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Colorectal cancer (CRC) is one of the most devastating diseases that accounts for
numerous deaths worldwide. Tumor cell-autonomous pathways, such as the oncogenic
signaling activation, significantly contribute to CRC progression and metastasis. Recent
accumulating evidence suggests that the CRC microenvironment also profoundly
promotes or represses this process. As the roles of the tumor microenvironment (TME)
in CRC progression and metastasis is gradually uncovered, the importance of these
non-cell-autonomous signaling pathways is appreciated. However, we are still at the
beginning of this TME function exploring process. In this review, we summarize the
current understanding of the TME in CRC progression and metastasis by focusing on the
gut microbiota and host cellular and non-cellular components. We also briefly discuss
TME-remodeling therapies in CRC.

Keywords: tumor microenvironment, colorectal cancer, metastasis, microbiota, cancer treatment

INTRODUCTION

Colorectal cancer (CRC) is one of the most common malignancies for both males and females,
ranking in the top three for both estimated incident cases and deaths (1). WNT signaling
hyperactivation induced by mutational inactivation of the Adenomatous Polyposis Coli (APC)
accounts for most CRC cases in patients (2). In addition, other somatic mutations, such as the
tumor suppressor P53 and oncogenic pathway KRAS are commonly observed in CRC (3, 4).
Although these tumor cell-autonomous pathways significantly contribute to CRC progression and
metastasis, therapeutic interventions that target these pathways have achieved limited success in
patients. Chemo- and radio-therapies, which have substantial adverse effects, are still commonly
used for CRC patients, especially for those at advanced stages. Therefore, therapeutic strategies
with better efficacy and less toxicity are urgently needed.

Accumulating evidence indicates that non-cell-autonomous pathways, especially signaling
pathways of the tumor microenvironment (TME), are significantly involved in CRC progression
and metastasis, either by promoting or inhibiting the process. TME refers to a special biological
environment formed by malignant cells, non-malignant cells and their secreted components as
summarized in a previous review (5). Given the pivotal roles of the TME in CRC progression and
metastasis, exploration of the mechanisms underlying the interplay between TME remodeling and
CRC development have attracted substantial attention over the last decade. Great progress has been
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made in this field, which has dramatically advanced our
knowledge about the TME and CRC. New insights about CRC
treatment have also been elucidated. However, a complete
understanding of the TME in CRC progression and metastasis
has yet to be unfolded.

The TME dynamically changes with enormous complexity
throughout cancer progression. In general, it is composed
of cellular and non-cellular components, which have distinct
functions but also collaborate with each other during cancer
progression and metastasis (6). In this review, we summarize
our current understanding of the roles of the TME in CRC
progression and metastasis by focusing on the components in
both primary sites and distant metastatic organs. We also briefly
discuss the therapeutic insights on remodeling the TME in CRC.

TME IN PRIMARY SITES

The main components of the TME are the extracellular matrix
(ECM) and its cellular partners, including immune cells,
endothelial cells and fibroblasts. In addition to these common
components, intestinal cells are also in close contact with a large
population of microorganisms referred to as the gut microbiota
(7). In this section, we summarize the roles of these common
components as well as a few key microorganisms in CRC
progression and metastasis.

MICROBIOTA: FRIEND AND FOE

The critical roles of microorganisms in our gastrointestinal tract
have long been known. On one hand, the microorganisms help
with digestion and maintain homeostasis. On the other hand,
they establish and promote disease progression (Figure 1). One
of the most famous examples is Helicobacter pylori (H. pylori).
The positive correlation between H. pylori infection and gastric
cancer has been well recognized (8). Compared to the stomach,
the colon has an even more diverse microbiota, which is
also significantly involved in maintenance of homeostasis and
progression of diseases.

Microorganisms That Promote CRC
Progression and Metastasis
Trillions of microorganisms reside in the gut. Some of these
microorganisms are potentially pathogenic. Several species, such
as Enterococcus faecalis (E. faecalis), Streptococcus gallolyticus
subsp. gallolyticus (Sgg), H. pylori, Bacteroides fragilis (B. fragilis),
Clostridium septicum (C. septicum), Escherichia coli (E. coli), and
Fusobacterium nucleatum (F. nucleatum) have been reported
to elevate colorectal carcinogenesis (9). E. faecalis produces
extracellular superoxide, induce DNA damage and genomic
instability in colonic epithelial cells, and activate macrophages to
produce 4-hydroxy-2-non-enal, thereby promoting colon cancer
in mice (10). Another study revealed that E. faecalis infection
also prevents intestinal epithelial cells from activating protective
TGF-β/Smad signaling, and thus, promote CRC progression (11).
The association between Sgg and CRC has been well recognized

