidylinositol 4,5‑bisphosphate 3‑kinase catalytic, NRAS N‑ras 

protein gene, TP53 p53 protein gene, BRCA1 breast cancer type‑1, BRCA-2 Breast cancer type‑2 [2, 10, 21, 22, 24–26, 28, 32–38, 42, 43, 45, 46, 50]
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immunohistochemical expression of E-cadherin and spe-

cific connexins of epithelial cells from the primary tumor 

observed in metastatic cells from patients confirm this 

notion [32, 33].

The FGF and EGF receptor pathways are essential to 

induce these cellular changes [31]. Other critical signal-

ing pathways involved in the regulation of EMT include 

bone morphogenic protein (BMP), TGF, hepatocyte 

growth factor, Wnt/b-catenin, and Notch pathways [34]. 

EMT transcription factors (TFs) include Twist1, Snail1, 

and Prrx1. In both processes, changes in the cellular 

phenotype occur. In the EMT-like phenotype, EMT TF 

Prrx1, N-cadherin, and vimentin levels are increased 

and E-cadherin, occludin, cytokeratin, and claudin levels 

are decreased. In the MET-like phenotype, E-cadherin, 

occludin, and cytokeratin levels are increased and EMT 

TF Prrx1, N-cadherin, and vimentin levels are decreased 

[35].

CTC 
Approximately 1 million cancer cells per 1  g of tumor 

enter the circulation daily in patients with cancer [36]; 

however, only a fraction of these cells survive and reach a 

distant niche. Therefore, the programming required and 

intrinsic adaptations that facilitate metastasis represent 

a significant evolutionary obstacle that tumor cells must 

overcome [4].

A premetastatic niche is responsible for organizing the 

ME to welcome circulating cancer cells and serves as a 

guide to organotropism [1]. These are known as CTCs, 

which are cells released from primary tumors and meta-

static deposits into the bloodstream [37]. The circulome 

is a functional unit formed by CTCs, immune cells, 

platelets, any other circulating cells, along with macro-

molecules and small molecules [38]. Upon entering the 

bloodstream, the tumor cells are susceptible to severe 

damage by the shear stress of blood flow and natural 

killer cells, making it difficult for CTCs to initiate a meta-

static cascade.

Initiation of the coagulation cascade and platelet acti-

vation mediated by tumor cell tissue can protect CTC by 

enclosing them in platelet-rich thrombi [39]. Depend-

ing on the stimuli and TME, several platelet changes can 

occur, such as miRNA splicing, protein synthesis, mem-

brane inflammation, and exosome release. In addition, 

platelets can capture circulating miRNAs from TME or 

mutant RNAs from tumor cells, suggesting a potential 

modification in the platelet transcriptome that improves 

CTC survival [39]. CTCs trapped in such aggregates 

help their endurance by protecting them from immune 

surveillance. Two scenarios are proposed for the nature 

of these platelet aggregations surrounding the CTCs: [1] 

platelets completely engulf the tumor cells or [2] platelets 

form homotypic aggregates in the center of the clusters 

that are surrounded by CTCs in the periphery [39]. In 

addition, platelets can escort CTCs through the steps of 

metastatic progression, facilitating adhesion of tumor 

cells, migration, and extravasation to the secondary site 

[40].

BBB
BBB is used to describe the unique properties of the 

microvasculature of the central nervous system (CNS). 

CNS vessels are continuous, non-fenestrated vessels con-

taining a series of additional properties that allow them 

to tightly regulate the movement of molecules, ions, and 

cells between the blood and CNS [41]. One of the prop-

erties of BBB is the tight junctions and presence of efflux 

transporters to expel harmful molecules. These tight 

junctions are composed of claudins, occludins and zona 

occludens proteins, and junctional adhesion molecules 

[42], with high electrical resistance [43, 44].

Every CTC has to traverse BBB to reach the brain. Can-

cer cells have to express several proteases to penetrate 

these junctions [45]. Additionally, these junctions can be 

destabilized by the expressions of cytokines, chemokines, 

and inflammatory mediators, including VEGF, basic FGF 

(bFGF), TGF-ß, IL-1ß, TNF-α, interferon-γ (IFN-γ), 

CCL2, CXCL8, and prostaglandin-endoperoxide syn-

thase 2 (COX2), by the cancer cells [42, 46–48].

CNS lacks a standard lymphatic drainage system, and 

the only way for tumor cells to enter the brain is via the 

bloodstream [40]. The glymphatic pathway is a system 

specialized in purifying the extracellular materials in the 

nervous tissue in an influx dependent on the cerebrospi-

nal fluid; it enters the periarterial spaces of the cerebral 

parenchyma through the channels of aquaporin 4 as a 

unidirectional way into the perivenous space where the 

metabolic waste is drained into the systemic circulation 

[49]. The exact role of the lymphatic system in BM has 

not yet been elucidated.

