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Abstract

This paper proposes a new fuzzy approach for the automatic segmentation of normal and pathological brain

magnetic resonance imaging (MRI) volumetric datasets. The proposed approach reformulates the popular fuzzy

c-means (FCM) algorithm to take into account any available information about the class center. The uncertainty in

this information is also modeled. This information serves to regularize the clusters produced by the FCM algorithm

thus boosting its performance under noisy and unexpected data acquisition conditions. In addition, it also speeds

up the convergence process of the algorithm. Experiments using simulated and real, both normal and pathological,

MRI volumes of the human brain show that the proposed approach has considerable better segmentation accuracy,

robustness against noise, and faster response compared with several well-known fuzzy and non-fuzzy techniques

reported in the literature.
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1 Introduction

Magnetic resonance imaging (MRI) of the brain is often

used to monitor tumor response to treatment process.

The segmentation of the brain tumor from the magnetic

resonance images is important in medical diagnosis be-

cause it provides information associated to anatomical

structures as well as potential abnormal tissues neces-

sary to treatment planning and patient follow-up. It can

also be helpful for general modeling of pathological

brains and the construction of pathological brain atlases

[1]. One example is to analyze and estimate quantita-

tively the growth process of brain tumors, and to assess

the response to treatment and in guiding appropriate

therapy in serial studies [2,3]. In spite of numerous ef-

forts and promising results in the medical imaging com-

munity, accurate and reproducible segmentation and

characterization of abnormalities are still a challenging

and difficult task because of the variety of the possible

shapes, locations and image intensities of various types

of tumors. This task involves various disciplines includ-

ing medicine, MRI physic, radiologist's perception, and

image analysis based on intensity and shape.

Brain tumor segmentation process consists of separating

the different tumor tissues, such as solid tumor, edema,

and necrosis from the normal brain tissues, such as gray

matter (GM), white matter (WM), and cerebrospinal fluid

(CSF). Although manual segmentation by qualified profes-

sionals remains superior in quality to automatic methods,

it has two drawbacks. The first drawback is that producing

manual segmentations or semi-automatic segmentations

is extremely time-consuming, with higher accuracies on

more finely detailed volumes demanding increased time

from medical experts. The second problem with manual

and semiautomatic segmentations is that the segmentation

is subject to variations both between observers and within

the same observer. For example, a study by Mazzara et al.

[1] quantified an average of 28% ± 12% variation in quanti-

fied volume between individuals performing the same

brain tumor segmentation task, and quantified a 20% ±

15% variation within individuals repeating the task three

times at one month intervals. This statistic demonstrates

that the manual segmentation has no confidence in track-

ing the tumor volume during the patient follow-up

process and the automatic methods that could achieve a

sufficient level of accuracy would be highly desirable for

their ability to perform high-throughput segmentation.

On the other hand, automatic methods would be advanta-

geous since they are not subject to this variation, and thus,
* Correspondence: moumen@aun.edu.eg
1Electrical Engineering Department, Assiut University, Assiut 71516, Egypt

Full list of author information is available at the end of the article

© 2014 El-Melegy and Mokhtar; licensee Springer. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

El-Melegy and Mokhtar EURASIP Journal on Image and Video Processing 2014, 2014:21

http://jivp.eurasipjournals.com/content/2014/1/21

mailto:moumen@aun.edu.eg
http://creativecommons.org/licenses/by/2.0


the significance of changes in volumes could be more eas-

ily assessed.

In addition to tumor volume calculation, accurate auto-

matic segmentation methods additionally have the potential

to reduce the variability and increase the standardization of

other measurements and protocols, including the quantifi-

cation of edema or necrosis. Also, automatic segmentation

could lead to new applications, including effective content-

based image retrieval in large medical databases. This could

allow clinicians to find similar images in historical data

based on tumor location, grade, size, enhancement, extent

of edema, similar patterns of growth, or a variety of other

factors. This information could help clinicians in making

decisions, in addition to being a useful research tool for

exploring patterns in the historical data. In a similar vein,

accurate high-throughput segmentations could be used in

combination with relevant features and machine learning

methods to improve tumor grading in cases where grading

is ambivalent (or to discover potentially useful distinctions

within grades), and to provide a more accurate and patient-

specific prognosis [4].

Due to the above advantages of the automatic seg-

mentation, it becomes a necessary issue for clinicians.

Nevertheless, automatic tumor segmentation is still a diffi-

cult problem for two key reasons: (1) There is a large

number of tumor types which differ greatly in size, shape,

location, tissue composition and tissue homogeneity [5].

In some cases, their border with normal tissues cannot be

very well defined on images; therefore, they are even diffi-

cult for radiology experts to delineate. (2) The conse-

quence of the phenomenon of partial volume effect (PVE),

where 1 pixel/voxel may belong to multiple tissue types, in

addition to noise due to the MRI acquisition system.

In this paper, we address these difficulties using a soft

computing approach based on fuzzy concepts. This fuzzy

approach provides several advantages. First, it inherently

has the attractive property of the soft classification model,

where each point can belong to more than one class. This

is consistent with the partial volume effect observed in

MR images and thus eliminates the need for explicit mod-

eling of mixed classes (which is required - for example -

by segmentation methods based on the finite Gaussian

mixture [5]). Another key advantage of the fuzzy approach

is that it can segment several tissues at the same time.

