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ORIGINAL RESEARCH
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ABSTRACT

Mounting evidence supports a role for the immune system in breast cancer outcomes. The ability to
distinguish highly immunogenic tumors susceptible to anti-tumor immunity from weakly immunogenic or
inherently immune-resistant tumors would guide development of therapeutic strategies in breast cancer.
Genomic, transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were used to examine statistical
associations between tumor mutational burden (TMB) and the survival of patients whose tumors were
assigned to previously-described prognostic immune subclasses reflecting favorable, weak or poor immune-
infiltrate dispositions (FID, WID or PID, respectively). Tumor immune subclasses were associated with survival
in patients with high TMB (TMB-Hi, P < 0.001) but not in those with low TMB (TMB-Lo, P = 0.44). This statistical
relationship was confirmed in the METABRIC cohort (TMB-Hi, P = 0.047; TMB-Lo, P = 0.39), and also found to
hold true in the more-indolent Luminal A tumor subtype (TMB-Hi, P = 0.011; TMB-Lo, P = 0.91). In TMB-Hi
tumors, the FID subclass was associated with prolonged survival independent of tumor stage, molecular
subtype, age and treatment. Copy number analysis revealed the reproducible, preferential amplification of
chromosome 1q immune-regulatory genes in the PID immune subclass. These findings demonstrate a
previously unappreciated role for TMB as a determinant of immune-mediated survival of breast cancer
patients and identify candidate immune-regulatory mechanisms associated with immunologically cold
tumors. Immune subtyping of breast cancers may offer opportunities for therapeutic stratification.
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Introduction

The abundance of tumor infiltrating lymphocytes (TIL), a
surrogate for activated anti-tumor immunity, is increasingly
recognized as a positive prognostic and predictive marker in
breast oncology.1–5 Increasing tumor mutational burden
(TMB) and the generation of neoepitopes have been asso-
ciated with immunogenicity in several tumor types.6,7 TMB
is associated with clinical benefit to immune checkpoint
blockade in patients with melanoma, lung, and colon cancer.-
8–11 The role of TMB in tumor immunogenicity is less clear in
breast cancer. While TMB is higher in estrogen receptor (ER)-
negative tumors compared with ER-positive tumors,

consistent evidence that mutational burden itself significantly
correlates with TIL levels is lacking.12,13

In recent years, the protective effects of endogenous anti-
tumor immune responses in breast cancer have been eluci-
dated by large-scale tumor expression profiling studies. These
studies describe clusters of coordinately expressed genes that
quantify the relative abundance and functions of tumor infil-
trating immune cell populations and associate with patient
outcomes.14–18 In a recent report, we described three such
prognostic immune signatures in breast tumors, each com-
prised of tens of genes with immune-specialized functions and
expression patterns unique to immune cell populations.19–21

These signatures, or metagenes, reflect the intratumoral
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presence of different immune cell lineages: T cells/NK cells
(T/NK metagene) comprised of genes with functional roles in
cytotoxic T-cell and NK-cell activation, B cells/plasma cells
(B/P metagene) marked by IgG antibody isotype-related
genes, and Myeloid/Dendritic cells (M/D metagene) deli-
neated by genes encoding myeloid-specific and MHC-class
II antigen-presenting molecules. Multivariable analyses have
shown that high metagene values (equating with abundant
immune infiltrates) are significantly and independently asso-
ciated with prolonged distant metastasis-free survival of breast
cancer patients 19,21 as well as a greater likelihood of patho-
logic response to neoadjuvant chemotherapy.20 These findings
are consistent with functional roles for the metagene-asso-
ciated leukocytes in protective anti-tumor immunity, namely
cytolytic activity (T/NK), antigen presentation (M/D) and
humoral response (B/P).

On this basis, we developed a breast tumor classification
system that combines the prognostic attributes of the B/P, T/
NK and M/D metagenes for partitioning tumors into one of
three outcome-related immune-infiltrate subclasses (reviewed
in eFigure 1 in Supplement 1). The tumor immune subclasses,
FID, WID and PID, reflect favorable, weak and poor immune-
infiltrate dispositions, respectively, that correspond with
immunologically “hot/inflamed”, “warm” and “cold/non-
inflamed” tumor histologies.21 In previous work we observed
a strong prognostic association for the immune subclasses in
some tumor types, but not others, indicating that effector
immune infiltrates may impart protective anti-tumor immu-
nity on a selective basis. We found that this selectivity
depends on the proliferative capacity and intrinsic subtype
of breast cancer, with tumors of high proliferative capacity
and Luminal B (LumB), HER2-enriched (HER2E) or Basal-
like subtype status defining a particularly immunogenic or
“immune benefit-enabled” population whereby FID, WID
and PID designations exhibit strong prognostic power.21

The proliferation rate and intrinsic subtype status of breast
cancers have been correlated with TMB.22,23 We hypothesized
that TMB, as a quantifier of tumor antigenicity, may influence
the prognostic power of the immune subclasses. We posited
that a better understanding of the relationship between TMB
and the prognostic potential of the immune subclasses could
allow one to distinguish tumors inherently vulnerable to
immune rejection from those that escape immune recognition
by exclusion of immune cells and/or failure to elicit a protec-
tive immune response. In this report, we demonstrate that
TMB discerns protective versus non-protective immune con-
figurations in breast cancer.