To migrate into brain tissue, cancer cells require more 

time compared with that required to enter other organs. 

Approximately 48  h is required for lung cancer cells to 

extravasate into the brain, whereas only 6  h is required 

for their extravasation into the liver [50]. Breast can-

cer cells require 2–7  days to extravasate into the brain, 

whereas melanoma cancer cells require 14  days [51]. 

Consequently, the arrested tumor cells have to survive 

within the cerebral vasculature for a significantly longer 

time compared with that in other metastatic sites [40].

For the occurrence of adhesion to the endothelium 

by CTC, the function of molecules expressed in BBB 

and their receptors in CTC, such as selectins, integrins, 

cadherins, and CD44 and the receptors of the immuno-

globulin superfamily (ICAM-1, VCAM1), is of utmost 
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importance [52]. To traverse BBB, angiopoietin-2 has 

been linked to the early breakdown of BBB and increased 

colonization of the brain by breast cancer cell metastasis 

[53]. Cathepsin S mediates in the transmigration by BBB 

of breast cancer cells through the proteolytic processing 

of the junction adhesion molecule-B [40]. If BBB were 

completely disintegrated, it might allow the delivery of 

effective chemotherapeutic agent doses to BM. However, 

most chemotherapeutic agents and targeted therapies do 

not reach BM at sufficient levels [54].

The tumor microenvironment in brain metastases
The most frequent malignant tumors of CNS are metas-

tases, representing a significant cause of morbidity and 

mortality in patients with cancer from various neo-

plasms, mainly from lung cancer, breast cancer, and 

melanoma [55]. The TME where BM had spread includes 

cancer and noncancerous cells (i.e., endothelial cells, per-

icytes, fibroblasts, and immune cells) [56]. The process 

in which tumor invasion is directed toward the nervous 

tissue is mediated by different cellular interactions and 

the brain ME [57]. Reportedly cancer cells activate astro-

cytes at the metastatic site triggering positive feedback to 

adapt to the new ME and initiate colonization [17].

The process of cell arrival or nesting in the brain was 

previously considered a random process. However, the 

expression of the alpha-2,6, sialyltransferase gene in CTC 

is associated with a predilection toward BBB, as its pro-

tein serves as an adhesion molecule [57]. In breast can-

cer, the N-acetylgalactosaminidase α-2,6-sialyltransferase 

5 (ST6GALNAC5) has been identified as a facilitator of 

tumor cell/brain endothelial adhesion [46]. In melanoma, 

the membrane-bound melanotransferrin correlates with 

this ability [58], and in small cell lung cancer, the Rho 

kinase signaling, involved in the intracellular junction 

disruption, has been activated in this transendothelial 

migration [59]. In breast cancer, the chemokine receptor 

CXCR4 and its ligand CXCL12, also known as the stro-

mal cell-derived factor 1-α, increase vascular permeabil-

ity and activates the PI-3K/AKT pathway [60]. Factors 

produced by CTC that predominately aim toward BBB 

include α-crystallin, ADAM 8 (disintegrin and metallo-

proteinase domain-containing protein 8), MMP-1, PLE-

KHA5 (pleckstrin homology domain-containing family A 

member 5), PT1C (carnitine palmitoyl-CoA transferase), 

neuroserpin, serpin B2, and CTSS (cathepsin S) [61].

Transmigration

Transendothelial migration (transmigration) is the pro-

cess of cancer cells traversing BBB. Factors associated 

with transmigration include cyclooxygenase COX2 

(PTSG2), CXCL12/CXCR4, ST6GALNAC5, CTSS, 

MMP-1, α-crystallin, angiopoietin-like 4 (ANGPTL4), 

EGFR ligand heparin-binding EGF (HB-EGF), and VEGF 

[62]. COX2 activity produces prostaglandin, which 

increases the BB permeability [63]. Cancer cells pro-

duce miRNA-181c, which dysregulates the dynamics 

of the intracellular actin of BBB via the downregulation 

of its target gene PDPK1, thus favoring transmigration 

in vitro and in vivo [61]. Other targets of BBB that serve 

as tropism factors for CTCs include the expression of 

E-selectin at brain endothelial cells, which might indicate 

the site where successful BM occurs [64], and the cell 

adhesion molecule L1 (L1CAM) [65]. A premetastatic 

metabolic niche is either required or prepared by CTCs. 