as well. Sgg infection activates a few oncogenic pathways such
as Wnt/β-catenin, c-Myc, and PCNA, and therefore, promotes
CRC (12). Interestingly, the unique CRC TME also elevates
Sgg colonization, which disturbs the ecological balance in the
colon and further exacerbates CRC (13). In addition to gastric
cancer, the association between H. pylori infection and CRC has
also been reported (14), but the mechanism remains elusive.
One possibility is that the vacA toxin produced by H. pylori
results in cell proliferation dysregulation, and thus, induces CRC
initiation and progression (15). Similarly, B. fragilis toxin (BFT)
activates Wnt and NF-κB signaling, leading to DNA damage
and the initiation and promotion of CRC (16). The prevalence
of the BFT gene in CRC patients has been confirmed (17).
While C. septicum does not appear to initiate CRC, the α-toxin
produced by C. septicum enhances dissemination and circulation
of tumor cells (18). Moreover, the tumorigenic role of E. coli in
CRC has been extensively studied. E. coli produces colibactin, a
genotoxin, to elevate CRC progression and metastasis through
distinct mechanisms: enhancing tumor cell proliferation (19),
and promoting pro-tumoral activity of immune cells (20). Unlike
other bacteria that utilize toxins to promote CRC progression
and metastasis, F. nucleatum directly activates Wnt/β-catenin
modulator Annexin A1 through interaction with malignant cells,
and thus, promotes CRC progression (21).

In addition to the microorganisms themselves, microbial
metabolites, such as short-chain fatty acids (SCFAs), secondary
bile acids, and glucuronidase, produced after the destruction of
intestinal microecology also affect the development of colorectal
cancer. SCFAs are major bacterial metabolites that play multiple
roles in homeostasis as well as pathogenesis. Previous study
indicates that Butyrate (a type of SCFA), promotes CRC
tumorigenesis by provoking cellular senescence (22). Similarly,
studies have shown that OSTβ, which is an important subunit
of a bile acid export transporter OSTα-OSTβ, is significantly
downregulated in CRC, suggesting an important role of bile
acid in CRC development (23). Another study indicated that
deoxycholic acid (another secondary bile acid) promotes the
development of colorectal tumors in rats that exposed to
azomethane (carcinogen) (24). In addition, the activity of
glucuronidase in feces of patients with colorectal cancer is higher
than that of normal people. Inhibition of glucuronidase activity
was found to effectively reduce the number of tumors in a mouse
model with colorectal cancer (25). Moreover, fucoxanthin can
prevent colon cancer by inhibiting the activity of glucuronic acid
(26). Collectively, these studies fully illustrated the critical roles
of microbial metabolites in CRC progression and metastasis.

Probiotics
Conversely, gut microorganisms can repress CRC progression
and metastasis. Different probiotics inhibit CRC via distinct
mechanisms. For instance, probiotics could reduce DNA damage
or downregulate inflammation to inhibit CRC (27). Yue et al.
reported that administration of the probiotic strain Lactobacillus
plantarum YYC-3 prevents CRC by reducing inflammation.
Mechanistically, L. plantarum YYC-3 suppresses NF-κB and
Wnt signaling in tumor cells to inhibit inflammatory cytokine
production (28). In another study, tumor size decreased
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upon administering probiotic strain C. butyricum and 1,2-two
hydrazine hydrochloride in a CRC mouse model (24). The
treatment reduced Th2 and Th17 cells in tumors, and therefore,
decreased tumor infiltrated CD4+ and CD8+ T lymphocytes.
Consequently, this inhibited the secretion of inflammatory
factors such as NF-κB and IL-22, which impeded cell cycle
progression and enhanced tumor cell apoptosis (29). In human
subjects, probiotic strains Lactobacillus acidophilus 145 and
Bifidobacterium longum 913 prevented DNA damage in human
colon tumor cells (30). Specifically, healthy volunteers were given
standard yogurt or probiotic yogurt that contained L. acidophilus
145 and B. longum 913. Fecal water was collected to test the
genotoxicity on human colon cancer cells HT29clone19A. This
revealed that the probiotics reduced the risk of colon cancer by
inhibiting carcinogen-induced DNA damage (30).