Results

TMB determines immune-mediated survival of breast

cancer patients

The TCGA Breast Cancer (BRCA) RNAseq expression data
were used to classify 930 primary breast tumors according to
the three immune subclasses (Figure 1A). A significant corre-
lation between FID, WID and PID designations and decreas-
ing histological estimates of presence of TIL was confirmed
(eFigure 2 in Supplement 1). TMB was defined as the rate of

nonsynonymous mutations per megabase (Mb) of sequenced
DNA. The mutation rate for the BRCA cohort ranged from 0
to 115 mutations/Mb with a mean TMB of 1.63/Mb that was
equivalent to the 80th percentile of the cohort’s TMB distri-
bution (Figure 1B). A comparison of the BRCA TMB distri-
bution to that of other TCGA cancer cohorts is shown in
eFigure 3 in Supplement 1. The mean TMB of the BRCA
cohort was used as an initial threshold for assigning patients
to low (below-mean) or high (above-mean) TMB categories
(termed TMB-Lo and TMB-Hi, respectively) and verified as an
acceptable threshold choice by alternative cutpoint testing (see
Methods and eTable 1 in Supplement 1).

Patient overall survival (OS) was used to investigate the
impact of TMB on the prognostic attributes of the immune
subclasses. By Kaplan-Meier analysis, TMB was a strong
determinant of the association between immune subclass
and OS (Figure 1C). In TMB-Hi tumors, FID, WID and
PID subclasses exhibited 5-year overall survival estimates of
100%, 76% and 60%, respectively. By contrast, the prognostic
connotation for FID, WID and PID was absent in patients
with TMB-Lo tumors, with the three subclasses displaying 5-
year survival estimates between 81–86%. To test the reprodu-
cibility of this observation in an independent cohort, we
utilized the METABRIC study consisting of > 2,000 breast
tumors.24 While the TCGA and METABRIC platforms for
expression profiling and mutation analysis differed, the deri-
vation of immune subclasses and TMB were determined to be
moderately comparable between the two data sets (see
Methods and eFigures 4–5 in Supplement 1). For computing
TMB in the METABRIC dataset, the number of mutations/
tumor (i.e., mutation count), but not the mutation rate, was
available. Thus, we analyzed immune subclass-survival asso-
ciations across a range of mutation count thresholds for call-
ing tumors low or high TMB. Since the TCGA threshold was
equivalent to the 80th percentile of the cohort’s TMB distri-
bution, we examined mutation-count thresholds in the
METABRIC dataset that approximated the 70th, 80th and
90th percentiles of TMB (eFigure 6 in Supplement 1). At
thresholds based on the 80th and 90th percentiles, the
immune subclasses showed statistically significant survival
differences in TMB-Hi tumors (≥ 80th percentile, P = 0.047;
≥ 90th percentile, P = 0.015), but not in TMB-low tumors
(< 80th percentile, P = 0.39; < 90th percentile, P = 0.41),
demonstrating the reproducibility of the effect of TMB on
the prognostic power of the immune subclasses. Additionally,
we examined TMB-Hi versus TMB-Lo survival differences
within each immune subclass (eFigure 7 in Supplement 1).
In the FID subclass, TMB-Hi tumors associated with signifi-
cantly better OS, while in the PID subclass, this association
was reversed, with TMB-Hi tumors associating with signifi-
cantly worse OS. This observation is consistent with an
opposing prognostic relationship between TMB and anti-
tumor immunity, where increasing mutation rate associates
with a more aggressive cancer phenotype in immunologically
cold tumors (PID), yet provides an antigen-mediated immu-
nological advantage in immune-inflamed tumors (FID) where
immune-mediated tumor control predominates.

To better understand the immunological composition of the
breast tumor immune subclasses, we used a genetic algorithm
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for estimating the abundance of different immune cell types
within tumors.25 We profiled the relative enrichment of 22
immune cell types across FID, WID and PID in TCGA TMB-
Lo and TMB-Hi tumors (Figure 2). Irrespective of TMB, the
majority of immune cell types showed differential enrichment
between FID and PID subclasses. Notably, the greatest differ-
ences were observed among those annotated as T.cells.CD8, T.
cells.CD4.memory.resting, NK.cells.activated, and T.cells.gamma.
delta – all of which showed marked enrichment in FID tumors
relative to WID and PID tumors.Mast.cells.activated, Mast.cells.
resting and Eosinophils showed the most significant associations
in the opposing direction, with enrichment in PID tumors
relative to WID and FID. In TMB-Hi tumors, where FID and
PID survival rates markedly differ, with the exception of B.cells.
naive and Macrophages.M0 all immune cell types showed sig-
nificant differences between FID and PID subclasses. Within the

immune subclasses, the most significant differences between
TMB-Hi and TMB-Lo tumors was observed in the FID subclass,
where TMB-Hi showed enrichment for Macrohages.M1 and T.
cells.CD4.memory.activated (p < 0.001, both comparisons).
These findings suggest that robust immunological differences
involving many immune cell types distinguish the immune
subclasses, and FID and PID in particular, with minimal differ-
ences observed as a function of TMB.