Therefore, this approach can be used to segment all brain

tissues of interest, such as tumor and other abnormal tis-

sues (e.g., edema and necrosis) in addition to the normal

brain tissues (e.g., WM, GM, and CSF). This is in contrast

to some popular methods for medical image segmenta-

tion, such as deformable models [6,7] and level sets [8,9],

where only one object or tissue of interest can be typically

segmented at any time. Moreover, while these latter seg-

mentation methods often need careful (sometimes even

manual) close-enough initialization to ensure the method

convergence to a proper solution, the proposed approach

can start with random initial values.

In particular, the fuzzy approach that we propose is

based on the fuzzy c-means (FCM) algorithm [10,11].

Indeed, this fuzzy clustering algorithm has been already

used for MRI segmentation (e.g., Ahmed et al. [12],

Caldairou et al. [13], Cai et al. [14]). One key contribu-

tion of this paper is that the proposed approach, unlike

the earlier ones, is able to utilize prior information in

the segmentation process. It incorporates available infor-

mation about the class centers of the data. This can be as

simple as the rough knowledge of the mean intensity (class

center in FCM terminology) of a class (a particular tissue

in the MRI data). The uncertainty in this information is

also modeled. This information serves to regularize the

clusters produced by the FCM algorithm thus boosting its

performance under noisy and unexpected data acquisition

conditions. In addition, it speeds up the convergence

process of the algorithm. To the best of our knowledge,

the idea, mathematical formulation, and derivation of

incorporating this information have not been reported

before in the wide literature of fuzzy clustering and its

applications.

We apply the proposed approach to the automatic seg-

mentation of the human brain from two popular bench-

mark MR datasets: the simulated BrainWeb MR datasets

[15], and normal real MR datasets obtained from the

Internet Brain Segmentation Repository (IBSR) [16]. We

compare these results with those of the standard FCM

and several well-known fuzzy and non-fuzzy MRI segmen-

tation techniques found in the literature. We also apply

the proposed approach to pathological T1-weighted MRI

databases obtained from IBSR and from a local MRI scan

center to detect hyper-intense tumors. The results on the

pathological MRI are evaluated by expert radiologists from

Assiut University Medical Hospital.

The remainder of this paper is organized as follows:

Section 2 briefly reviews related work. Section 3 gives a

concise description of the standard FCM algorithm. In

section 4, a full explanation of the proposed approach for

MRI segmentation is given. Our approach for tumor seg-

mentation is developed in section 5. Section 6 presents

the experimental results and some comparisons with other

methods. Finally, the paper is concluded in section 7.

2 Related work
Many techniques for MRI segmentation have been devel-

oped over the years based on several techniques. These

techniques can be divided into four major classes [17]:

threshold-based techniques, region-based techniques,

pixel classification techniques, and model-based tech-

niques. In this section, we give a brief overview on these

methods. The interested reader is referred to the recent

survey in [17] for more details.
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One of the earliest and classical methods is thresholding,

in which the objects of the image are classified by compar-

ing their intensities with one or more intensity thresholds.

These thresholds can be either global or local. For ex-

ample, Gibbs et al. [18] presented a semi-supervised ap-

proach for the segmentation of enhancing tumor pixels

from T1-weighted post-contrast images. It first applied an

intensity threshold to a manually selected region of inter-

est, and represents a clearly justified approach for seg-

menting image objects that are different in intensity from

their surroundings. Their method does not effectively take

into account the presence of hyper-intense pixels repre-

senting normal structures in T1 post-contrast images.

Other segmentation methods based on thresholding in-

clude those in [19,20]. However, generally threshold-based

segmentation methods, either local or global, are unable

to exploit all the information provided by MRI and are

often used as a first step in the segmentation process.

Region-based segmentation approaches (e.g. [21-23])

examine pixels in an image and form disjoint regions by

merging neighborhood pixels with homogeneity properties

based on a predefined similarity criterion. One example is

the work of Salman [21] who presented a comparative

analysis of the traditional region growing segmentation

and a modified region growing method, addressed to brain

tumor segmentation in 3D T1 MR images. Other ap-

proaches incorporate the region growing process as a re-

finement step [22] or in an adaptive fashion [23]. While

the advantage of region growing is its capability of cor-

rectly segmenting regions that have similar properties and

generating connected region, it suffers from the partial

volume effect which limits the accuracy of MR brain

image segmentation. Partial volume effect blurs the inten-

sity distinction between tissue classes at the border of the

two tissues types, because the voxel may represent more

than one kind of tissue types.

In brain tumor segmentation, the methods based on

pixel classification are constrained to the use of supervised

or unsupervised classifiers to cluster pixels in the feature

space. While the supervised methods include Bayes classi-

fiers and artificial neural networks, unsupervised methods

include k-means, fuzzy clustering techniques [10,11], and

statistical methods such as Markov random fields (MRF).

Fuzzy methods will be discussed in more detail later in

this section. The unsupervised method of MRF provides a

way to integrate spatial information into the clustering

process, reducing the overlapping of clusters and the effect

of noise on the result [24]. A major difficulty in MRF is

the selection of the parameters that control the strength of

spatial interactions, which can result in very soft segmen-

tation and a loss of structural details.

In model-based segmentation, a connected and con-

tinuous model is built for a specific anatomic structure

by incorporating a priori knowledge of the object such

as shape, location, and orientation. The key methods in

this class often employ active contour models or snakes

[6,7] and level set methods [8,9]. While the former gener-

ally suffers from the difficulty of naturally handling topo-

logical changes for the splitting and merging of contours,

level set handles this in a natural fashion. Segmenting

tumors by geometric deformable models or level sets

permits the development of fully automatic and highly

accurate segmentation approaches [17]. Unfortunately,

these methods are still computationally expensive [9,17],

and sometimes hard to initialize [8].