Instead of directly targeting tumor cells, the reduced
inflammation induced by probiotics could also strengthen the
intestinal barrier and suppress metastasis. Tight junction proteins
play important roles in intestinal integrity and permeability.
The probiotic strain Lactobacillus enhances the integrity of
tight junctions and reduces intestinal permeability. Treatment
with Lactobacillus rhamnosus GG and Lactobacillus reesei ZJ617
helped to reduce oxidative stress and inflammation, which led to
increased expression of tight junction proteins, thereby restoring
intestinal barrier function (31). In accordance with this notion,
Lactobacillus inhibited colon cancer in the mouse model (32).

Moreover, probiotics could also reduce the production of
intestinal carcinogens or carcinogenic metabolites to prevent
the occurrence of CRC. Studies have shown that L. rhamnosus
achieves anti-tumor and anti-genotoxic effects by binding
1-methyl-3-nitro-1-nitrosoguanidine. It also inhibits the
production of toxic carcinogens such as glucuronidase and
glucosidase in the intestinal tract (33, 34).

CELLULAR COMPONENTS IN THE TME

In addition to microorganisms, the primary CRC tumors
have cellular components within its microenvironment. In this
section, we discuss the tumor promoting or suppressing roles
of immune cells, cancer-associated fibroblasts, and endothelial
cells (Figure 2).

Immune Cells: Lymphocytes
Tumor infiltrating lymphocytes (TILs) are a group of immune
cells in the TME. They are composed of a variety of T cell
subpopulations such as CD4+T cells, CD8+T cells, B cells, and
NK cells. TILs can be involved in tumor immune evasion as
well as tumor recognition, destruction, and elimination (35). The
function of these traditional TILs in CRC has been thoroughly
discussed (36, 37), therefore we did not redundantly summarize
their function in this review. However, in addition to these
traditional lymphoid cells, another subset known as innate
lymphoid cells (ILCs) have been recognized and their function
has been appreciated. For example, ILCs located on the mucosal
surface of the intestine enhance the immune response, maintain
mucosal integrity, and promote lymphatic organ formation (38).

In addition to this normal context, single-cell transcriptomic
analysis has revealed that signaling lymphocytic activation
molecule family member 1 (SLAMF1) is selectively expressed on
CRC tumor-specific ILCs. SLAMF1-high ILCs could serve as an
anti-tumor biomarker in CRC (39). Another study reported that
a subset of ILCs, ILC3, helps regulate the balance between the
immune system and gut microbes to prevent CRC (40).

Immune Cells: Macrophages
Macrophages, which are a subset of myeloid cells, were
found to inhibit the proliferation, migration, invasion, and
metastasis of CRC. Meanwhile, they are also indispensable in
cancer progression and treatment resistance (41). In general,
macrophages can be classified as classical (M1) or alternative
activated (M2) subtypes. During normal immune responses,
most macrophages differentiate to the M1 phenotype, which
inhibits CRC and are involved in Th1 cytokine responses upon
pathogen challenging (42). However, M2 macrophages were
found to promote tumor progression through multiple pathways:
(1) produce epidermal growth factor and fibroblast growth
factor-1 to foster tumor cells, (2) secrete vascular endothelial
growth factor A to promote angiogenesis, and (3) release
matrix metalloproteinases to promote invasion. In addition,
M2 macrophages inhibit immune responses by producing
immunomodulators such as IL-10, IL-6, and TGF-β1. They also
induce immunosuppression by recruiting Th2 and Treg through
secretion of anti-inflammatory chemokines such as CXCL17, 22,
and 24. All these factors promote tumor progression (43–46).

Immune Cells: Dendritic Cells
Dendritic cells (DCs), which also differentiate from myeloid
progenitors, are key cells in the adaptive immune response and
are essential for T cell-mediated cancer immunity. Infiltration of
the TME by normal mature DCs is correlated with a favorable
prognosis in ovarian cancer (47, 48). In the TME, abnormal DC
formation can be generally grouped into three causes: abnormal
differentiation of precursors leading to a decrease in the number
of cells, phenotypic changes inducing immune tolerance, and
inhibition of cell maturation leading to functional abnormalities.
Abnormal DCs have insufficient antigen recognition and cannot
provide adequate costimulatory signals for T cell activation.
According to clinical studies, infiltration of the TME by normal
mature DCs is correlated with a favorable prognosis in ovarian
cancer (49). Meanwhile, tumor cells and DCs have profound
interplay in TME. Loss or down-regulation of the epithelial-
specific transcription factor Ese-3 gene expression in colon cancer
cells results in impaired DC maturation. Moreover, abnormal
DCs could promote tumor cell proliferation (50, 51). The
functional defects of DCs accounts for the low efficiency of
the anti-tumor specific immune response. As such, intervention
to reverse DC functional defects is a potential strategy for the
treatment of CRC (52).