Molecular subtypes: associations with TMB and immune

subclasses

As mutational and immunological features of breast tumors
vary across molecular subtypes, we performed subtype-speci-
fic analyses of TMB and immune subclass composition. Basal-
like and Human Epidermal Growth Factor Receptor 2-
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Figure 1. Tumor immune subclasses and survival associations by TMB status. (A) Derivation of the immune subclasses (FID, WID and PID) is illustrated in the
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test P-values are shown.
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Enriched (HER2E) breast cancers had the highest TMB
(TMB-Hi fraction, 37% and 38%, respectively) while
Luminal A (LumA) tumors had the lowest TMB, with only
11.5% in the TMB-Hi fraction (Figure 3A) consistent with
previous findings.22 Among all tumors designated TMB-Hi,
the FID subclass represented 44 women who exhibited a high
OS rate of 100% at 10 years (Figure 1C); 66% of this excellent-
outcome subclass was comprised of the more clinically aggres-
sive subtypes: Basal-like, HER2E and Luminal B (LumB)
(Figure 3B). Among the four major subtypes, LumA tumors
comprised the majority of the TCGA cohort (53%; n = 495),
with 88.5% of LumA tumors classifying with the TMB-Lo

group. Thus, we examined the effect of the LumA subtype
on the overall prognostic stratification of the immune sub-
classes (eFigure 8 in Supplement 1). In both LumA and non-
LumA tumors, FID, WID and PID stratified patients to sig-
nificantly different survival outcomes in the context of TMB-
Hi, but not TMB-Lo. Strikingly, LumA tumors with high
TMB status and belonging to the PID immune subclass dis-
played a poor overall survival rate of 42% at 5 years
(eFigure 8D in Supplement 1). In TNBC tumors, high TMB
associated with significantly better OS (as compared to TMB-
Lo) in FID, but not WID or PID subclasses (eFigure 9A-C in
Supplement 1). However, while the FID subclass trended

Macrophages.M1
Dendritic.cells.activated
T.cells.CD4.memory.activated
T.cells.regulatory.Tregs
NK.cells.resting
T.cells.follicular.helper
T.cells.CD4.naive
Dendritic.cells.resting
Macrophages.M2
Monocytes
B.cells.memory
B.cells.naive
T.cells.CD8
T.cells.CD4.memory.resting
NK.cells.activated
T.cells.gamma.delta
Macrophages.M0
Neutrophils
Plasma.cells
Mast.cells.activated
Mast.cells.resting
Eosinophils

TMB-HiTMB-Lo

PID WID FID

Not Significant

P<0.05, >0.01

P<0.01, >0.001

P<0.001, >0.0001

P<0.0001

PID WID FID

0.4

0.2

0

−0.2

−0.4

FI
D
 T

M
B
-H

i v
s.

P
ID

 T
M

B
-H

i

Figure 2. Transcriptomic features of anti-tumor immunity in breast cancer immune subclasses. A leukocyte gene signature matrix of 22 immune cell types was
used as input for gene set variation analysis (GSVA). Mean enrichment scores for the immune subclasses, stratified by TMB status, are shown in the heat map; red
indicates increasing relative enrichment, green indicates decreasing relative enrichment. Significant differences in enrichment scores between FID and PID subclasses
in TMB-Hi tumors are shown (Mann-Whitney U test).

Basal HER2E LumA LumB

%
 T

u
m

o
rs

0.0

0.2

0.4

0.6

0.8

1.0

1.2
TMB-Lo
TMB-Hi

A. Subtype and Mutational Burden

(n=170) (n=76) (n=495) (n=192)

%
 S

u
b

cl
a

ss

0.0

0.2

0.4

0.6

0.8

1.0

FID WID PID FID WID PID

TMB-Lo TMB-Hi

Basal

HER2E

LumB

LumA

B. Immune Subclass Composition

Figure 3. Molecular subtypes of breast cancer in low and high TMB and immune subclasses. (A) The fraction of TMB-Lo and TMB-Hi tumors comprising each
molecular subtype is shown. (B) The fraction of molecular subtypes comprising each immune subclass according to low and high TMB is shown.

e1490854-4 A. THOMAS ET AL.



toward better OS (as compared to WID and PID) in the
TNBC TMB-Hi tumors, it did not achieve significance likely
owing in part to limited sample size (n = 69) and scant events
(n = 6 deaths) (eFigure 9D,E in Supplement 1).

Comparative analysis of prognostic markers

To investigate the clinical relevance of the immune subclasses
and TMB, multivariable Cox regression was used to model
associations between clinical and molecular variables and
survival time (Table 1). In the full cohort, variables that
remained significant in the model included mutation rate,
tumor stage (all stages vs. stage I), HER2E subtype (vs.
LumA), unknown treatment (vs. all treatment groups) and
patient age; all of which were associated with poor survival
with the exception of treatments (eTable 2 in Supplement 1).
In TMB-Lo tumors, stage (all stages vs. stage I), age and
unknown treatment (vs. endocrine monotherapy) remained
significant in the full model. In TMB-Hi tumors, the immune
subclasses remained significant in the presence of all variables,
together with stage III (vs. stage I) and unknown treatment
(vs. endocrine monotherapy). Together, these observations
demonstrate that the immune subclasses contribute additive
prognostic power beyond that of stage, age, treatment and
molecular subtypes in TMB-Hi tumors.

Genetic alterations underlie immune-survival associations

Somatic mutations can activate or suppress anti-tumor immu-
nity. We therefore considered the possibility that genomic
mutations may predispose tumors to different immune sub-
classes, or alternatively, arise as a consequence of genetic