One of the clustering algorithms that have enjoyed

considerable success in image clustering and segmentation

is the well-known FCM [10,11] and its variants. This fuzzy

approach provides several advantages. First, it inherently

offers a soft classification model, which is consistent

with the partial volume effect observed in MR images

and thus eliminates the need for explicit modeling of

mixed classes (which is required - for example - by seg-

mentation methods based on the finite Gaussian mixture

[5]). Another key advantage of the fuzzy approach is that

it can segment several tissues at the same time. Therefore,

this approach can be used to segment all brain tissues of

interest, such as tumor and other abnormal tissues (e.g.,

edema and necrosis) in addition to the normal brain

tissues (e.g., WM, GM, and CSF). This is in contrast to

deformable models [6,7] and level sets [8,9], where

only one object or tissue of interest can be typically

segmented at any time.

A lot of work has been developed in order to further

improve the FCM performance for MRI segmentation.

Almost all these efforts have focused on imposing spatial

constraints into the clustering algorithm [12-14,25-29].

Some notable examples of these methods follow.

Liew et al. [25] proposed a fuzzy algorithm that incor-

porates the local spatial context. Kang et al. [30] im-

proved FCM with adaptive weighted average filter.

Ahmed et al. [12] modified the objective function of

FCM to allow the labeling of a pixel to be influenced by

the labels in its immediate neighborhood. But the main

disadvantage is that it computes the neighborhood term

in each iteration step, which is time-consuming. Chen

and Zhang [27] proposed two variant algorithms, which

simplified the neighborhood term of the objective func-

tion of [12]. Chuang et al. [28] proposed averaging the

fuzzy membership function values and reassigning them

according to a tradeoff between the original and aver-

aged membership values. This approach can produce

accurate clustering if the tradeoff is well adjusted empir-

ically, but it is enormously time-consuming. Cai et al.

[14] proposed a fast generalized FCM algorithm which

incorporates the spatial information, the intensity of

the local pixel neighborhood and the number of gray

levels in an image. This algorithm forms a nonlinearly
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weighted sum image from both original image and its

local spatial and gray level neighborhood.

Hoppner and Klawonn [31] introduced a new way to

constrain the membership functions and proposed a

FCM-based algorithm with improved fuzzy partitions.

They modified the objective function so that the FCM

algorithm worked on distances to the Voronoi cell of the

cluster rather than using distances to the cluster proto-

types. Zhu et al. [32] improved on the algorithm of [31]

and proposed a generalized FCM clustering algorithm

with the fuzziness index being set by the users so as to

achieve more effective clustering performance. Both the

algorithms of [31] and [32] rewarded the crisp member-

ship degrees and made the FCM-based algorithm faster

with fewer iteration steps. Unfortunately, this kind of

method makes FCM lose its attractive soft classification

nature rendering it no longer suitable to take PVE into

account.

Ji et al. [33] constructed a regular energy term to deal

with the effect of noise by using the non-local patch in-

formation. This method needs to choose different pa-

rameters of the regular energy term when segmenting

different images. More recently, along the same line, the

fuzzy local [28] and non-local [13,22,34] information c-

means algorithms have been proposed.

The previous methods have been developed for

image and/or MRI segmentation. There are several

methods that are crafted for the particular sake of

tumor segmentation from MRI, including level sets

[8,9], expectation-maximization algorithm [17,35] and

fuzzy techniques [33,36-38].

The above methods for normal and/or pathological

MRI segmentation have some known limitations. On

the one hand, the majority of them has focused on

imposing some sort of spatial constraints over a local

neighborhood, and requires a tunable parameter to

weigh the importance of these constraints relative to

the data-driven objective function. This parameter has a

crucial impact on the performance of those methods,

and its selection is generally difficult and needs some

trial-and-error experiments. Some few methods (e.g.

[13]) have however tried to get around this problem by

making the determination of this parameter adaptive

and data-dependent. On the other hand, some of these

methods (e.g. [33]) need user intervention one way or

the other.

The approach proposed in this paper goes around

these issues by following a different, novel methodology.

The approach makes use of available information about

the mean intensities of the various MR tissues and their

uncertainty to guide the minimization of the data-

driven objective function. Such prior information can

be easily extracted from some training MRI samples of

these tissues. The incorporation of this information

allows the automatic segmentation of these tissues from

the MRI datasets, without the need for any parameters

or weighting factors to be tuned. This also enhances the

approach performance in terms of accuracy, noise robust-

ness and speed, as will be demonstrated in our experimen-

tal results.

3 Standard FCM

In this section, we give a brief overview of the standard

FCM clustering algorithm. It was first introduced by

Dunn [10] and later extended by Bezdek [11]. Its object-

ive is to partition data in such a way that the data points

within one cluster are as similar to each as possible and

as far away as it can be from the data points of other

clusters. In the context of our work, the FCM approach

can be formulated as follows. Let us consider an image

(or MRI data volume) composed of a set of N points

(voxels). Let us suppose that this volume has to be seg-

mented into K (K ≥ 2) classes, in a fuzzy fashion. This

means that a point i does not necessarily belong to one

of the K classes, but can partially belong to several ones.

For each point i ∈N, let uicð ÞKc¼1¼ ui1;ui2; ::::::; uiKð Þ be

the memberships of the point i with respect to these K

classes, such that
XK

c¼1

uic ¼ 1 and uic ∈ [0, 1]. For each

class c let vc be the centroid (class center) of this class

(this usually corresponds to the mean value of this

class's points). In the FCM approach, the segmentation

process of the image (volume) can be defined as the

minimization of the energy function

JFCM ¼
XK

c¼1

XN

i¼1

um
ic yi−vck k2: ð1Þ

The parameter m is a weighting exponent on each

fuzzy membership and determines the amount of fuzzi-

ness of the resulting classification (typically set to 2).

