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Abstract

Tumor neoantigen is the truly foreign protein and entirely absent from normal human organs/tissues. It could be

specifically recognized by neoantigen-specific T cell receptors (TCRs) in the context of major histocompatibility

complexes (MHCs) molecules. Emerging evidence has suggested that neoantigens play a critical role in tumor-

specific T cell-mediated antitumor immune response and successful cancer immunotherapies. From a theoretical

perspective, neoantigen is an ideal immunotherapy target because they are distinguished from germline and could

be recognized as non-self by the host immune system. Neoantigen-based therapeutic personalized vaccines and

adoptive T cell transfer have shown promising preliminary results. Furthermore, recent studies suggested the

significant role of neoantigen in immune escape, immunoediting, and sensitivity to immune checkpoint inhibitors.

In this review, we systematically summarize the recent advances of understanding and identification of tumor-

specific neoantigens and its role on current cancer immunotherapies. We also discuss the ongoing development of

strategies based on neoantigens and its future clinical applications.
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Introduction

Tumor neoantigen, or tumor-specific antigen (TSA),

is the repertoire of peptides that displays on the

tumor cell surface and could be specifically recog-

nized by neoantigen-specific T cell receptors (TCRs)

in the context of major histocompatibility complexes

(MHCs) molecules [1–5]. From an immunological

perspective, tumor neoantigen is the truly foreign

protein and entirely absent from normal human or-

gans/tissues. For most human tumors without a viral

etiology, tumor neoantigens could derive from a var-

iety of nonsynonymous genetic alterations including

single-nucleotide variants (SNVs), insertions and dele-

tions (indel), gene fusions, frameshift mutations, and

structural variants (SVs) [2, 5]. For virally associated

tumors, such as human papillomavirus (HPV)–related

cervical or oropharyngeal cancer, Merkel cell

polyomavirus (MCPyV)–related Merkel cell carcinoma

(MCC) and Epstein-Barr virus (EBV)–related head and neck

cancers, any epitopes derive from open reading frames

(ORFs) in the viral genome also contribute to the potential

source of neoantigens [6–8]. In recent years, emerging evi-

dence has suggested that neoantigens play a pivotal role in

tumor-specific T cell-mediated antitumor immunity. As sum-

marized in several elegant reviews [2, 4, 5, 9], this evidence

includes, but is not limited to, (1) the occurrence of antitu-

mor immune response via T cell recognition of neoantigen,

(2) the relationship between tumor mutation/neoantigen bur-

den and clinical outcomes to immune checkpoint blockade,

and (3) the promising antitumor effects of therapeutic vac-

cines or adoptive T cell transfer based on neoantigen.

Unlike neoantigens, another two common types of

tumor antigens, named tumor-associated antigens (TAAs)

and cancer-germline antigens (CGAs), are not only

expressed on the tumor cell surface, they would also be

found on healthy or immune-privileged tissues (especially

reproductive tissues including testes, fetal ovaries, and

trophoblasts) with low levels of expression [3, 10, 11].

Therapeutic vaccines based on the TAAs or CGAs have

obtained dismal results mainly due to the central and

peripheral tolerance mechanisms [12]. Moreover, high-
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affinity TCRs for TAAs are preferentially depleted because

of positive selection, and the affinities of the remaining

TCRs for TAAs are lower than those for neoantigens and

other foreign antigens [13]. In addition, since TAAs or

CGAs could still have low levels of expression in normal

tissues, targeting them may result in severe autoimmune

toxicities related to immune activation in non-target

tissues, such as severe hepatitis, colitis, rapid respiratory

failure, renal impairment, and even treatment-related

death [14].

Theoretically, neoantigen is an ideal immunotherapy

target because they are distinguished from germline and

could be recognized as non-self by the host immune

system [5]. Neoantigen-specific immune reactions are

not easily subject to complex immune tolerance mecha-

nisms. Additionally, it may be less likely to trigger

autoimmunity because they do not express on normal

cells. Neoantigen-based therapeutic personalized vac-

cines and adoptive T cell transfer have shown promis-

ing preliminary results. Furthermore, recent studies

suggested the significant role of neoantigen in immune

escape, immunoediting, and sensitivity to immune

checkpoint inhibitors.