selection and clonal outgrowth driven by certain immune
phenotypes. We examined the TCGA data set for recurrent
nonsynonymous gene mutations and chromosomal copy
number alterations (CNAs) that showed statistical evidence
for immune subclass-specific enrichment. After false discov-
ery rate (FDR) correction, only a single gene, TP53, was found
to be significantly mutated in an immune subclass-dependent
manner (FDR adjusted P = 0.02) with recurrent TP53 muta-
tions observed in 46% of FID, 26% of WID and 29% of PID
tumors, overall. No recurrently mutated genes showed signif-
icant enrichment after stratification to TMB-Hi and TMB-Lo.
By contrast, several thousand genes exhibited chromosomal
copy number changes significant after FDR adjustment, the
majority of which reflected relatively small subclass-depen-
dent differences. We therefore focused the analysis on the
TMB-Hi tumors, where many genes displayed large copy
number differences among the immune subclasses. We iden-
tified 133 genes amplified with significantly greater frequency
in TMB-Hi PID tumors, and 6 genes deleted with significantly
greater frequency in TMB-Hi PID tumors (Figure 4A,
eWorksheet 2 in Supplement 2). Gene Ontology enrichment
analysis of the genes amplified in PID tumors identified 5
significantly enriched gene ontologies inclusive of 26 genes:
Cytokine activity (P = 0.003), Interleukin-10 conserved site
(P < 0.001), Selectin superfamily (P = 0.009), Extracellular
space (P = 0.03) and Flavin monooxygenase (P < 0.001)
(eTable 3 in Supplement 1). A number of these genes are
involved in immune regulatory processes and are highlighted
in Figure 4A. Prominent among them was the immunosup-
pressive cytokine, IL10, which showed high-level amplifica-
tion in 18% of PID, 14% of WID and 2% of FID tumors
(Figure 4B). Similar amplification rates were observed for the

Table 1. Multivariable Cox regression for associations with overall survival.

TMB-Lo Tumors (n = 744) TMB-Hi Tumors (n = 186)

Variable Patients, No. (%) HR (95% CI) P valuea Patients, No. (%) HR (95% CI) P value

Immune Subclassa 2.67 (1.46–4.86) 0.001
FID 130 (17) 1 [Reference] 44 (24) NA
WID 237 (32) 0.91 (0.47–1.75) 0.77 60 (32) NA
PID 377 (51) 0.91 (0.51–1.63) 0.75 82 (44) NA
AJCC Stage
I 132 (18) 1 [Reference] 25 (13) 1 [Reference]
II 416 (56) 3.79 (1.59–9.01) 0.003 114 (61) 2.76 (0.50–15.1) 0.24
III 167 (22) 7.57 (3.06–18.7) < 0.001 40 (22) 9.30 (1.70–51.0) 0.01
IV 14 (2) 15.7 (5.64–43.9) < .001 1 (< 1) NAb NA
NA 15 (2) 6.22 (2.00–19.4) 0.002 6 (3) 1.06 (0.08–14.0) 0.96
PAM50 Subtype
LumA 435 (58) 1 [Reference] 57 (31) 1 [Reference]
LumB 154 (21) 1.29 (0.66–2.54) 0.45 38 (20) 0.38 (0.06–2.42) 0.30
HER2E 47 (6) 1.60 (0.66–3.87) 0.29 29 (16) 2.36 (0.50–11.3) 0.28
Basal-like 108 (15) 1.32 (0.52–3.32) 0.55 62 (33) 1.10 (0.13–9.31) 0.93
PAM50 Proliferation

Score, median (IQR)
−0.2 (−0.6–0.1) 1.30 (0.57–2.99) 0.53 0.1 (−0.2–0.3) 1.13 (0.20–10.9) 0.92

Treatment
Endo 147 (20) 1 [Reference] 25 (13) 1 [Reference]
Chemo 155 (21) 1.54 (0.60–4.00) 0.37 50 (27) 0.14 (0.01–2.04) 0.15
Endo + Chemo 238 (32) 1.05 (0.43–2.56) 0.92 46 (25) 0.82 (0.11–5.98) 0.85
NA 204 (27) 3.04 (1.38–6.69) 0.006 65 (35) 6.29 (1.19–33.1) 0.03
Age, median (IQR), y 58 (48–67) 1.03 (1.01–1.05) < 0.001 59 (49–68) 1.03 (0.99–1.06) 0.15

Abbreviations: CI, confidence interval; NA, not available; IQR, interquartile range; Endo, endocrine therapy; Chemo, chemotherapy
PAM50 Proliferation Score, Age and Immune Subclass (TMB-Hi cases) were entered as continuous variables, all others were entered as categorical variables
a Immune Subclass as a categorical variable resulted in a degenerate estimate (failed to converge) in the TMB-Hi population due to no deaths in the FID group, thus,
we used Nelder-Mead optimization to derive a continuous score for immune subclass (see eMethods)

b not applicable, only 1 stage IV tumor in TMB-Hi population
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genes IL19, IL20 and IL24, located adjacent to IL10 at chro-
mosome 1q32.1. At locus 1q24.2-1q25.1, PID-enriched ampli-
fication was observed for genes encoding T-cell specific
chemokines (XCL1, XCL2), leukocyte tethering molecules
(SELE, SELL, SELP), a promotor of T and B-cell activation
induced-cell death (FASLG) and a granzyme inhibitor
(SERPINC1). For these genes, high-level amplification events
ranged from 15–18% in PID, 4–7% in WID and 2–5% in FID
tumors (Figure 4B). Notably, the significant enrichment for
high-level amplification of these chromosome 1q immune
genes in PID tumors was reproducible in the METABRIC
cohort (eTable 4 in Supplement 1). In the METABRIC cohort,
high-level amplification of the genes occurred at significantly
higher frequencies in both TMB-Hi PID tumors and TMB-Lo
PID tumors (relative to FID and WID), though the associa-
tion in TMB-Lo tumors of the TCGA cohort was not evident
(eTable 4 in Supplement 1).