This function in (1) can be easily minimized using the

Lagrange multiplier (λ), so the constrained optimization

becomes

FFCM ¼
XK

c¼1

XN

i¼1

u2
ic yi−vCk k2 þ λð1−

XK

c¼1

uicÞ: ð2Þ

A solution can be obtained by alternatively computing

the membership ratios uic and the centroids vc until

convergence as follows:

vc ¼

XN

i¼1

u2icyi

XN

i¼1

u2ic

; ð3Þ
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uic ¼
1=dic

XK

j¼1

1=dij

; ð4Þ

where dic = ‖yi − vC‖.

The memberships are often initialized with random

values between 0 and 1, such that the constraint of the

membership is satisfied. The FCM objective function is

minimized when high membership values are assigned

to points whose intensities are close to the centroid

of its particular class, and low membership values

are assigned when a point's intensity is far from the

centroid.

4 Proposed approach

The proposed method is based on a new formulation of

the objective function of the standard FCM algorithm in

(1) in order to incorporate a priori information. The new

objective function is given by

J ¼
XK

c¼1

XN

i¼1

g vc; θcð Þ umic yi−vck k2: ð5Þ

The functional term g(vc; θ) models the available prior

information about the class center vc with any necessary

parameters encapsulated in θc. A general solution of this

objective function is explored in the following subsec-

tion. Then a proper form of the functional term g(vc; θc)

is devised in order to derive the exact formulae for the

solution parameters.

4.1 Solution estimation

The objective function (5) can be minimized in a fashion

similar to the standard FCM algorithm. First, a con-

strained minimization function using the Lagrange multi-

plier is constructed as

F ¼
XK

c¼1

XN

i¼1

g vc; θcð Þ umic yi−vCk k2 þ λð1−
XK

c¼1

uicÞ:

ð6Þ

Taking the first derivatives of F with respect to uic and

setting it to zero results in

∂F

∂uic
¼ 0⇒2g vc; θcð Þuicd2

ic−λ ¼ 0 ð7Þ

Solving for uic we have

uic ¼
λ

2g vc; θcð Þd2
ic

: ð8Þ

Since
XK

j¼1

uij ¼ 1 ∀ i, then

λ ¼ 2

XK

j¼1

1

g vj; θj
� �

d2
ij

: ð9Þ

Substituting (9) in (8) gives the final formula of the

membership as

uic ¼
1

g vc;θcð Þd2ic
XK

j¼1

1

g vj; θj
� �

d2
ij

: ð10Þ

The condition of the zero gradient of F with respect

to vc leads to

∂F

∂vC
¼ 0 ⇒

XN

i¼1

u2ic

�
−2 yi−vCð Þg vc; θcð Þ

þ yi−vcð Þ2 ∂

∂vc
g vc; θcð Þ

�
¼ 0:

ð11Þ

The solution of this equation relies on the specific form

of the prior information term g(vc; θc) which will be de-

vised next. Once this is done, the exact formulae to obtain

the memberships and class centers can be derived.

4.2 Prior information guided solution

The class centers in the intensity domain are the central

parameters that all different FCM algorithms consume

most of the time in searching for their optimal values.

Thus, incorporating any available information about

them can guide the algorithm to find the optimal values

at a reduced search time. This available information can

be encapsulated in a certain distribution of the class cen-

ter. If uniform distributions are assumed for all the class

centers, the proposed algorithm boils down to the exact

standard FCM algorithm. However, if more informative

distributions can be safely assumed, the algorithm will

exhibit a different behavior leading to improved results.

One may assume the typical (and often logical) Gaussian

distribution of the class centers, i.e., vceN μc; σ
2
c

� �
; where

μc is the mean of the class center, and σ2c is the variance

of this center, which represents the uncertainty of our

information about this center. The prior information

term g(vc;θc) for each class is to be taken to reflect the

information about this class center distribution. One

way to do this is to take it as the reciprocal of this distri-

bution. That is,

g vc; θcð Þ ¼ σc
ffiffiffiffiffiffi
2π

p
exp

ðvc−ucÞ2
2σ2c

 !
; ð12Þ
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where θc = {μc, σc} represents the class's own parameters.

The intuition here behind using the reciprocal is that

the more likely a class center is, the smaller the objective

function (5) becomes.

Having formulated an explicit form of g(vc; θc), we are

ready now to draw more light on (11). Substituting from

(12) in (11) and doing some manipulation will lead to a

cubic polynomial in the center of each class:

a3v
3
c þ a2v

2
c þ a1vc þ a0 ¼ 0; ð13Þ

where the coefficients of this cubic polynomial are

given by

a3 ¼
XN

i¼1

u2ic;

a2 ¼ −

XN

i¼1

u2ic 2yi þ μcð Þ;

a1 ¼
XN

i¼1

u2ic y2i þ 2μcyi þ 2σ2
c

� �
; and

a0 ¼ −

XN

i¼1

u2ic 2σ2cyi þ μcy
2
i

� �
:

The solution of the cubic polynomial (13) for each class

generally gives three roots. Logically, one should consider

only real roots. If, however, three such real roots are

obtained, we choose the one nearest to the mean μc.

Now we are ready to give the complete prior-information-

guided FCM (PIGFCM) algorithm, which can be sum-

marized in the following steps:

Step 1: Set the number of the classes K and the

stopping condition ε.

Step 2: Based on available prior information, set

{μc, σc}, c = 1, …, K.