In this review, we systematically summarize the recent

advances of understanding and identification of tumor-

specific neoantigens and its role on current cancer

immunotherapies. We also discuss the ongoing develop-

ment of strategies based on neoantigens and its future

clinical applications. We do hope that this review could

help us better understand the ongoing development of

strategies based on neoantigens and its future clinical

applications.

Historical overview in the understanding of tumor
neoantigens

Currently, it is well-known that the immune system

possesses an extraordinary ability to distinguish self from

non-self, and recognize and target non-self antigens on

abnormal cells [4]. However, our understanding of

tumor neoantigens and its important role in antitumor

immune response is a long and tortuous process (Fig. 1).

We can go back to the late nineteenth century when

William Coley, father of cancer immunotherapy, firstly

attempted to leverage the patient’s immune system to

treat cancer [15, 16]. In spite of the tremendous out-

comes in individual cases, his findings were abandoned

due to the huge success of chemotherapy and radiother-

apy in control of various cancers. The investigation of

the immune system in carcinogenesis and control of

tumor growth during progression has recurred in the

early part of the twentieth century [17]. In 1943, Gross

et al. firstly showed that mice could be protected against

subsequent re-exposure from tumor cells after surgical

removal of the same tumors [18]. They also found that

analogous protection against tumor cells could be in-

duced by first exposing mice to lethally irradiated tumor

cells. Their findings revealed that the immune system

can recognize and eliminate malignant cells. Ten years

later, another group further found that mice were im-

mune against a second challenge with the same tumor

cells after resection of carcinogen-induced tumors, sup-

porting the idea of the existence of antitumor immunity

[19]. Nevertheless, the nature of antigens that could

substantially trigger antitumor immune response was

unclear during this period. Several decades later, De

Plaen and colleagues reported a significant finding that

antitumor T cells could recognize aberrant peptides

derived from tumor-specific mutations in a methylcho-

lanthrene (MCA)-induced mouse tumor model [20].

They further identified the first T cell–recognized

neoantigen by using a cDNA library screen. After that, a

series of neoantigens derived from somatic mutations

were identified in various human tumors including

melanoma and renal cell carcinoma [21, 22]. Another

significant advance in our understanding of neoantigens

occurred in the early twenty-first century, when Huang

et al. found nearly complete regression in a melanoma

patient after infusion of a cell product with a high pro-

portion of neoantigen-reactive T cells [23] and Lennerz

et al. reported that the T cells of the patient with melan-

oma were reactive against five mutated peptides result-

ing from somatic point mutations and T cells against

mutated epitopes was clearly predominated over the

response to TAAs [24]. Similarly, the Rosenberg group

found that neoantigen-specific T cells could persist at high

levels in both the tumor and peripheral blood 1month

after adoptive transfer in a patient with melanoma that

experienced a complete regression following adoptive

transfer of ex vivo–expanded autologous tumor-reactive

tumor-infiltrating lymphocytes (TILs)[25]. Collectively,

these studies provided initial evidence that neoantigens

play a vital role in the naturally occurring antitumor T cell

response. With the advent and wide application of

next-generation sequencing (NGS) technology, we have

obtained a more and more profound understanding on

tumor neoantigens. In 2012, two research groups inde-

pendently and firstly applied NGS technology to iden-

tify immunogenic neoantigens in mouse tumor models

[26, 27] and reported the protective effects of neoanti-

gen vaccines in B16 tumor model [27]. Soon after, NGS

technology was widely applied to explore T cell recog-

nition of neoantigens in cancer patients [28]. Subse-

quent studies indicated that T cell responses against

mutated antigens are frequently observed within TIL

products in types of cancers including melanoma, lung

cancer, colorectal cancer, cholangiocarcinoma, and

squamous cell carcinoma of the head and neck [29–33].