Discussion

In this study we provide first evidence of the significant link
between TMB and survival-associated protective immunity in
breast cancer. Using the TCGA and METABRIC cohorts we
demonstrate that approximately one-fifth of breast cancers,
with a relatively high TMB (TMB-Hi), harbor immunologi-
cally-relevant numbers of mutations. The FID immune sub-
class, marked by elevated effector immune infiltrates
(Figure 2), encompassed 20% of TCGA breast tumors overall,
with 25% designated as TMB-Hi and 75% as TMB-Lo. In
TMB-Hi, patients with FID tumors survived longer than
those with WID or PID tumors, consistent with an intrinsic
vulnerability of TMB-Hi FID tumors to antigen-stimulated
immune control of tumor progression. Whether or not these
tumors, given their high TMB and elevated effector immune
infiltrates, would be more susceptible to immune checkpoint
blockade is a point of clinical interest that warrants further

investigation. Patients with TMB-Lo FID tumors, in contrast
to those with TMB-Hi FID, did not experience a protective
survival benefit as compared to WID and PID, suggesting a
tolerant or tumor-promoting immune infiltrate that may
facilitate immune evasion.26 PID tumors, characterized by
low level effector cell infiltrates, comprised the largest
immune subclass (49% of tumors). This subclass comprised
44% of the TMB-Hi group where it was associated with worse
survival consistent with a poor tumor-mediated immune
response, despite high TMB. Whether or not these tumors
would prove more resistant to checkpoint inhibition is a
question of clinical merit.

Using the prognostic significance of the immune subclasses
as a guide, we observed that 1.63 nonsynonymous mutations/
Mb constituted a suitable threshold for discerning TMB low
versus high breast tumors (eTable 1 in Supplement 1). In
relation to other cancers, however, this TMB cutpoint is
arguably low. In a recent report showing that high TMB
predicts immunotherapy response in diverse cancers, where
TMB was defined as the rate of nonsynonymous mut/Mb, the
TMB categories were assigned as low (1–5 mut/Mb), inter-
mediate (6–19 mut/Mb) and high (≥ 20 mut/Mb), and corre-
sponded to approximately 50%, 40% and 10% of the sampled
population, respectively.8 Accordingly, this study would have
assigned 83% of the TMB-Hi breast tumors (as defined by our
TMB cutpoint) to their low TMB category, and only 7 breast
tumors in the entire TCGA cohort would have qualified for
their definition of high TMB. To better understand this, we
used our TMB computation method to compare the TMB
distribution of BRCA to that of other TCGA cancer types
and immunotherapy-treated cancers, in particular (eFigure 3
in Supplement 1). Where a TMB of 1.63 mut/Mb equated
with the 80th percentile of the BRCA cohort, this same TMB
equated with only the 14th percentile of melanomas (SKCM)
and the 19th percentiles of both lung adenocarcinomas
(LUAD) and head/neck cancers (HNSC). Conversely, the
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Figure 4. Copy number gains and losses associated with immune subclasses. Group means of gene-level copy number values were compared among FID, WID
and PID subclasses via analysis of variance. (A) Genes with significant copy number variation (FDR adjusted P < 0.1) and that showed > 10% variation in high-level
threshold amplification or deletion events (by GISTIC) between TMB-Hi FID and PID tumors are shown. 139 genes spanning 11 chromosomal loci are shown plotted
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median TMBs for SKCM, LUAD and HNSC equated with the
BRCA 98th, 97th and 92nd percentiles, respectively. Thus, as
compared to more hypermutated cancers, even the most
heavily mutated breast tumors can be said to exhibit a rela-
tively low TMB. A simple explanation then as to why our low/
high TMB assignment of breast tumors remained a strong
determinant of immune subclass prognostic significance, may
be that immune-mediated tumor control as it relates to TMB,
varies from one cancer type to another, or varies in a manner
that depends on the prevalence of other immuno-modulatory
factors. In the case of breast cancer, the combination of subtle
increments in TMB together with increased effector cell infil-
trates (reflected by the FID subclass) may sum to a more
protective immunogenicity than that afforded by either factor
alone. Whether this prognostic synergy, which we demon-
strate in both the TCGA and METABRIC cohorts, is unique
to breast cancer or applicable to other cancer types remains to
be seen. As a continuous variable in the BRCA cohort, TMB
alone was found to associate with poor survival, consistent
with previous observations in ER-positive breast cancer.23 In
TMB-Hi but not TMB-Lo tumors, the immune subclasses
contributed significant additive prognostic information inde-
pendent of AJCC stage, molecular subtype and other vari-
ables. These findings support the concept that integration of
molecular and genomic factors that characterize immunolo-
gical states of cancer will add value in risk-stratified treatment
decision models.

The role of the immune system in the more indolent LumA
breast cancers is poorly understood. While immune infiltrates
have been associated with better survival in ER-negative and
HER2-positive disease,27,28 this relationship is less clear in ER-
positive/HER2-negative breast cancers, where high TIL was
recently reported to be associated with shorter OS in patients
treated with neoadjuvant chemotherapy.29 Here, we identified a
rare population of high TMB LumA breast cancers (12% of
LumA tumors) within which the PID immune subclass pre-
dicted poor survival. To our knowledge this is the first report of
clinically-relevant immune subtypes of LumA breast cancer.