Immune Cells: Neutrophils
Neutrophils, another subset of the myeloid population, could
both promote and suppress tumor formation and progression.
On one hand, they have defensive functions against tumor; on the
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FIGURE 1 | Microbiota and CRC. Tumor promoting microorganisms facilitate CRC progression and metastasis by directly interacting with malignant cells, secreting
toxins, or producing metabolites to activate oncogenic pathways. Conversely, probiotics inhibit CRC cancer progression and metastasis by suppressing
inflammation, reducing carcinogens, and maintaining intestinal barrier integrity. Remodeling the gut microbiota by depleting tumor-promoting bacteria or
administering probiotics may have therapeutic potential. CRC, Colorectal cancer.

other hand, neutrophils in TME may support tumor progression.
Recent study indicated that neutrophils restrict the microbiota
in tumors to reduce CRC progression and metastasis in mouse
models (53). Depletion of neutrophils disrupts the gut microbiota
and leads to an increased number of bacteria that secrete IL17,
which promotes tumor growth and progression (53). Meanwhile,
accumulating evidence suggests that neutrophils stimulate
CRC progression and metastasis through the CXCL1/CXCR2
chemokine axis (54) and remodel the ECM microenvironment
by producing matrix metalloproteinase MMP9 (55).

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs), the most numerous
cellular components of the TME, promote tumor angiogenesis,
cell proliferation, migration, and metastasis via multiple
mechanisms. CAFs secrete various chemokines and cytokines
that interact with tumor cells to promote CRC progression (56,
57). In addition, exosomal miRNAs from CAFs act as intercellular
signaling molecules to modulate pathways such as KRAS, MYC,
and TGF-β, all of which are involved in tumor progression
(58, 59). For example, exosomal miRNA-17-5p from CAFs
directly targets RUNX family transcription factor 3 (RUNX3).
RUNX3 interacts with the proto-oncogene MYC and binds to
the promoter of TGF-β1, thereby activating the TGF-β signaling
pathway. The RUNX3/MYC/TGF-β1 pathway promotes CRC
proliferation, chemoresistance, and metastasis (60). Interestingly,
this pathway also activates CAFs via positive feedback and further

accelerates CRC progression and metastasis (60). Aside from the
aforementioned mechanisms, CAFs also directly interact with
tumor cells to accelerate cancer progression and metastasis (61–
63).

Besides targeting tumor cells, CAFs may remodel other
stromal cells to promote CRC. Emerging evidence revealed
that CAFs reshape immune cell populations in the TME.
Zadka et al. found that CAFs are negatively correlated with
tumor-infiltrating lymphocytes (64). Consistently, CAFs were
found to recruit monocytes and promote M2 polarization
of macrophages by upregulating adhesion molecules such as
ICAM-1 or VCAM-1, or through the IL-8/CXCR2 pathway.
The tumor associated macrophages then synergize with CAFs
to suppress immunosurveillance (65, 66). In addition, CAFs
promote endothelial cells to release vascular endothelial growth
factor (VEGF), leading to consequential angiogenesis (67).

As one of the major players of the ECM organization, CAFs
deposit numerous ECM proteins involved in cancer progression
(68, 69). Previous study indicated that CAFs produce HGF and
ECM glycoprotein tenascin-C to promote CRC invasion (70).
Moreover, CAFs were found to secret Activin A to increase the
stiffness of the ECM, and thus, promote CRC progression and
metastasis (71).

Endothelial Cells
Endothelial cells are the main components of vascular
vessels. Angiogenesis is crucial for cancer progression
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by supplying oxygen and nutrients while removing toxic
metabolites. Angiogenesis also provides a conduit for tumor
cell dissemination and metastasis (72, 73). Tumor-associated
endothelial cells (TECs) in the TME were found to produce
vascular endothelial growth factor receptor (VEGFR) and other
growth factor receptors such as EGFR to enhance angiogenesis
(74). Additionally, TECs promote CRC progression and
metastasis through other pathways. Markedly, TECs produce a
soluble form of Jagged-1, which activates Notch signaling and
promotes the cancer stem cell phenotype in CRC cells (75).
Furthermore, TECs could express adhesion molecules, such as
E-selectin to facilitate CRC invasion and metastasis (76).