Nonetheless, whether the fraction of patients with
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detectable neoantigen-specific T cell responses is compar-

able across these tumor types remains largely unknown at

this moment. Recent advance in our understanding of

neoantigens is derived from the research of immune

checkpoint inhibitors targeting cytotoxic T lymphocyte-

associated protein 4 (CTLA-4) and programmed cell

death protein 1 (PD-1) on T cells. The cancer-immunity

cycle indicates that T cells recognized neoantigens dis-

played by MHCs on tumor cells is the first step to elimin-

ate the established tumor via using immune checkpoint

inhibitors [34, 35]. Mechanically speaking, there should be

a significant correlation between tumor neoantigen load

and clinical efficacy of immune checkpoint inhibitors. This

relationship was also demonstrated by several elegant

studies [33, 36–38]. However, some cancers with high

level of neoantigen load are not as sensitive to immune

checkpoint inhibitors as expected. It is likely to be associ-

ated with the neoantigen clonality [39] but true mechan-

ism of this phenomenon is not fully understood,

suggesting that we still need to pay more effort to deepen

our understanding of tumor neoantigens and its role in

antitumor immune response.

Fig. 1 Historical overview in understanding of tumor neoantigens
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Prediction and identification of tumor-specific
neoantigens

The genetic changes harbored by a neoantigen could

transform a self-protein into a functionally non-self-

protein. The neoepitopes being presented by MHC-I

could then drive immunogenic responses through

several potential mechanisms. First, neoepitopes de-

rived from mutations could improve MHC-I binding

affinity and then result in the presentation of MHC-

I ligands that would ordinarily not be presented

during T cell selection [40]. Second, neoepitopes

may increase the stability of the TCR–MHC-I inter-

action even with similar binding affinities as wild-

epitopes and can induce different immune responses

[41]. Third, mutation-induced changes to flanking

amino acid residues significantly interfere the pres-

entation of MHC-I viral epitopes. Theoretically, a

mutation harbored within a neoantigen could drive

the presentation of an adjacent unmutated MHC-I

ligand that has escaped immune tolerance due to

poor processing [42, 43].

Neoepitopes can be identified in various ways. Prior to

the advent of massively parallel NGS, labor-intensive in-

dividual cDNA library screening was used to screening

T cell–reactive neoepitopes [24]. When NGS became a

routine technique, the ability to identify tumor-specific

genetic mutations altering the protein coding regions

became rapid and high throughput, facilitating neoanti-

gen prediction. This is accomplished by applying ma-

chine learning algorithms that model aspects of the

MHC-I processing and presentation pathway to patient

tumor exome data to predict potential neoepitope tar-

gets [44, 45]. Predicted neopeptides can next be synthe-

sized and tested for reactivity by autologous T cells

using various assays such as ELISPOT, fluorescently la-

beled HLA tetramers, or barcode-labeled HLA multi-

mers [46]. A classic procedure for identification of

neoepitopes was shown in Fig. 2.

Fig. 2 Flowchart for tumor neoantigen prediction and detection of T cell–recognized neoantigens
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Several machine learning–based epitope prediction

tools are available, such as NetMHCpan [47], NetMH-

CIIpan [48], MHCflurry [49], ConvMHC [50], PLAtEAU

[51], and NetCTLpan [52]. For a neopeptide to become

a neoepitope, two properties must be fulfilled: the pep-

tide must be processed and presented by HLA, and the

presented peptide must be recognized by a suitable T

cell. Therefore, although these approaches show im-

mense potential, current neoepitope prediction methods

based on sequencing and predictions of epitope process-

ing and presentation result in a low rate of validation.

Bjerregaard et al. summarized published data from 13

publications on human neopeptides originating from

single amino acid substitutions for which T cell reactiv-

ity had been experimentally tested. Less than 3% were

reported to elicit the T cell response [53]. One major

reason may be that the machine learning algorithms are

highly dependent on the datasets available for training

and testing [54]. As a widely used resource, The

Immune Epitope Database and Analysis Resource

(IEDB) hosts a database of experimentally validated epi-

topes. But its datasets of validated T cell epitopes found

in databases are almost entirely formed of epitopes from

bacteria or viruses and were not obtained by standard-

ized experimental methodologies in cancer models [55].

Recent developments in HLA peptidomics for class I

and II HLA molecules have been relevant for the im-

provements in the available epitope datasets [56, 57].