In other solid cancers, TMB as a reflection of neoantigen
load is associated with cytolytic activity26 and efficacy of
immune therapies.9,10,30–32 Although associated with effi-
cacy, TMB has not yet been deemed sufficiently predictive
to be of clinical use. Many tumors with high TMB are not
responsive to immune checkpoint inhibitors. Some tumors
with low TMB respond completely. Response to immu-
notherapy has also been associated with intratumoral gene-
based markers of T cell activation and antigen presentation-
33,34 but such markers have not been introduced to practice.
Triple negative breast cancer (TNBC), which comprises the
majority of Basal-like tumors, is characterized by relatively
high TMB.35 The objective response rate in a recently
reported phase Ib clinical trial of programmed-cell death
protein 1 (PD-1) immune checkpoint inhibition in heavily
pre-treated TNBC patients with PD-L1 expressing tumors
was only 18.5%.36 In our study, 36% of Basal-like tumors
were classified as TMB-Hi, and 24% of these tumors (9%
overall) belonged to the FID subclass, suggesting by extra-
polation that only a relatively small fraction of these tumors
may be particularly immunogenic. In TNBC tumors, we

observed a protective effect for TMB-Hi in tumors of the
FID immune subclass, but not in those of the WID and PID
immune subclasses, though this sub-analysis was potentially
limited by small sample size and sparsity of survival events.
Whether this subgroup of TMB-Hi FID TNBC shows an
enhanced responsiveness to immune checkpoint blockade
is the focus of ongoing studies. Of note, mismatch repair
deficiency which drives response to immune therapy in
colon cancer and other cancers, is a relatively rare phenom-
enon in TNBC and other breast cancers.37,38

In a recent report by Pusztai and colleagues,39 a lym-
phocyte-rich tumor subgroup of TNBC with good prog-
nosis was shown to associate with reduced clonal
heterogeneity and a reduced distribution of mutation
count (compared to a poor prognosis TNBC subgroup).
This finding suggests the selective culling of immunogenic
TNBC cells by immune surveillance. To the extent that this
phenomenon may be applicable to other subtypes, it is
possible that tumors we defined as TMB-Hi and of the
FID immune subclass may equate with reduced clonality
but concurrent high mutational diversity within surviving
clones. Thus, greater antigenic diversity could render these
tumors prone to a continual immune sculpting that con-
trols disease spread and mediates prolonged patient survival
in TMB-Hi FID tumors.

Intriguingly, we identified significant and reproducible
copy number gains in PID tumors involving genes on chro-
mosome 1q associated with immune regulation. While
amplification events at the gene-dense 1q locus occur in
50% or more of breast tumors,40 “driver” genes with immune
regulatory functions have not been proposed. In our analy-
sis, amplified immune genes were identified by the signifi-
cant enrichment of immune-related ontology terms.
Interleukin-10 (encoded by the IL10 gene) is an immuno-
suppressive cytokine known to inhibit tumor-specific type 1
immune responses.41 Fas ligand (FASLG) promotes activa-
tion-induced cell death (AICD) of activated T and B cells42

and is believed to confer immune privilege to tumors by
inducing apoptosis in tumor infiltrating lymphocytes.43

Serpin Family C Member 1 (SERPINC1), also known as
Antithrombin III, is a known inhibitor of T cell-derived
Granzyme A.44,45 The reproducible PID-enriched amplifica-
tion of these genes suggests the possibility that amplification
of one or more of these genes, alone or in combination, may
play a functional role in immune escape that contributes to
the immunologically cold phenotype of the PID immune
subclass.

The findings presented here illuminate protective and
non-protective immunological configurations of breast can-
cer with clinical implications. The results suggest that the
mutational burden of breast cancer is a tumor-intrinsic
determinant of immune-mediated patient survival, applic-
able even to Luminal A breast cancer. PID tumors that lack
immune involvement and are associated with poor prog-
nosis despite a high mutational burden, may be driven, in
part, by immunosuppressive amplification events. A formal
accounting of the genomic alterations and molecular path-
ways that underlie these immunological configurations
could shed light on mechanisms of tumor immune escape
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and reveal new opportunities for immunotherapeutic
targeting.

Methods

Genomic data acquisition, annotation and sample

selection

Transcriptomic, genomic and clinical data from The
Cancer Genome Atlas (TCGA) and Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC)
breast cancer data sets were utilized in this study. TCGA
BRCA: Clinical data, level 3-processed RNAseq, exome
sequencing and Affymetrix (Human SNP Array 6.0) copy
number data sets were downloaded from the Broad
Genome Data Analysis Center’s FireBrowse website
(http://firebrowse.org/; TCGA data version 2016_01_28).46

RNAseq data (‘rnaseqv2ʹ) were generated via MapSplice
alignment and RSEM quantitation. Affymetrix SNP6 copy
number data were processed, normalized and segmented
via the Broad’s copy number inference pipeline described
at (http://archive.broadinstitute.org/cancer/cga/sites/
default/files/publications/SNP6_pipeline_application_
notes_prerelease.pdf). Raw copy number data were further
processed by GISTIC (v2.0.22)47 to low- and high-level
copy number thresholds. Exome sequence data were pro-
cessed for somatic mutations by the Broad’s Oncotator
application (http://portals.broadinstitute.org/oncotator/)
output as mutation annotation format (MAF) files. The
1,100 BRCA cases with RNAseq data were filtered to
exclude male and gender “unknown” samples (n = 13),
metastatic tissue samples (n = 7) and one errant skin cancer
sample yielding 1,079 female primary breast tumor samples
for downstream expression analysis. PAM50 intrinsic mole-
cular subtype assignments and PAM50 proliferation scores
were computed as previously described,48,49 and are avail-
able in eWorksheet 1 in Supplement 2. The subtypes seg-
regate as follows: Basal-like (n = 189), HER2E (n = 82),
LumA (n = 559), LumB (n = 209) and Normal-like (n = 40).
Tumor samples designated as Normal-like were omitted
from downstream analyses due to evidence that they reflect
normal tissue contamination.50 The rate of nonsynonymous
gene mutations as computed by the Broad GDAC using the
MutSigCV algorithm (v0.9) 51 was downloaded from the
FireBrowse website via the section on ‘Distribution of
Mutation Counts, Coverage, and Mutation Rates Across
Samples’. Mutation rate was available for 965 of the 1,079
samples analyzed by RNAseq. Patient overall survival data
was available for 1,077 of the RNAseq-analyzed cases with
average 10-year follow-up time of 3.18 years and 3.80 years
for censored (time to last follow up) and uncensored (time
to death) cases, respectively. In aggregate, 930 evaluable
cases had corresponding RNAseq data, exome sequencing/
mutation rate data and overall survival data (eWorksheet 1
in Supplement 2). Cases diagnosed clinically as TNBC were
annotated according to Karn, et. al.39 METABRIC:
Normalized expression microarray and copy number data
for 1,980 primary invasive breast cancer cases were
obtained by Wake Forest IRB approval and controlled