CTCs secrete miRNA 122 and suppress glucose uptake 

by neurons and astrocytes. The inhibition of miRNA-122 

decreases the incidence of metastases [66].

After traversing BBB, cancer cells secrete various 

cytokines, chemokines, and mediators, particularly 

IL-1β, TNF-α, IFN-γ, CCL2, CXCL8, and COX2 [4]. Can-

cer cells can secrete MMP and other proteases to break 

down the basement membrane, similar to that occurring 

in metastases to other sites, and can induce endothelial 

cell apoptosis [67].

IFN-mediated signaling pathway is essential for anti-

tumor immune response. IFN is produced by numerous 

immune cells to directly modulate the ME. They also 

alter gene expression in cancer cells, IFN-stimulated 

genes (ISGs), and include a family of TFs (IRF3, IRF5, and 

IRF7), which are the dominant regulators of ISG expres-

sion. Metastatic cancer cells downregulate the IFN type 

I response as a mechanism to promote immune preven-

tion at the metastatic site; therefore, a lack of type I IFN 

response increases the risk of metastases [33].

In addition to expressing L1CAM and traversing par-

acellularly into BBB, cancer cells secrete serpins that 

inhibit the activation of plasmin-mediated astrocytes, 

thereby preventing the secretion of the pro-apoptotic 

FAS ligand [68, 69].

Astrocytes maintain homeostasis in the brain ME. 

Branching astrocytic processes cover most cellular com-

ponents of CNS, including BBB. Reactive astrocytes 

release interleukins and upregulate several survival 

genes in breast cancer cells, such as GSTA5, BCL2L1, 

and Twist1, promoting resistance to chemotherapy [70]. 

Metastatic cells then take advantage of the protective 

function of astrocytes by communication through gap 

junctions, causing astrocytes to generate survival factors 

such as IL-1β or CCL2, and by maintaining BBB, which 

generates another chemoresistance mechanism of BM 

[71, 72].

The arrest and extravasation of cancer cells result in 

a strong local activation of astrocytes, detected by the 

upregulation of glial fibrillary acidic protein (GFAP) as 

well as by hyperdilation of astrocyte processes [73]. In 
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addition to the elevated expression of GFAP, some astro-

cytes associated with cancer cells simultaneously regu-

late the expression of nestin, another marker of reactive 

astrocytes [74].

A significant consequence of the activation of astro-

cytes is their ability to secrete factors such as MMP-9. 

MMP-9 can directly affect the invasion of cancer cells 

and has proangiogenic and growth-promoting functions 

in brain tumors through the release of ECM growth fac-

tors [73]. A strong expression of MMP-9 and a strong 

upregulation of the MMP-9 protein in the vicinity of 

the extravasation of cancer cells, associated with acti-

vated astrocytes surrounding the tumor cells, have been 

observed [73]. Moreover, cancer cells interact with neu-

ral stem cells by overexpressing BMP-2, which signals the 

cells to differentiate into astrocytes [75].

Cancer cells use neurotransmitters as oncometabo-

lites. For example, GABA is used by cancer cells to form 

NADH [76]. Neurotrophins are endogenous neuron 

growth factors [such as NT-3, NT-4, nerve growth fac-

tor, brain-derived neurotrophic factor (BDNF)]. Cancer 

cells express the neurotrophin receptor TrkB, which is 

selectively activated by BDNF, with a possible interac-

tion of HER2+ with TrkB currently being investigated 

[75]. Microglia form a part of the mononuclear phago-

cytic system and can respond to the invasive cancer cells 

via cytotoxic mechanisms. The WNT pathway keeps the 

microglia active and activates the proliferation of can-

cer cells. Furthermore, cancer cells express NT-3, which 

increases the metastatic potential, potentially via micro-

glia-mediated mechanisms [51].

Extravasated cancer cells have to stay in close physi-

cal contact to the abluminal surface of the blood vessels 

to remain viable [77]. VEGF-A influences multiple steps 

of the metastatic cascade, and anti-VEGF-A therapy can 

induce long-term dormancy of small, perivascular lung 

carcinoma metastases [78]. Metastasis is a process rather 

than a simple endpoint, wherein the arrest of the cancer 

cells occurs at vascular branch points, cancer cells have 

to remain close to microvessels, and perivascular growth 

by early angiogenesis is predominant in lung cancer and 

by vessel co-option in melanoma [77]. In comparison, 

breast cancer cells that reach the brain exhibit a GABAe-

rgic phenotype similar to neuronal cells, They can use 

GABA as an energy metabolite and increase cell survival 

[79, 80].