Abelin et al. set up their own dataset (> 24,000 peptides)

and identified thousands of peptides bound to 16 differ-

ent HLA class I alleles to quantify the contribution of

factors critical to epitope presentation, such as protein

cleavage and gene expression [58]. A commercial plat-

form, EDGE (Epitope Discovery in cancer GEnomes)

was constructed on deep learning to a large (N = 74 pa-

tients) HLA peptide and genomic dataset from various

human tumors and could increase the positive predictive

value of HLA antigen prediction by up to nine-fold [59].

Another strategy to improve the ability to predict neoe-

pitope was the integration of potential immunogenicity

assessments to the prediction process. MuPeXI algo-

rithm ranks predicted neoepitopes by a priority score

that is based on inferred abundance, MHC binding

affinity, and an immunogenicity score based on similar-

ity to non-mutated wild-type peptide [60] EpitopeHunter

algorithm, which integrates RNA expression with im-

munogenicity prediction algorithm based on the hydro-

phobicity of the TCR contact region [61, 62]. Neopepsee

algorithm using a machine learning algorithm trained on

epitope features, including antigen processing and

presentation, amino acid characteristics, the binding dif-

ference between wild-type and mutant epitope, and simi-

larity to known epitopes, to predict the immunogenicity

and reduce the false-positive rate [63]. In conclusion, to

maximizing the probability of identifying clinically rele-

vant neoepitopes, multiple method epitope prediction

and advanced neoepitope quality metrics are warranted.

Neoantigens-directed immunoediting and

immune escape

Cancer immunoediting is a conceptual framework

integrating the immune system’s dual host-protective

and tumor-promoting roles. During cancer immunoedit-

ing, the host immune system shapes tumor fate in three

phases: elimination, equilibrium, and escape [64]. De-

cades of researches have revealed the dual role of the

immune system in tumorigenesis. Recent work on cellu-

lar or animal model and clinical study on one cancer

patient case [26, 64–67] have shown unequivocal

evidence that the immune system can facilitate cellular

transformation, prevent or control tumor outgrowth and

shape the immunogenicity of tumors [68–70]. Studies

using tumor exome sequencing to predict candidate

neoantigens provide insights into the contribution of

mutated peptide antigens encoded by somatic mutations

to tumor antigenicity in human cancers [28, 71].

Interactions between the immune system and tumors

have clear functional significance for tumor control, as

the immune system exerts evolutionary pressure on

highly immunogenic tumor clones through the process

of immunoediting [26, 65, 72], and antitumor immune

responses can be enhanced therapeutically by agents

such as immune checkpoint inhibitors [73]. However,

until recently, several multi-omics studies demon-

strated the direct impact from immune pressure and

immune editing on clonal evolution of tumor cells in

metastases, benefit from the development of bioinfor-

matic approaches on neoantigen prediction and on

tumor evolutional and metastasis model based on som-

atic mutational landscape from lesions from different

space and time [74–79]. A total of 258 samples from

different regions of 88 early stage, treatment-naïve

NSCLC were examined in the Tracking Cancer Evolu-

tion through Therapy (TRACERx) NSCLC study [77].

Similar to genomic heterogeneity, the immunological

landscapes of different regions of the same tumor can vary

dramatically. An increase in the ratio of observed-

to-expected neoantigens was noted from clonal to subclo-

nal mutations among tumors with a low level of immune

cell infiltration, which possibly reflects an ancestral

immune-active microenvironment that has subsequently

become cold. Tumors with high or heterogeneous levels

of immune cell infiltration had significantly lower levels of

expressed clonal neoantigens than those with limited

levels of infiltration (median 29% and 35% versus 41%;

P < 0.01). The pattern of neoantigen quantity and/or

quality changes reflecting the immunoediting was also

observed in other solid tumors including pancreatic
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cancer [79], colorectal cancer [74], melanoma [75], and

glioblastomas [78].

Tumor cells could evolve several mechanisms to es-

cape immune responses. On the one hand, cancers can

hijack mechanisms developed to limit inflammatory and

immune responses and escape the immuno-elimination.