access from the European Genome-phenome Archive
(https://www.ebi.ac.uk/ega/studies/EGAS00000000083).
Mutation counts and updated clinical data were obtained
from Pereira and colleagues.52 GISTIC-processed copy
number data were obtained from cBioPortal (http://www.
cbioportal.org/).53,54 In aggregate, 1,895 evaluable cases had
corresponding gene expression, mutation count and overall
survival data. Gene expression profiles were generated
using the Illumina_Human_WG-v3 array platform24 and
normalized by quantile normalization with linear modeling
batch correction, as described elsewhere.55 Copy number
levels were generated on the Affymetrix SNP Array 6.0 and
normalized using the supervised normalization of micro-
arrays (SNM) framework56 as described by55 and also using
DNAcopy54,57 to define low- and high-level copy number
thresholds. A 173-gene exome sequencing panel was used
to identify somatic gene mutations and generate measures
of mutational burden (gene count).52

Immune subclass classification. The immune metagene
model (IMM) is a survival-based prognostic classification
system for the objective assignment of patients to the immune
subclasses FID, WID or PID (reflecting favorable, weak or
poor immunogenic dispositions, respectively) as previously
described.19,21 Sample classification relies on the relative
expression levels (metagene scores) of the immune gene sig-
natures (metagenes) which reflect the intratumoral presence
of three immune cell types: B cells/plasma cells (B/P meta-
gene) marked by IgG antibody isotype-related genes; T cells/
NK cells (T/NK metagene) comprised mainly of genes with
functional roles in Cytotoxic T-cell activation/helper T-cell
type 1 (Th1) signaling, and Myeloid/Dendritic cells (M/D
metagene) delineated by genes encoding myeloid-specific
and MHC-class II antigen-presenting molecules. The genes
comprising each metagene are defined in Additional File 6 of
Nagalla and coworkers19 and were mapped to the TCGA and
METABRIC data sets by gene symbol. Metagene scores were
computed for each tumor as the average of the log2-trans-
formed normalized expression for the genes comprising each
metagene. Then, for each metagene, scores were binned into
lower, intermediate and upper tertiles based on the distribu-
tion of scores for each metagene across the entire breast
tumor population. Tumors were assigned to immune sub-
classes according to the following tertile configurations: 1)
FID: having metagene scores in the upper tertile of all three
metagenes, simultaneously; 2) PID: having metagene scores in
the lower tertile of one or more metagenes; and 3) WID:
having metagene scores of both intermediate and upper meta-
gene tertiles (but not classifying as FID or PID).19 Immune
subclass assignments are provided in eWorksheet 1 in
Supplement 2.

Comparison of TCGA and METABRIC immune metagenes

The classification of tumors to immune subclasses FID, WID
and PID depends on immune metagene tertile assignments
and the relative scale of metagene values. The immune meta-
genes were originally defined according to the Affymetrix
U133A expression profiling platform using a breast cancer
meta-dataset (termed “MC1”) of 1,954 tumor expression
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profiles 19, then adapted to the TCGA RNAseq data set and
the METABRIC cohort Illumina BeadChip data set. We com-
pared metagene distributions among the 3 datasets (eFigure 4
in Supplement 1). Comparing each dataset across metagenes
and tertile by tertile, we observed that the scale ranges of the
metagenes significantly differed by dataset/expression profil-
ing platform. These differences were associated with a com-
mon trend, with the TCGA RNAseq data set consistently
showing the largest range of metagenes values, and the
METABRIC BeadChip data set consistently showing the smal-
lest range of values. This difference could reflect a greater
precision for the TCGA data set to categorize tumors into
tertiles (ie, due to greater dynamic range), relative to MC1 and
METABRIC. A possible consequence is the more accurate
classification of TCGA tumors to metagene tertiles, and a
diminished accuracy for classifying METABRIC tumors to
metagene tertiles and hence, immune subclasses. Thus, we
conclude that this phenomenon could result in the dimin-
ished ability to observe a significant relationship between
patient survival rates and immune subclasses in the
METABRIC cohort, necessitating empirical assessment as
performed in this study.

TCGA and METABRIC mutational burden estimates

Whole exome sequencing data from the TCGA breast cancer
cohort was analyzed by the MutSigCV algorithm 51 to gen-
erate TMB estimates. TMB was defines as the rate of somatic
nonsynonymous mutations per megabase of DNA sequenced.
In the TCGA cohort, TMB values ranged from 0 to 115
mutations/Mb, and the mean TMB (1.63 mutations/Mb) was
used as an initial threshold for assigning patients to low
(below-mean, TMB-Lo) or high (above-mean, TMB-Hi)
TMB categories. To determine the appropriateness of using
the mean mutation rate threshold for discerning TMB-Lo
from TMB-Hi, we considered the use of alternative TMB
cutpoints. The mean TMB was found to be equivalent to the
80th percentile of the cohort’s TMB distribution. Adjusting
the threshold by steps of five-percentile increments either side
of the 80th percentile, we re-assigned patients to TMB-Lo and
TMB-Hi and assessed the statistical significance and hazard
ratio of immune subclass survival differences by Cox regres-
sion (eTable 1 in Supplement 1). As compared to thresholds
ranging from the 60th-95th percentiles, we observed that the
original mean-based threshold yielded the most statistically
significant association (P < 0.0001, likelihood ratio test) and
the hazard ratio of greatest effect (HR = 0.27) suggesting the
general suitability of the mean for this purpose.