Similar to CAFs, TECs modulate immune cell populations.
For instance, TECs express FasL to eliminate CD8+ T cells
and enhance immune evasion of cancer cells (77). The
E-selectin expressed by TECs could also attract more neutrophils
to establish an immunosuppressive TME. A comprehensive
endothelial cell-derived transcriptome analysis was performed
recently. Consistent with previous findings, a set of hub
genes such as SPARC, COL1A1, COL1A2 and IGFBP3 is
positively correlated with immune-inhibitory markers of various
immunosuppressive cells, including TAM, M2 macrophage, and
Tregs. T cell exhaustion was also identified (78).

Unlike CAFs that mainly behave as a tumor promoter within
the TME, a few subsets of TECs could inhibit CRC progression.
For example, Apelin induces chemokine CCL8 expression in
TECs, and the increased CCL8 expression may enhance CD8+

T cell infiltration in TME, and thus, suppress CRC progression
(79). The quiescent-inducing activity of endothelial cell-derived
SPARCL1 has also been shown to potentially contribute to Th1-
TME-related vascular quiescent micromigration in colorectal
cancer. SPARCL1 promotes the antitumor microenvironment
by inducing cell immobilization and limiting blood vessel
formation (80).

NON-CELLULAR COMPONENTS

In addition to the cellular components discussed above, the ECM
built by the cellular components serve as a scaffold and is an
essential component of the TME. Small molecules and vesiculas
secreted by these cells facilitate signaling transduction and play
essential roles in CRC progression and metastasis.

Extracellular Matrix
The ECM contains proteins secreted by both malignant and non-
malignant cells in the TME. These include collagen, fibronectin,
integrin, elastin, microfibrillin, and proteoglycans, all of which
support neighboring cells structurally and biochemically (81).
Collagen, a major ECM protein, is a diverse protein family
with at least 28 members (82). The tumor promoting effects
of collagen content and distribution have been extensively
studied (83). For instance, collagen has been found to
promote the CRC stemness and metastasis by targeting the
integrin/PI3K/AKT/Snail pathway (84). Collagen type V α2
(COL5A2) has been found to correlate with poor prognosis in

CRC (85). Similarly, fibronectin also promotes CRC progression
and is correlated with poor prognosis in patients (86, 87).

There is no doubt that each individual ECM protein
contributes to CRC progression and metastasis in distinct ways,
which we are unable to cover in detail. However, as a whole,
the overall amount of ECM protein deposition contributes to
the stiffness of the TME (88). Correspondingly, increased ECM
stiffness is a hallmark of CRC progression and metastasis (71,
89, 90).

Conversely, the ECM can impede cancer progression as well.
For example, collagen type IV may suppress CRC invasion
(91). Furthermore, because the ECM is located in the stroma
between the basement membrane and interstitial space, it acts as
a natural barrier for tumor cell proliferation, differentiation, and
metastasis (92).

Other Secreted Components
The direct physical cellular interactions in the TME are
undoubtedly critical for signaling transduction. However,
molecules, such as TGF-β, Wnt, other metabolites, and secreted
exosomes also mediate cell communication, and therefore,
are involved in cancer progression and metastasis. Although
TGF-β may suppress CRC in certain contexts (93), the tumor
promoting roles of TGF-β and Wnt have been well recognized
and extensively validated (94, 95).

In addition to these signal mediating small molecules,
numerous exosomes secreted by both malignant and non-
malignant cells facilitate signal transduction. MicroRNAs
(miRNAs) are one of the main contents of these secreted
exosomes. Exosomal microRNAs play pivotal pro- and anti-
tumoral roles in CRC progression and metastasis. They could
also serve as biomarkers of CRC progression in patients (96, 97).
On one hand, exosomal miR-21 promotes CRC cell proliferation,
invasion, and therapy resistance (98). On the other hand,
exosomal miR-379 secreted by cancer cells suppresses CRC cell
proliferation and migration (99).

TME IN DISTANT METASTATIC ORGANS

During late-stage development of CRC, tumor cells metastasize to
distant organs. The tumor cells together with stromal cells create
a microenvironment to either foster or restrain the outgrowth
of the metastatic tumors. As such, the TME in metastatic
organs harbors common cellular and non-cellular components as
discussed above. However, the metastatic organs could also have
their own unique stromal components that are involved in CRC
colonization and outgrowth (Figure 3).