On the other hand, the metabolic or genetic alterations

of tumor cells can render themselves invisible to the

immune system or can favor the generation of an extra-

cellular milieu preventing immune cell infiltration or

cytotoxicity. And the tumor clone possessing neoanti-

gens with potent immunogenicity tends to be eliminated

during immunoediting. There are several ways through

which immunogenic neoantigens could escape from

immunological surveillance. At the DNA level, chromo-

somal instability–induced copy number alterations may

drive the loss of neoantigens [77]. At the RNA level, the

neoantigen expression could be decreased for the pro-

moter hypermethylation, while epigenetics mechanism

could not account for all the transcriptomic neoantigen

depletion. Additional mechanisms of neoantigen tran-

scription repression need elucidation [76, 77, 80]. At the

protein level, the machinery to presenting antigen pep-

tides could be disrupted by mutations affecting HLA

heterozygosity, MHC stability, HLA enhanceosome, or

neopeptide generation [77, 81]. All these different mech-

anisms through which the tumor hiding target to evade

immune predation provide series potential clinical set-

ting worth to be exploited [82].

Preclinical and clinical neoantigen-based studies
Recent preclinical and clinical studies have shown that

neoantigen-based approaches are able to induce robust

antitumor immune responses in individual tumor micro-

environment (TME). The two main approaches targeting

tumor neoantigen that are well-established now include

neoantigen-based cancer vaccines and neoantigen-based

adoptive cell transfer (ACT) treatment. Also, combin-

ational therapies employing both neoantigen-based

approaches and immune checkpoint blockade (ICB) are

underway to overcome ICB-induced immune resistance

and maximize antitumor immune activity [83].

Neoantigen-based cancer vaccines

Personalized vaccines targeting neoantigens are designed

to prime and amplify neoantigen-specific T cell popula-

tions in vivo to augment adoptive antitumor immunity

among individuals. Actually, cancer vaccines were first

employed to target TAAs, which are overexpressed in

tumors but also expressed in normal tissues [84]. How-

ever, previous clinical trials of TAA-based cancer vac-

cines failed to demonstrate durable and effective

beneficial efficacy due to the deficient T cell priming in

TME [85]. In contrast, neoantigens detected via NGS or

mass spectrometry could result in decreased systematic

immune tolerance and improved safety profile [56].

Thus, enthusiasm on neoantigen-based vaccines is

increasing rapidly, with several recent preclinical and

clinical studies demonstrating its potent activation of

antitumor immune responses.

Recent preclinical studies have shown the efficacy and

feasibility of neoantigen-targeted cancer vaccines on murine

tumor models among melanoma [86–88], colon carcinoma

[89], esophageal squamous cell carcinoma [90], sarcoma

[91], and glioma [92]. Theresa et al. reported the potential

role of IDH1 (R132H) mutation–specific vaccination for

glioma treatment. They synthesized neopeptides containing

IDH1 (R132H) p123-142 mutated region to bind to trans-

genic human MHC-II molecules in glioma mouse model.

Results after vaccination indicated that neopeptide vaccine

lead to effective mutation-specific antitumor immune

responses in the mouse model with IDH1 (R132H)-

mutated gliomas [92]. In addition, a synthetic DNA

vaccine targeting multi-neoantigens reported by Eliza-

beth et al. also showed the potent ability of immune

activation. The electroporation-mediated DNA vaccine

delivery in this research was proved to be immuno-

genic and induced predominantly MHC-I restricted

CD8+ T cell responses in C57BL/6 mice, resulting in the

direct killing of tumor cells by the expanded neoantigen-

specific T cells [88]. Thus, the DNA platform may have

unique advantages to prime T cell activation for neoanti-

gen-based vaccines.

The encouraging results from preclinical studies have

also accelerated the development of clinical trials of

neoantigen-based vaccines [93–98]. The first reported

phase I clinical trial of neoantigen-based vaccines was

from Beatriz’s team in 2015 [93]. They found that den-

dritic cell (DC) vaccine could promote the presentation

of neoantigens by HLA-A*02:01 in three patients with

advanced melanoma. Soon after, two significant studies

published by Ott et al. and Sahin et al. in 2017 con-

firmed the potent role of neoantigen-based vaccines in

melanoma treatment [96, 97]. Ott et al. employed a syn-

thetic long peptide (SLP) vaccine targeting up to 20 pre-

dicted personal tumor neoantigens into six melanoma

patients, among whom four patients did not have tumor

recurrence within 25months after vaccination and two

other patients with recurrence achieved complete tumor

regression (CR) when they received PD-1 antibodies

[96]. Sahin et al. generated the first personalized RNA

mutanome vaccines for melanoma treatment. Of the 13

patients, a third of patients achieved CR to RNA

vaccination combined with PD-1 blockade therapy and

detected enhanced neoantigen-specific T cell priming in

vivo [97]. Apart from melanoma, most recently two co-

published works in Nature expanded the potential role

of neoantigen-based vaccines in the treatment of human
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glioblastoma [94, 95]. In a phase I study reported by