Differences between the primary tumor cells 
and bm
When discussing about metastasis, it is important to 

consider whether there are any differences between met-

astatic cells and the primary tumor. Although there are 

histological and cell markers that persist in metastatic 

cells, similar to the primary tumor, the metastatic ME is 

different and probably one of the numerous causes for 

antineoplastic therapies being less effective on metastatic 

cells [57, 81]. Of the millions of CTCs, only a few man-

age to invade another tissue niche [36]; therefore, it can 

be predicted that these cells must be different. In addi-

tion, the variants are represented in the expression of ele-

ments that make them more endurable. In breast cancer, 

the triple-negative subtype shows the highest tendency 

toward generating BM, possibly due to its resistance to 

treatment. In clinical practice, Luminal A subtype is most 

commonly observed with BM [82, 83].

After entering the brain, cancer cells still need to sur-

vive the brain ME. Neurons maintain sufficient oxygen 

by never separating from the nearest capillary for > 40 μm 

[84]. Cancer cells stay in contact with blood vessels even 

after extravasation, until VEGF-A induces angiogenesis 

or the vasculature undergoes remodeling and co-option 

occurs [77].

Genomic profiling of BM

Genetic intratumoral heterogeneity within the primary 

tumor and between primary and secondary (metastatic) 

tumors has been reported [85]. BM harbors clinically sig-

nificant mutations that are not detected in the primary 

tumor in 53% of cases [86]; reportedly, cyclin-dependent 

kinase (CDK) N2A loss and CDK4/6 amplifications sen-

sitized BM to CDK inhibitors. Another pathway altered 

in BM includes the PI3K/AKT/mTOR pathway [85]. In 

addition, regional lymph nodes and other extracranial 

metastasis samples are not reliable surrogates to detect 

mutations present in BM [86, 87]. Circulating tumor 

DNA isolated from the cerebrospinal fluid may serve as a 

useful biomarker in the future.

Lung cancer

In non-small cell lung cancer, a higher cumulative inci-

dence of BM has been shown in EGFR-mutant can-

cer than in EGFR-wild type cancer [88]. EGFR tyrosine 

kinase inhibitors are currently available as chemothera-

peutic agents, which have shown to improve survival in 

patients with EGFR-mutant cancer. In primary squamous 

cell carcinoma (SCC), PI3K aberrant tumors showed 

worse survival and higher incidence of BM. In a recent 

study [89] that compared BM to its primary tumor in 

patients with SCC, a whole genome sequencing (WGS) 

analysis showed heterozygous loss of PTEN (phosphatase 

and tensin homolog protein gene) in all BM with a gene 

expression pattern consistent with loss of PTEN.

In patients with lung cancer and BM, a WGS analysis 

reported that primary tumors showed mutations in genes 

associated with cell adhesion and motility. BM acquired 

mutations in the adaptive, cytoprotective genes involved 
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in response to cellular stress including Keap1, Nrf2, and 

p300 (key players of the Keap1–Nrf2–ARE survival path-

way) [90]. Nrf2 is a transcriptional factor that binds to 

antioxidant response elements (AREs) upon stress and 

drives the expression of antioxidant genes [90]. Other 

genetic changes observed in that study included Tp53, 

Rad54L2, NTRK3, and TARX, which were mutated 

in the primary tumor; however, these mutations were 

highly enriched in BM. New targeted therapies for muta-

tions in EGFR, ALK (anaplastic lymphoma kinase), 

immunotherapy PD-1 (programmed death-1) receptor, 

and programmed death ligand 1 (PDL-1) have shown 

promising results in both primary tumor and BM but 

require further studies.