LIVER METASTASES

Around 20-25% of patients initially diagnosed with colorectal
carcinoma present with liver metastases (100). Of these, 80–
90% have multiple organ metastasis, including liver, and 50%
have exclusively liver metastasis (101). This is partially due
to the liver being proximal to the colon and their intimate
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FIGURE 2 | Host TME components and CRC. Cellular and non-cellular TME components can either promote or suppress tumor formation based on the situation.
Immunotherapies that remodel the immune cell population in combination with conventional treatments such as chemo- and radiotherapies are under evaluation.
DNA vaccines, small molecules, or nanoparticles that deplete CAFs or TECs are therapeutic strategies under development. In regard to altering non-cellular
components of the TME, integrin antagonist treatments that block the interaction between malignant cells and the ECM has achieved considerable success in
pre-clinical models. Administration of anti-tumor exosomes has achieved similar success. TME, Tumor microenvironment; CRC, Colorectal cancer; CAFs,
Cancer-associated fibroblasts; TECs, Tumor-associated endothelial cells; ECM, Extracellular matrix.

connection by portal circulation. A large number of tumor
cells upon extravasation from primary sites could directly
disseminate to liver via blood circulation. Meanwhile, the liver
may create a unique microenvironment to attract and foster
tumor colonization and outgrowth. To illustrate, Kupffer cells,
which are a set of specialized cells localized in the liver, highly
express CXCL12 to attract CXCR4-expressed CRC cells. This
facilitates tumor cell colonization and outgrowth (102). Likewise,
liver parenchymal endothelial cells (LPECs) activate the HER3-
AKT pathway in tumor cells via paracrine signaling to promote
CRC liver metastasis (103). Conversely, liver cells could also
restrain metastatic colonization. For example, liver resident NK
cells provide immune surveillance and eliminate tumor cells that
disseminate to the organ. Harmon et al. found that reduction
of these liver resident NK cells significantly promotes CRC liver
metastasis (104).

Pro- or anti-metastasis communication between CRC
cells and liver stromal cells could occur even before the
residence of tumor cells in the liver. Tumor cells reshape
the liver microenvironment through secretomes before their

arrival. Shao et al. found that CRC secreted exosomes are
enriched with microRNA-21-5p (miR-21). These induce
liver macrophage polarization toward an interleukin-6 (IL-
6)-secreting proinflammatory phenotype. As a result, the
proinflammatory niche promotes liver metastasis (105).
However, exosomal Angiopoietin-like protein 1 (ANGPTL1)
attenuates CRC liver metastasis. Mechanistically, exosomal
ANGPTL1 is taken up by Kupffer cells in the liver, which alters
their secretion patten by targeting the JAK2-STAT3 pathway.
The altered Kupffer cells decrease MMP9 expression and
prevent liver vascular leakiness, and consequently, suppress liver
metastasis (106).

LUNG METASTASES

The lungs are the second most common metastatic site of
CRC after the liver. Commonly, lung metastasis occurs with
an incidence of 10–15% in patients after radical resection of
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FIGURE 3 | Pro- and anti-tumor niches in liver and lung. Tissue specific cells attract or restrain CRC metastatic colonization and outgrowth via distinct mechanisms.
To illustrate, liver and lungs form a pro- or anti-tumor niche via tumor secretomes, including chemokines and exosomes. CRC, Colorectal cancer; CAFs,
Cancer-associated fibroblasts; LPECs, Liver parenchymal endothelial cells.

CRC (107). Previous study found that the activation of NF-
κB signaling in CRC cells enhances TNF-α production of
host hematopoietic cells. This results in a pro-inflammatory
microenvironment within the lungs that promotes CRC lung
metastasis (108). Similar to the liver, the secretomes of tumor cells
could remodel the lung microenvironment to favor CRC lung
metastasis. Exosomal miR-25-3p secreted by CRC cells facilitates
metastasis by promoting vascular permeability and angiogenesis
by targeting endothelial cells in the lung. Mechanistically,
it targets KLF2 and KLF4 to regulate the expression of
VEGFR2, ZO-1, occludin and Claudin5 (109). In addition,
CRC primary tumors release integrin beta-like 1 (ITGBL1)-rich
extracellular vesicles (EVs) to stimulate the TNFAIP3-mediated
NF-κB signaling pathway and activate resident fibroblasts in
distant organs (110). These activated fibroblasts produce pro-
inflammatory cytokines such as IL-6 and IL-8 to create a pre-
metastatic niche in the lung (110).