Step 3: Initialize the memberships for all points with

random values between 0 and 1 such that the

constraint on the memberships is satisfied.

Step 4: Set loop counter b = 0.

Step 5: Calculate the class center vc, c = 1, …, K,

solving (13).

Step 6: Calculate the new memberships of all points in

all the classes using (10).

Step 7: If max V bð Þ
c −V b−1ð Þ

c

�� �� < ε , then stop, otherwise,

set b = b + 1 and go to Step 5. V bð Þ
c denotes the

vector of all class centers vc, c = 1, …, K, obtained

at iteration b.

Note that in the algorithm, the memberships are ini-

tialized randomly such that the constraint on the sum

of memberships per each point is satisfied. However,

other possibilities do exist. For example, the member-

ships of a point in all classes can start with equal values.

An even better possibility is to use the class center means

from the prior information to initialize the class centers

(i.e., vc = μc, c = 1, …, K, at b = 0) and then use them to ob-

tain the starting values of the memberships from (10).

However, in our implementation, we follow the random

initialization scenario (as exactly given in the PIGFCM al-

gorithm outlined above) in order to make the starting

point of our algorithm consistent with the standard FCM

algorithm and other FCM-based methods for the sake of

comparison in the experimental results section.

5 Tumor segmentation

The proposed PIGFCM algorithm segments the brain

MRI volume into the main tissues. Often, the tissues

related to gray matter (GM), white matter (WM), and

cerebrospinal fluid (CSF), in addition to the background

(BG), are the ones of interest. The user provides the prior

information, {μc, σc}, c = 1, …, K, of these tissues based

on the expertise or after analyzing sample (training)

MRI datasets. Typically, the BG class center's mean and

variance are assumed to be small numbers close to zero.

For pathological brain MRI, the additional class corre-

sponding to tumor (and maybe other abnormal tissues,

such as edema and necrosis) is also taken into account.

The prior information about the tumor class can be gath-

ered from tumors pre-segmented by experts from training

datasets. In this work, we focus on the particular type of

hyper-intense tumors (tumors that have the highest inten-

sity among the other tissues in T1 weighted MRI), but it is

easy to extend it to segment other types by incorporating

information about their characteristics.

When the PIGFCM algorithm has converged, a defuzzi-

fication process takes place in order to convert the fuzzy

memberships to crisp. The maximum membership pro-

cedure is typically the method employed for this purpose,

assigning a point i to the class C with the highest member-

ship: Ci = argc max{uic}, c = 1, …, K.

The resulting segmented volume of the tumor class is

then subjected to some post-processing in order to iso-

late the tumor. First, morphological operations (opening

followed by hole filling) are employed to remove the

isolated voxels and very small objects throughout the

volume. Then a connecting component technique is ap-

plied to extract all the connected shapes in the volume.

The largest component is finally presented as the desired

tumor isolated from the input pathological MRI volume.

6 Experimental results

In this section, the performance of the proposed PIGFCM

is evaluated for the segmentation of normal and patho-

logical brain MRI volumes. As there are publically avail-

able standard benchmark datasets of normal synthetic

and real human brain MRI volumes with known ground

truth, our first series of experiments are directed to the
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automatic segmentation of normal brain tissues. The

proposed algorithm is first applied to 3D synthetic MRI

phantoms from the BrainWeb [15]. These phantoms are

T1-weighted-type MRI datasets that are realistic simula-

tions of MRI acquisition with different levels of noise and

intensity non-uniformity. They also have a ground truth

volume which is used to quantify the performance of dif-

ferent segmentation algorithms. The algorithm is then ap-

plied to real human brain MRI volumes from the Internet

Brain Segmentation Repository (IBSR) [16]. This segmen-

tation repository provides real datasets along with their

ground truth segmentation as obtained by human experts.

Several experiments are conducted to demonstrate the

performance of the proposed algorithm in terms of accur-

acy, robustness against noise, and convergence speed.

The performance of the proposed algorithm on both

BrainWeb and IBSR datasets is compared with some

reported fuzzy approaches: the standard FCM algorithm

and the FCM algorithm with incorporated neighborhood

information (NFCM) [12]. The latter algorithm is selected

because it is one of the most notable FCM-based algo-

rithms imposing spatial constraints. It is implemented and

run using its best working parameters. In addition, the

proposed algorithm is compared with the recent non-local

FCM family of algorithms [13] (NLFCM, NL-R-FCM, and

NL-Reg), and Robust Fuzzy C-means algorithm (RFCM)

[39], as well as the non-fuzzy methods of expectation-

maximization segmentation (EMS) [40], hidden Markov

chains (HMC) [41], and statistical parametric mapping

(SPM5) [42].

The second series of our experiments are carried out to

evaluate the proposed algorithm performance in detecting

tumors from pathological brain MRI datasets. In this case,

to the best of our knowledge, there are no publically avail-

able benchmark datasets of brain MRI with tumors along

with their ground truth segmentations. Thus, in order to

evaluate our algorithm, we use a real MRI dataset from

IBSR [16] and another from a local MRI scan center in

Luxor, Egypt. The performance on these datasets is

assessed by two expert radiologists from Assiut University

Medical Hospital.

6.1 Simulated normal MRI segmentation

Here, the brain web datasets [15] are used. Volumes in

these datasets are defined at a 1-mm isotropic voxel

grid, with dimensions 217 × 181 × 181. The BrainWeb

site provides a fuzzy tissue membership volume that rep-

resents the ground truth for each tissue class. Twenty

different T1-weighted MRI volumes with noise levels

ranging from 0% to 9%, and bias field from 0% to 40%

are used for the experiment here. Out of those, 10 vol-

umes are used to collect the prior information. The ob-

tained information includes the mean μc and its variance

σc of each class center. Figure 1 shows a slice of one such

volume and the obtained segmentation result using the

proposed algorithm.