By contrast, METABRIC samples were analyzed for
somatic mutations using a 173-gene sequencing panel, and
the number of mutations per tumor were computed as an
estimate of TMB.52 While the TCGA approach (mutation
rate) accounts for sample-to-sample variation in tumor
sequencing depth, the METABRIC approach (mutation
count) does not. We therefore sought to determine if esti-
mates of TMB derived from METABRIC differed significantly
to that of TCGA. To address this question, we calculated the
tumor mutation count for the TCGA cohort using only the
173 genes comprising the METABRIC panel and compared

this mutation count to whole-exome mutation rate by corre-
lation analysis (eFigure 5 in Supplement 1). We observed that
gene-panel mutation count was highly significantly correlated
(r = 0.91, P < 0.001) with whole-exome mutation rate in the
TCGA cohort, suggesting that measures of TMB, as computed
by the two methods, are reasonably comparable. However,
other technical variables specific to the TCGA and
METABRIC approaches could also hinder such comparisons.
For example, the different variant calling and annotation
pipelines used by the Broad Institute (for TCGA data) and
Pereira, et. al.52 (for METABRIC data) utilized different algo-
rithms and mutation detection thresholds. Furthermore, while
the TCGA approach utilized matched normal tissue for all
somatic mutation calls, the METABRIC approach utilized a
“pooled” normal strategy (ie, only a minor fraction of patient
normal tissue specimens were sequenced), and thus, was
reliant on a greater degree of inference for mutation calling.

Survival analyses

Cox proportional hazards regression and Kaplan-Meier analyses
were performed using R (https://www.r-project.org/). All survi-
val analyses examined patient overall survival defined as the
time of diagnosis to last clinical follow up or death at 10 years.
Variables were treated as categorical or continuous as described
in the Table 1 footnotes. Wald test P-values were reported
together with hazard ratios and 95% confidence intervals. In
multivariable analysis of the TMB-Hi patient population, mod-
eling immune subclass as a categorical variable (i.e., FID (refer-
ence) vs. WID and PID) gave a degenerate estimate resulting
from no death events being present in the FID group. Thus, in
Table 1 we used Nelder-Mead optimization to derive a contin-
uous “meta”-score for immune subclass, where:

Immune subclass meta-score = −0.95βT/NK −0.25βB/P +
1.03βM/D

Alternatively, we considered maintaining FID, WID and
PID as categorical variables in the model, but with recoding of
the survival status of the longest-lived person in the FID
group to an uncensored event (i.e., an artificial “death”
event). While creating a small penalty related to explaining
variance for FID, this avoids the need for representing the
immune subclasses as a continuous variable. In the multi-
variable model using FID as the reference, the PID effect
remained significant in the model (P = 0.0073, HR = 0.04,
95%CI = 0.005–0.43) while the WID effect did not
(P = 0.4898, HR = 0.68, 95%CI = 0.22–2.05).

Transcriptomic correlates of immune cell abundance

To gain insight into the immunological composition of the
FID, WID and PID subclasses, we examined the relative
enrichment of immune cell types within tumors. The gene
signature matrix of 22 immune cell types (LM-22) developed
by Alizadeh and colleagues 25 was used as input for the Gene
Set Variation Analysis (GSVA) algorithm of Hanzelmann and
colleagues.58 GSVA was implemented by R package “GSVA”.
Annotation and results from GSVA were visualized by R
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package “heatmap”. Subclass enrichment score distributions
were compared by Mann-Whitney U test in Figure 2.

Copy number analysis

Both raw and GISTIC-processed CNA data were analyzed.
Raw CNA values were adjusted for tumor purity using the
Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE) tool
(http://dx.doi.org/10.1038/ncomms3612) via the R package
(ESTIMATE). To assess the significance of gene copy number
differences among immune subclasses, ANOVA (raw) or Chi-
square statistics (GISTIC) were used. The Benjamini-
Hochberg P-value adjustment method was used to control
for false discoveries in the TCGA data set; unadjusted Chi-
square test P-values were reported for the METABRIC valida-
tion (eTable 3 and eTable 4 in Supplement 1).

Other statistics

All statistical tests were performed using R (https://www.r-pro
ject.org/) or SigmaPlot 12.0. Significant differences between
distributions were computed by the Mann-Whitney U test (2
groups) or Kruskal-Wallis test (> 2 groups). False Discovery
Rate (FDR) was controlled using the Benjamini-Hochberg pro-
cedure. Hierarchical clustering of gene and tumor expression
profiles, followed by heatmap-based visualization of data was
performed using Eisen’s Cluster (v2.11) and TreeView (v1.60)
software.59 Data were mean centered on genes and clustered
using average linkage clustering and uncentered Pearson corre-
lation. The Database for Annotation, Visualization and
Integrated Discovery (DAVID) Bioinformatics Resource ver-
sion 6.760 was used to study enrichment of Gene Ontologies
associated with genes amplified in immune subclasses. FDR
adjusted P-values are reported.
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