METASTASES IN OTHER TISSUES

In addition to the liver and lungs, CRC cells could metastasize
to the peritoneum, brain, and ovary. Five to ten percent of CRC
patients are diagnosed with peritoneal metastases. This increases
to 20-50% in recurrent CRC patients (111). Peritoneal metastasis
can originate from preoperative tumor cell dissemination,
intraoperative trauma-induced tumor cell shedding, metastatic

lymph node rupture, lymphatic tumor thrombus rupture, or
surgical field hemorrhage. All of which induces the implantation
of free cancer cells in the peritoneum (112, 113). The
peritoneal microenvironment is composed of a variety of cellular
components, such as human peritoneal mesothelial cells (PMCs),
peritoneal fibroblasts (PFBs), peritoneal macrophages (PMs), and
adipocytes, which create a suitable soil for peritoneal metastasis.
For example, the expression of intercellular adhesion molecule-1
(ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in CRC
cells can increase their adhesion to PMCs (114).

Two to twelve percent of CRC patients develop brain
metastasis (115). Significantly, the blood-brain barrier is a natural
fence that separate the brain with the rest of the body. It creates
a unique brain microenvironment. It also serves as the first
line of defense toward tumor cells dissemination to the brain.
Nevertheless, CRC tumor cells can still metastasize to the brain.
Previous studies revealed that nitric oxide (NO) is a crucial
mediator of anti-tumor properties of microglia in the TME of
the brain (116). However, metastatic CRC cells may suppress
the cytokine-induced NO production in cerebral endothelial cells
to inhibit the activation of microglia (117), and consequently,
promote the outgrowth of CRC brain metastases.

Ovarian metastasis of colorectal cancer is relatively rare
and usually occur in younger patients (118). Notably, the
ovaries are rich in lymphatic vessels and there are lymphatic
junctions between the colorectum and ovaries bilaterally. Studies
suggested that CRC cells take advantage of the lymphatic vessel
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rich microenvironment to invade the lymphatic system and
subsequently metastasize into the ovaries (119, 120).

THERAPEUTIC IMPLICATIONS BY
TARGETING TME

Thanks to the development of cancer screening and therapeutic
strategies, the number of CRC deaths has been declining over
the last few decades. However, at least 50,000 patients may
die from CRC in 2022 within the United States. It is still a
devastating disease, and curative therapeutic interventions are
urgently needed. Given the critical functions of the TME in CRC
progression and metastasis and our accumulating knowledge on
this subject, new insights about CRC therapy by targeting TME
are emerging (Figures 1, 2).

As discussed above, the gut microbiota plays essential
roles in CRC progression and metastasis. Manipulation of
the gut microbiota could hold clinical implications for CRC
patients. Intratumor Gammaproteobacteria residing in the
TME metabolize the chemotherapeutic drug gemcitabine
(2′,2′-difluorodeoxycytidine) into its inactive form, 2′,2′-
difluorodeoxyuridine. Antibiotic-induced depletion of this
bacteria enhanced the gemcitabine-mediated chemotherapy
response in a CRC mouse model (121). Alternatively, fecal
microbiota transplantation (FMT) may also be employed to
prevent CRC in patients with dysbiosis (122). A FMT procedure
could help eradicate procarcinogenic E. coli (114). Encouraged by
these pre-clinical findings, a few clinical trials on manipulating
gut microbiota in CRC patients are ongoing (123).

Immunotherapies such as immune checkpoint blockade
therapy, Chimeric antigen receptor (CAR) T-cell therapy, and
T-Cell Receptor (TCR) Therapy have achieved considerable
success in several cancer types (124). Immune checkpoint
blockade therapy such as PD-1 and CTLA-4 inhibitors have
been approved as first or second line of treatment for metastatic
CRC patients with microsatellite instability-high (MSI-H).
Unfortunately, treatments in MSI-H CRC patients usually only
extend survival rate rather than induce complete regression
of metastatic lesions. Even worse, the majority (>85%) of
CRC patients with microsatellite instability-low (MSI-L) are
not eligible for this therapy. Immunotherapy in combination
with other conventional treatments, such as chemotherapy,
radiotherapy, and targeted therapy are currently being tested in
order to overcome these obstacles and to encompass a broader
CRC population with better efficacy (125).