The performance of the algorithm is assessed using

two accuracy metrics: The first is the RMSE between the

obtained segmentation memberships and the ground truth

memberships, computed for all classes and over all the

volume voxels. The second is the popular Kappa Index or

(Dice similarity coefficient) [43] defined as

D ¼ 2 M∩Gj j
Mj j þ Gj jð Þ ; ð14Þ

where M refers to the segmented tissue, and G refers to

the ground truth tissue. Note that the Dice metric is

defined for hard memberships. Therefore, to apply it, we

employ the maximum membership rule on each point's

memberships as obtained from the fuzzy algorithm. The

value of Dice ranges from [0,1], with 0 for no similarity,

and 1 for full similarity.

The proposed algorithm is compared against a collection

of algorithms, including the standard FCM, NFCM, the re-

cent non-local FCM family of algorithms [13] (NLFCM,

NL-R-FCM, and NL-Reg), and Robust Fuzzy C-means

algorithm (RFCM) [39], as well as the non-fuzzy methods

a b c d

Figure 1 Evaluation of the proposed algorithm on a simulated normal MRI volume. (a) One slice of a volume with 9% noise and 40% RF

bias. (b) Segmented WM. (c) Segmented GM. (d) Segmented CSF.
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of expectation-maximization segmentation (EMS) [40],

hidden Markov chains (HMC) [41], and statistical para-

metric mapping (SPM5) [42]. Table 1 lists the average

Dice metric on the segmented WM and GM classes for all

these algorithms on the T1 BrainWeb database with 20%

inhomogeneity under various noise levels.

From these results one can notice that the proposed

PIGFCM algorithm has the best overall performance

among all algorithms in terms of accuracy thanks to in-

corporating the class center prior information. This clearly

shows that the proposed algorithm outperforms not only

well-known fuzzy approaches, such as the standard FCM,

NFCM, and NLFCM algorithms, but also key non-fuzzy

approaches, such as EMS and HMC.

As previously outlined in the PIGFCM algorithm, the

initialization of the class centers was done randomly thus

making the starting point of our algorithm consistent with

those of the standard FCM and NFCM algorithms. It is

however of interest to study the effect of initialization on

the three algorithms. As such, another experiment has

been conducted to compare the effect of initialization on

PIGFCM and the other fuzzy algorithms: standard FCM

and NFCM. The average Dice and RMSE metrics over all

the three brain tissues and all the test volumes for the

three algorithms are tabulated in the upper part of Table 2.

The three algorithms are also compared in terms of con-

vergence speed using a pc with a 1.7-Hz P4 processor and

1-GB RAM. The running times are also given in Table 2.

From these results, one can notice that the NFCM has

better results than the standard FCM algorithm. How-

ever, the proposed PIGFCM algorithm provides the best

accuracy (smallest RMSE and highest Dice). Although

the NFCM corrects for the effect of the MRI bias field

on the segmentation accuracy [12], the proposed algo-

rithm (which does not) provides considerably superior

performance. Moreover, it has a faster trend to converge;

it needs less than 0.17 of the time needed by the NFCM

algorithm, and about 0.81 of the FCM algorithm. NFCM

takes rather a long time due to the more complicated

calculations needed to be made at each iteration. Clearly

the incorporation of the prior information about the

class centers has indeed improved the segmentation ac-

curacy of the brain tissues, and guided the algorithm to

reach the proper solution faster.

The same experiment is repeated for the algorithms:

FCM, NFCM, and the proposed PIGFCM after being ini-

tialized using the prior information about the class centers

(i.e., vc = μc, c = 1, …, K, at b = 0). Again, the segmentation

accuracy and the time performance are recorded for the

three algorithms; see the lower part of Table 2. One can

clearly notice that the initialization has no significant ef-

fect on the accuracy, which is a good feature of the three

algorithms. On the other hand, the different (and better)

initialization has indeed affected the time performances

positively, where the time consumed by each algorithm

has dropped considerably (about three to four times of

improvement).

The robustness against the noise levels is evaluated

using a simulated brain MRI volume from the Brain-

Web with 0% noise level and 0% bias field to produce a

number of noisy volumes by adding a normal noise with

zero mean and standard deviation ranging from 0 to 50.

At each noise standard deviation, the three algorithms are

applied and the two accuracy measures are recorded. This

Table 1 Comparison between various methods and proposed PIGFCM on the BrainWeb database

Algorithm Noise level (%)

WM GM

0 1 3 5 7 9 0 1 3 5 7 9

SPM5 [20] 0.91 0.95 0.95 0.93 0.90 0.86 0.91 0.94 0.93 0.92 0.88 0.85

EMS [42] 0.87 0.91 0.93 0.92 0.90 0.85 0.83 0.91 0.92 0.92 0.89 0.87

HMC [19] 0.97 0.97 0.93 0.94 0.92 0.92 0.97 0.97 0.96 0.94 0.93 0.92

FCM [11] 0.87 0.86 0.84 0.81 0.79 0.75 0.87 0.85 0.84 0.81 0.80 0.77

NFCM [12] 0.95 0.94 0.93 0.92 0.90 0.87 0.93 0.90 0.89 0.87 0.86 0.84

NL-Reg [13] 0.73 0.73 0.73 0.73 0.73 0.73 0.65 0.65 0.64 0.64 0.63 063

NL-R_FCM [13] 0.97 0.95 0.95 0.94 0.92 0.91 0.96 0.95 0.94 0.93 0.9 88

NL-FCM [13] 0.98 0.96 0.95 0.93 0.90 0.82 0.94 0.93 0.92 0.90 0.88 0.78

PIGFCM 0.98 0.98 0.97 0.95 0.94 0.93 0.96 0.95 0.94 0.92 0.90 0.87

Table 2 Comparison between FCM, NFCM, and PIGFCM

algorithms concerning initialization

Initialization Algorithm Average
dice

Average
RMSE

Average
time (s)