Keskin et al., eight enrolled glioblastoma patients with

multi-epitope neoantigen vaccination presented an in-

creased number of neoantigen-specific CD4+ and CD8+

TILs [95]. In addition, another phase I trial showed that

personalized neoepitope vaccine (APVAC2) induced pre-

dominantly CD4+ Th1 cell responses among 15 glio-

blastoma patients [94]. These findings demonstrated

that neoantigen-based vaccines were feasible for “cold”

tumors such as glioblastoma, which commonly have low

mutation load and immunosuppressive TME. To date,

several phase I/II clinical trials of neoantigen-based can-

cer vaccines are underway among various types of can-

cers (Table 1). Collectively, neoantigen vaccines based

on DNA, RNA, SLP, and DC have shown promising re-

sults of neoantigen-specific T cell infiltration and re-

sponses both in preclinical and clinical studies.

Neoantigen-based adoptive T cell transfer

As an alternative to neoantigen vaccines, the neoanti-

gen-based ACT approaches treat patients with T cell

products manufactured in vitro that contain abundant

group of neoantigen-specific T cells [2]. Compared to

neoantigen-based vaccines, neoantigen-based ACT ther-

apies have several potential advantages including the

higher population of neoantigen-reactive T cells (NRTs)

and the less immunosuppressive effects from TME dur-

ing the amplification phase of NRTs.

Since the first report from Rosenberg group in 2015

that neoepitopes derived from somatic mutations in

common gastrointestinal cancers could be immunogenic

for personalized TILs recognition [99], several studies

have confirmed that neoantigens derived from immuno-

genic mutations induced neoantigen-specific T cell acti-

vation among lung cancer, head and neck squamous cell

carcinoma, colorectal cancer, breast cancer, and lymph-

oma [100–105]. However, TILs could easily acquire a

dysfunctional state and result in very modest replicative

capacity and immune responses. Thus, it may be more

advantageous to transduce neoantigen-specific TCR

sequences into patients’ peripheral blood lymphocytes

(PBLs). Data from a preclinical study proved that TCR-

engineered PBLs reactive with KRAS mutant neopep-

tides reduced xenograft mouse model of melanoma and

other cancers, supporting the feasibility of TCR-T

therapy [106].

Table 1 Current clinical trials of neoantigen-based cancer vaccines

Interventions NCT number Phase Enrollment status Cancer types Combinations

Neoantigen vaccine NCT03558945 I Recruiting Pancreatic tumor None

Neoantigen vaccine NCT03359239 I Recruiting Urothelial/bladder cancer Atezolizumab

Neoantigen vaccine NCT03645148 I Recruiting Pancreatic cancer GM-CSF

Peptide vaccine NCT03558945 II Not yet recruiting TNBC Nab-paclitaxel, Durvalumab

Peptide vaccine NCT03929029 I Not yet recruiting Melanoma Nivolumab, ipilimumab

Peptide vaccine NCT03715985 I Recruiting Solid tumors None

Peptide vaccine NCT01970358 I Active, not recruiting Melanoma None

Peptide vaccine NCT03639714 I/II Recruiting Solid tumors Nivolumab, ipilimumab

Peptide vaccine NCT03956056 I Not yet recruiting Pancreatic cancer Adjuvant chemotherapy

Peptide vaccine NCT02287428 I Active, not recruiting Glioblastoma Radiation therapy

Peptide vaccine NCT02950766 I Recruiting Kidney cancer Ipilimumab

Peptide vaccine NCT03219450 I Not yet recruiting Lymphocytic leukemia Cyclophosphamide