Breast cancer

Breast cancer is the second cause of BM. The subtypes 

associated with a higher risk of BM are triple-negative, 

basal-like subtype and the HER2 (Human EGF recep-

tor 2)-positive subtype [83]. In patients with breast 

Fig. 1 Schematic representation of protein expression, molecular pahtways, facilitators and mutations involved in the genesis of brain metastases 
from melanoma, breast and lung cancer. Breast cancer cells: Upregulated expression of A.R. (androgen receptor), P.R. (progesterone receptor) 
and E.R .(estrogen receptor) in the primary tumor. miRNA‑509 → Rhoc/TNF pathway → BBB permeability/MMP9 in Circulating tumor cells (CTCs). 
miRNA‑31, ‑126,‑335 suppress metastasic spread. miRNA‑7 downregulates KLFM pathway in stem cells. Cathepsin S (CTSS) proteolytic processing 
of the junction adhesion molecule (JAM). The N‑acetylgalactosaminidase α2,6 sialyltransferase 5 (ST6GALNAC5) has been identified as a facilitator 
of tumor cell/brain endothelial adhesion. The chemokine receptor CXCR4 and its ligand CXCL12 increase vascular permeability and activation of 
the PI‑3K/AKT pathway. Lung Cancer cells: Upregulated EGFR, PI3K, Keap‑1, Nfr2, P300, Tp53, Rad54L2, NTRK3, and TARX. miRNA‑328 upregulates 
the PKACA pathway. miRNA‑378 is upregulated and miRNA‑145 downregulated. IncRNA MALAT1 induces EMT and HOTAIR high expression in 
BM. The Rho kinase signaling, involved in intracellular junction disruption, has been found activated in this transendothelial migration. Melanoma 
Cancer cells: Upregulated BRAF mutation, induce PI3K/AKT pathway. miRNA‑210 was overexpressed in exosomes of BM cells and miRNA 19a and 
miRNA‑29c were downregulated in exosomes BM cells. In CTC, the membrane‑bound melanotransferrin correlates with brain endothelial adhesion
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cancer, whole exome sequencing revealed that BM har-

bors genomic alterations in the CDK pathway and PIK3/

AKT/mTOR pathways, with most of these alterations 

remaining undetected in the primary tumor. Pairing 

BM and primary tumors of patients with breast can-

cer, three genes were found to be frequently methylated 

and silenced in BM and infrequently methylated in pri-

mary tumors: GALNT9 (an initiator of O-glycosylation), 

CCDC8 (a regulator of microtubule dynamics), and 

BNC1 (a transcription factor with numerous targets) 

[91]. Targeted therapies directed toward HER2, mTOR, 

and EGFR receptors combined with other drugs, such as 

capecitabine or vinorelbine, are under investigation and 

might show promising results [87].

Melanoma

An activating mutation in BRAF, an oncogene involved 

in the MAPK pathway, has been reported in approxi-

mately 50% patients with melanoma. A discordance 

rate in the BRAF mutation status of primary melanoma 

cancer, compared with BM, in patients is reportedly 

as high as 14% [92]. A paired analysis of primary and 

BM of patients with melanoma showed that BM had 

increased the expression of several activation-specific 

protein markers in the PI3K/AKT pathway [93].

Figure  1 shows the differences between the expres-

sion of proteins and receptors, mutations, miRNA 

production, and epigenetic changes among the pri-

mary melanoma, breast, and lung cancer cells as well 

as in those found in BM. Receptors and proteins, such 

as PD-1, EGFR, TOP2A, TOPO1 GABA-R, GLUT-R, 

TrkB, GAD-1, and P75NTK, are upregulated in BM. 

Some receptors are not overexpressed or are unique 

to a tumor type, such as androgen, estrogen, and pro-

gesterone receptors in breast cancer, are downregu-

lated in BM [4, 27, 94–97]. For miRNAs, each of the 

three cancers overexpresses > 1 miRNA [20, 98, 99]. 

For lncRNA, MALAT-1 is upregulated in lung cancer 

and melanoma BM [27, 100]. Epigenetic changes have 

been reported, demonstrating a global DNA demeth-

ylation profile and hypermethylation of the CpG islands 

in BM from the three cancers in comparison to the 

primary tumor. The expression of methyltransferases 

is typically equal or greater in metastases [101–103]. 

Regarding gene alterations as well as the upregula-

tion of ABL-1 in BM and downregulation of PIK3CA 

in metastatic breast cancer cells, BRAF mutations in 

melanoma and EGFR and KRAS overexpressions in 

lung cancer have been reported [90, 92, 104, 105]. All of 

these alterations change the expression and function of 

proteins, receptors, genes, miRNAs, and lncRNAs, and 

epigenetic mechanisms, thereby upholding a greater 

aggressiveness of the metastatic disease, leading to low 

treatment efficacy and poor survival.

Finally, the inflammatory ME is different. In BM com-

pared with the primary tumor site from patients, less 

infiltration of T lymphocytes (tumor-infiltrating lympho-

cytes) [106] and lower expression of PDL-1 with higher 

expression of HLA-1 and PDL-2 have been reported. In 

addition, tumor-associated macrophages express higher 

CSF-1, TNF-α, and TGF-β1 levels [71, 97, 106–111].

Conclusion
TME is fundamental for the progression of cancer to 

metastatic disease. Tumor cells that establish themselves 

in the neuronal niche upregulate PD-1, EGFR, TOP2A, 

TOPO1 GABA-R, GLUT-R, TrkB, and P75NTK as well 

as miRNA expression, mutations, and specific epigenetic 

changes. The interaction with the new brain ME renders 

cancer cells more aggressive and resistant to systemic 

treatments. BM should be considered as a pathway rather 

than as a final process to understand its complexity and 

discover newer ways to approach them.
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