Random FCM [11] 0.86 0.115 135

NFCM [12] 0.91 0.100 670

PIGFCM 0.95 0.075 110

Prior information FCM [11] 0.86 0.111 41

NFCM [12] 0.92 0.098 221

PIGFCM 0.97 0.060 25
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is repeated 10 times for each noise standard deviation.

Figure 2a graphs the average RMSE for the three algo-

rithms, while Figure 2b plots the average Dice metric. The

NFCM algorithm demonstrates somewhat better robust-

ness against noise than FCM due to the inclusion of the

neighborhood constraint that has a noise-smoothing ef-

fect. However, it is clear that the PIGFCM algorithm is the

most robust among the three algorithms due to incorpor-

ating the class center priors that has a regularization effect

on the algorithm output. Even at a high noise standard

deviation of 50, the average RMSE of PIGFCM is only

0.8 of that of the NFCM algorithm.

6.2 Real normal MRI segmentation

The proposed algorithm is applied to 20 real MRI volumes

obtained from IBSR [16] for different subjects. The vol-

umes in these datasets are defined at a 1-mm isotropic

voxel grid, with dimensions 256 × 256 ×Z, where Z ranges

from 55 to 67 with 3.1-mm slice thickness. The ground

truth segmentation of each volume as obtained by ex-

pert radiologists is also available. The prior information

for each class center of the three main brain tissues is

estimated from 10 volumes. The outputs of the proposed

algorithm and several algorithms are assessed using

the 10 remaining MRI volumes. The algorithms under

a

b

Figure 2 Accuracy of proposed (PIGFCM) algorithm and the FCM and NFCM algorithms versus noise standard deviation. (a) RMSE metric.

(b) Dice metric.
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comparison include the standard FCM, NFCM, the recent

non-local FCM family of algorithms [13] (NLFCM, NL-

R-FCM, and NL-Reg), and Robust Fuzzy C-means algo-

rithm (RFCM) [39], as well as the non-fuzzy methods of

expectation-maximization segmentation (EMS) [40], hid-

den Markov chains (HMC) [41] and statistical parametric

mapping (SPM5) [42]. Figure 3 shows the segmentation

results of the three main tissues: WM, GM, and CSF for

one axial T1-weighted brain MRI slice using several of

these algorithms.

The accuracy of the segmentation is assessed using the

RMSE and Dice metrics. Table 3 gives the averages of

the two metrics for the WM and GM tissues over the

dataset volumes for the various algorithms as well as the

time consumed by each algorithm. The results show that

the proposed algorithm has the best overall performance

among all algorithms in terms of accuracy thanks to in-

corporating the class center prior information. Addition-

ally, the proposed algorithm has demonstrated the fastest

performance among all algorithms. This clearly shows that

Table 3 Comparison in terms of Dice and RMSE measures

and consumed times for different segmentation methods

Algorithm Dice RMSE Average
time (min)

WM GM WM GM

HMC [19] 0.8653 0.7994 0.4013 0.4452 20

EMS [42] 0.8587 0.7894 0.3254 0.3978 21

SPM5 [20] 0.8527 0.7870 0.2832 0.2949 22

NL-R-FCM [13] 0.8435 0.8322 0.3072 0.4002 28

NL-FCM [13] 0.8468 0.7884 0.3650 0.4420 29

NL-Reg [13] 0.8631 0.8318 0.2352 0.4294 28

RFCM [41] 0.8609 0.8408 0.3823 0.4146 36

FCM [11] 0.8560 0.8321 0.2930 0.3111 4

NFCM [12] 0.8372 0.6057 0.2822 0.3742 11

PIGFCM 0.9672 0.8405 0.2442 0.2843 3

a b c

d e f

g h i

Figure 3 Results of several algorithms on the IBSR database. (a) A brain MRI slice of case 11 from IBSR. (b) Ground truth. Results using (c)

PIGFCM, (d) NFCM [12], (e) FCM [11], (f) RFCM [41], (g) NL-Reg [13], (h) NL-FCM [13], and (i) NL-R-FCM [13].
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the proposed algorithm outperforms not only well-known

fuzzy approaches, such as the standard FCM, NFCM, and

NLFCM algorithms, but also key non-fuzzy approaches,

such as EMS and HMC.

6.3 Tumor segmentation from pathological MRI

In this part of our experimental results, we evaluate the

proposed approach for automatic tumor segmentation

from pathological brain MRI. Assessing the performance

on such a task is not trivial due to the lack of standard

benchmark datasets. Here, we test our approach on two

different 3D T1-weighted datasets: (1) Tumor-Dataset-1

obtained from IBSR [16] consisting of four (256 × 256 ×

28) axial scans, taken at roughly 6-month intervals over

3.5 years for a 59-year-old female at the first scan. (2)

Tumor-Dataset-2 for two subjects, consisting of two axial

(256 × 256 × 22) scans obtained from a local MRI scan

center located in Luxor, Egypt. The two datasets exhibit

a b c

Figure 4 An example of tumor segmentation from Tumor-Dataset-1 volumes (each row shows volume at different scan time). (a) A

slice of MRI volume after removing non-brain tissues such as skull. (b) The tumor class memberships from the PIGFCM algorithm in that slice.