Peptide vaccine NCT03422094 I Recruiting Glioblastoma Nivolumab, ipilimumab

DC vaccine NCT03871205 I Not yet recruiting Lung cancer None

DC vaccine NCT02956551 I Recruiting NSCLC None

DC vaccine NCT03674073 I Recruiting Hepatocellular carcinoma Microwave ablation

DC vaccine NCT03300843 II Recruiting Solid tumors None

RNA vaccine NCT03908671 Not Applicable Not yet recruiting Esophageal cancer, NSCLC None

RNA vaccine NCT03480152 I/II Recruiting Solid tumors None

RNA vaccine NCT03468244 Not Applicable Recruiting Solid tumors None

DNA vaccine NCT03532217 I Recruiting Prostate cancer Nivolumab, Ipilimumab

DNA vaccine NCT03122106 I Recruiting Pancreatic cancer Adjuvant chemotherapy

DNA vaccine NCT03199040 I Recruiting TNBC Durvalumab

GM-CSF granulocyte-macrophage colony stimulating factor, TNBC triple negative breast cancer, NSCLC non-small cell lung cancer, DC dendritic cells
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As to clinical studies of neoantigen-based ACT therap-

ies, the Rosenberg group has successfully treated patients

with this strategy in melanoma and other malignancies

[30, 107–110]. They first treated a patient with metastatic

epithelial cancer via the adoptive transfer of ERBB2 inter-

acting protein (ERBB2IP) mutation–reactive CD4+ TILs

to achieve tumor regression in 2014 [110]. After that,

Rosenberg et al. also identified TILs and memory T cells

from patient peripheral blood which recognized KRAS-

and TP53-mutated neoepitopes to treat patients with

epithelial cancers [108, 109]. Additionally, they observed

the promising results from clinical trials of metastatic

colorectal and breast cancer. Complete and durable tumor

regressions were observed in patients with breast cancer

treated with four neoantigen (SLC3A2, KIAA0368,

CADPS2, and CTSB)-reactive TILs and in a colorectal

patient treated with mutant KRAS G12D reactive CD8+

TILs [30, 107]. All these works supported a significant role

of neoantigen-specific T cells in cancer immunotherapies.

The treatment applications and effects of neoantigen-re-

active TILs could be expanded and enhanced through

transduction of specific TCR sequences into other naïve

CD8+ T cells to manufacture neoantigen-specific TCR-T

cells for patients with the same mutations. More recently,

our group constructed an inventory-shared neoantigen

peptide library of common solid tumors to match the

hotspot somatic mutations. Six of 13 patients using this

novel neoantigen identification strategy achieved tumor

regression. One metastatic thymoma patient achieved CR

more than 29months after NRT treatment [111]. Gener-

ally, developments of efficient and timely procedures to

identify and amplify neoantigen-specific T cells also play

an important role for augmenting personized neoantigen-

based immunotherapies.

Combinational therapies

Neoantigen-based vaccine and ACT treatment showed

promising results in preliminary investigations, but they

still need to combine with other therapeutic strategies to

further enhance the antitumor effect due to the inevitably

immunosuppressive effect of inhibitory immune check-

points in TME [9, 112, 113]. As we summarized in Table

1, current combinational therapies could be roughly di-

vided into the combination with other immunotherapies

and other conventional therapies. Since PD-1/PD-L1 path-

way exerts immunosuppressive effects on CD8+ T cells

mediate antitumor immunity, neoantigen-based vaccine

and ACT treatment plus anti-PD-1/PD-L1 antibodies

could yield a strong antitumor immune response. In the

preliminary studies, two research teams independently

demonstrated that PD-1/PD-L1 blockade could markedly

improve neoantigen-based vaccine-induced immune

response [96, 97]. Specifically, Sahin et al. observed the

long-lasting complete response in a patient treated with

neoantigen-based vaccine plus PD-1 blockade therapy

[97]. Their results suggested that it is valuable to test the ef-

ficacy of neoantigen-based vaccine or ACT in combination

with checkpoint blockade and other immunotherapies.

Theoretically, some conventional therapies could result in

the release of tumor-associated antigens and neoantigens

[114–117], suggesting the possibility for synergy with

neoantigen-based vaccine therapy. Moreover, some chemo-

therapeutic drugs have been shown to augment the antige-

nicity and immunogenicity of tumor cells via altering

neoantigen repertoire, increasing antigen production, im-

proving antigen presentation, and augmenting T cell traf-

ficking and responses [116–119]. Herein, we should not

simply consider chemotherapy as tumor suppressive but

treat it as the positive modulation of the immune system

[120]. Several phase I trials are ongoing to investigate the

safety and efficacy of neoantigen vaccine therapy plus

chemotherapy in adjuvant setting (Table 1). These results

are eagerly anticipated.