Given the central prooncogenic roles of CAFs, therapies that
target CAFs have been emerging. Fibroblast activation protein
(FAP) is a commonly used marker for CAFs and serves as an
ideal target for CAFs eradication. Pre-clinical studies indicate
that administration of DNA vaccine that targets FAP effectively
depletes CAFs in the TME, and consequently suppresses
CRC progression and metastasis (126). Furthermore, CAF
depletion by small-molecule dipeptidyl peptidase inhibitor PT-
100 significantly enhanced the efficacy of chemotherapy in CRC
mouse models (127). In addition, a small chemical compound,
Atractyloside, was also found to inhibit CRC metastasis by

targeting CAFs (128). Collectively, all these preclinical studies
suggest that CAFs in the TME could be a potential target for CRC.

One of the most common therapies for CRC is to target VEGF
and prevent endothelial cell-mediated angiogenesis. However,
this method has considerable adverse side effects and limited
benefit to patients because it targets both TECs and normal
endothelial cells. Nanoparticles that could selectively recognize
and deplete TECs have been developed and tested in pre-clinical
models (129).

Aside from targeting or remodeling cellular components in
the TME, manipulating non-cellular components could have
therapeutic potential as well. As mentioned above, fibronectin
is one of the major components of the ECM that promotes
CRC progression and metastasis. ATN-161, which is a non-
RGD-based pentapeptide (PHSRN) derived from the fibronectin
synergy region, inhibits breast cancer progression and metastasis
by antagonizing fibronectin (130). It was shown that ATN-
161 suppresses metastatic CRC progression and sensitize it
to chemotherapy in mouse model (131). Similarly, HM-3,
which is another integrin RGD domain containing peptide,
remodels the ECM and achieves impressive anti-tumor efficacy
in CRC xenograft models (132). In addition to remodeling the
ECM, manipulating other cell-secreted TME components have
attracted attention. Ascites-derived exosomes (Aexs) together
with the granulocyte-macrophage colony-stimulating factor
(GM-CSF) achieved encouraging outcomes in a phase I clinical
trial with advanced CRC patients (133).

CONCLUSION AND PERSPECTIVE

The TME has been recognized as a key player in tumor
progression and metastasis in CRC. All the components from
both microorganisms and the host are significantly involved in
this process. Although each component has distinct roles during
CRC progression and metastasis, most of them behave like a
double-edged sword, which could both promote or inhibit tumor
progression depending on the specific context. Moreover, the
TME is highly dynamic during CRC progression and metastasis.
The properties and abundance of each TME component could
be significantly altered during tumor progression and treatments.
In this review, we only covered a few common components
and discussed their functions mainly from a tumor-promoting
point of view. Of note, polymorphic microbiomes are one of the
hallmarks of cancer. Many organs other than the colon, including
the liver and lungs may have distinct microbiomes (134).
Here, we only discussed the gut microbiota and their potential
function in primary tumor sites. However, as mentioned above,
both microorganisms and host non-malignant components
dramatically contribute to the initiation and progression of CRC.

Cancer metastasis is composed of a serial of complex
process, from extravasation from primary sites to the eventual
colonization at distant organs (135). Although a considerable
number of CRC patients have metastatic disease at the time
of diagnosis or recurrency, only a small fraction of the
disseminated cancer cells are capable of successful metastases
(136). Disseminated tumor cells encounter tremendous stresses
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from the TME during metastasis (137). Each component of TME
contributes to this metastatic cascade. The specific components
of the TME and their roles during the metastatic cascade
have not been covered here as it has been comprehensively
discussed in our previous review (137). In this review, we mainly
focused on established metastases. Moreover, we emphasized
unique metastatic organ components rather than restated the
common TME components (such as CAFs and ECM) of primary
tumors. Collectively, unique stromal cells of various tissues
promote or restrain metastatic outgrowth with distinct pathways
as discussed above.

With the accumulating knowledge about TME in CRC
progression and metastasis, promising therapeutic strategies
that modulate TME are emerging. As mentioned earlier, many
researchers have confirmed that better anti-tumor effects can be
achieved through remodeling of the TME. In addition to the
beneficial effects in pre-clinical studies, observations in clinical
trials have shown the great potential of TME remodeling to
improve the therapeutic effect of drugs.

However, due to the dynamic changes of the TME during
cancer progression and metastasis, a detailed, functional
dissemination of every TME component at each given tumor
stage is essential. This knowledge would help us stratify CRC
patients that could benefit from a specific TME remodeling
therapy, and more importantly, suggest the best treatment

window. Furthermore, monotherapy is usually insufficient
because tumors, especially metastatic tumors, have the tendency
to develop resistance. In order to minimize treatment resistance,
combining TME remodeling strategies with other promising
therapeutics, such as immunotherapy, is another aspect we need
to explore in future studies.
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