(c) The final segmented tumor after applying morphological operations.
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tumors with different sizes and at different locations. For

quantitative evaluation of the segmentation results; unfor-

tunately, these datasets lack any ground truth segmenta-

tion. Therefore, we resort to two expert radiologists from

Assiut University Medical Hospital to assess the algorithm

outputs.

The datasets also have the skull as part of the imaged

volume, so it is important to remove it in a separate

pre-process. This is achieved using the Brain suite [30]

automated software package for skull removing. Then

the proposed approach is applied on the volumes of the

datasets to segment each into the five classes (WM,

GM, CSF, BG, and tumor). For all these datasets, we use

the same prior information for the class centers of WM,

GM, and CSF as constructed in the previous experiment

using real normal IBSR datasets. The BG class center's

mean and variance are assumed to be small numbers

close to zero. The radiologists were independently asked

to manually segment a small part of the tumor MR im-

ages of the first volume of each dataset, which is used

to obtain coarse a priori information about the tumor

class center. Figure 4 shows some slices from Tumor-

Dataset-1 volumes for one subject at different scan

times, along with the results of the PIGFCM algorithm.

Shown on the right are the final segmented tumors after

applying the post-processing morphological operations on

the hardened tumor class memberships. Figure 5 illus-

trates analogous results on two volumes from Tumor-

Dataset-2. Both figures show good segmentations of

tumors of various shapes, sizes, and locations.

All the outputs from the proposed approach are

assessed by our two expert radiologists. Each radiologist

was independently asked to examine each 3D output of

the algorithm and assign a score out of 10. Given the

limited time availability of the two radiologists, we man-

aged to have them assess the outputs of the NFCM al-

gorithm on all these volumes as well. The average score

of the two radiologists for each volume (four volumes

from Tumor-Dataset-1 and two from Tumor-Dataset-2)

for the two algorithms is given in Table 4. The scores in

the table surely demonstrate the high performance of the

proposed algorithm as assessed by the experts. Moreover,

the scores reflect its better performance over the NFCM

algorithm.

7 Conclusions
In this paper, a new soft computing approach based on

the fuzzy c-means algorithm is proposed for the automatic

segmentation of MRI volumetric datasets. These datasets

are classified to three main classes (WM, GM, CSF). The

main key contribution here is that the proposed approach,

for the first time in the literature, is able to utilize available

prior information about the MRI tissues in the estimation

process. In particular, the knowledge about the mean

values of these tissues (the class centers in FCM termin-

ology) is exploited. The uncertainty in this information is

a b c

Figure 5 An example of tumor segmentation from Tumor-Dataset-2 volumes (one per row). (a) A slice of MRI volume after removing

non-brain tissues such as skull. (b) The tumor class memberships from the PIGFCM algorithm in that slice. (c) The final segmented tumor after

applying morphological operations.
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also modeled in the proposed approach. Compared to

other popular techniques for MRI segmentation, such as

deformable models [6,7] and level sets [8,9], the proposed

approach can automatically segment several tissues simul-

taneously starting from random initialization. Moreover, it

deals in a straight-forward manner with the problem of

partial volume effect in MRI.

We have applied the algorithm to the segmentation of

several simulated and real brain normal MRI volumes.

From the experimental results and the comparisons with

other well-known techniques in the literature, we have

shown that the incorporation of such prior information

in the formulation and derivation of the standard FCM

algorithm has indeed offered a considerable enhance-

ment in the performance of the algorithm even at high

degrees of noise. The new prior-information-guided FCM

(PIGFCM) algorithm has resulted in not only increasing

the segmentation accuracy, but also in speeding up the

algorithm convergence. It does not require the tuning

of any weighting factors to properly balance constraints

with the data-driven objective function. In addition, the

algorithm has demonstrated significant lower sensitivity

to noise and non-homogeneity intensity bias. The new

algorithm outperformed the performance of other fuzzy

methods, such as the FCM algorithm with incorporated

neighborhood information (NFCM) [12] and the non-

local FCM algorithm [13], as well as other non-fuzzy

methods, such as the expectation-maximization segmenta-

tion (EMS) method [40] and the hidden Markov chains

(HMC) method [41].

Furthermore, we have developed an approach based

on the proposed PIGFCM algorithm for the segmentation

of tumors from pathological brain MRI datasets. The ap-

plication of this approach on several brain T1-weighted

MRI volumes with hyper-intense tumors of various sizes

and different locations has demonstrated high-quality

tumor segmentation as assessed by expert radiologists.

Our current research is directed to further improving

the proposed algorithm by taking into account intensity

non-uniformity in MRI data [5], which is often referred

to as bias field. This inherent artifact in MRI is produced

due to imperfection in radio frequency coil and also pa-

tient electrodynamics interactions. The bias field causes

smooth variations in tissue intensities across MRI data-

sets. Although the bias field has little effect on visual in-

terpretation, it may affect the accuracy of automatic

processing tools, such as segmentation and registration.

Therefore, reformulating the algorithm proposed here to

account for bias field will further improve the MRI seg-

mentation accuracy. In addition, the number of classes

into which a given dataset is segmented is determined in

the proposed algorithm in a supervised manner based

on the expertise of the user (typically the radiologist). As

there are a number of methods available in the literature

(e.g., [44-46]) to determine this number automatically,

seeking full algorithm automation, we are also investigat-

ing the employment of some of these methods in our

algorithm.
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