Biomarker for immune checkpoint inhibitors

Immune checkpoint blockade has shown significant

therapeutic responses against tumors containing high

tumor mutational burden (TMB) or tumor neoantigen

burden (TNB) [2, 33, 37]. A series of clinical trials re-

ported that patients with NSCLC or melanoma had

high objective responses to immune checkpoint block-

ade. Both two tumor types have the highest somatic

mutation burdens among common solid tumors [121,

122]. In contrast, cancers with low TMB/TNB such as

prostate cancer have shown little benefit from immune

checkpoint inhibitors. These results provided additional

evidence for the significance of neoantigens in the anti-

tumor immune response. Notably, it was not the linear

association between TNB and immune checkpoint

inhibitors response. For example, some cases with high

neoantigen burden showed no response to immune

checkpoint therapies, as well as some with low neoanti-

gen load, were susceptible to immune checkpoint

inhibitors [123]. Interestingly, if we put two main

factors including the likelihood of neoantigen presenta-

tion by the MHC and subsequent recognition by T cells

into a neoantigen fitness model, we observed that this

model could better predict survival in anti-CTLA-4-

treated patients with melanoma and anti-PD-1-treated

patients with lung cancer [124]. In addition, neoanti-

gens may need to be expressed in every tumor cell in

order to be efficiently targeted (so-called clonal neoan-

tigen). An interesting study by McGranahan et al. re-

ported that the therapeutic effect of immune checkpoint

inhibitors was enhanced in NSCLC and melanoma

enriched for clonal neoantigens, suggesting the significant

role of neoantigen heterogeneity in antitumor immunity

and supporting therapeutic developments targeting clonal
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neoantigens [39]. Taken together, these results revealed

that high TNB represents merely a higher likelihood of

the presence of immunogenic neoantigen, suggesting that

neoantigen landscape alone is insufficient in predicting

immune checkpoint inhibitor responses.

Resistance mechanism for immune checkpoint inhibitors

Considering the significant role of tumor neoantigens in

response to immune checkpoint inhibitors, it is reason-

able to suppose that the evolution of neoantigen land-

scape would mediate resistance to immune checkpoint

inhibitors. A retrospective study included 42 patients

with NSCLC treated with PD-1 antibody monotherapy

or combined PD-1 and CTLA-4 blockade and examined

the evolving neoantigen landscape during the emergence

of acquired resistance [73]. Among four consecutive

cases that developed acquired resistance, the authors

found that neoantigen loss via elimination of tumor sub-

clones or via deletion of chromosomal regions containing

truncal alterations, was associated with changes in T cell

receptor clonality, then resulting in acquired resistance to

immune checkpoint blockade. These results imply that

the dynamics of neoantigen loss may be one of potential

resistance mechanism. Widening the breadth of neoanti-

gen reactivity may delay the development of acquired

resistance to immune checkpoint blockade. However, it

should be pointed out that this study had several limita-

tions including small sample size, possibility of tumor het-

erogeneity, and analysis of samples from a defined period

of relatively early acquired therapeutic resistance. Future

investigations with a larger number of patients that devel-

oped acquired resistance to immune checkpoint inhibitors

are still needed.

Conclusions
In conclusion, emerging evidence suggests that tumor

neoantigen plays a pivotal role in immune escape, antitu-

mor immune response and successful cancer immuno-

therapies. Both neoantigen-based vaccine and ACT

treatments show very promising antitumor effect together

with high specificity and safety in preliminary studies.

Combinatorial approaches of neoantigen-based therapies

with other immunotherapies (e.g., immune checkpoint

inhibitors) and conventional treatments are ongoing, and

the results are eagerly anticipated. With a better under-

standing of biological properties and role of neoantigen in

antitumor immunity, there are abundant reasons to

believe that neoantigen-based therapeutic strategies have a

bright future in cancer immunotherapies.
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