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BACKGROUND. Molecular characterization of prostate cancer (PCa) has revealed distinct subclasses based on underlying 

genomic alterations occurring early in the natural history of the disease. However, how these early alterations influence 

subsequent molecular events and the course of the disease over its long natural history remains unclear.

METHODS. We explored the molecular and clinical progression of different genomic subtypes of PCa using distinct tumor 

lineage models based on human genomic and transcriptomic data. We developed transcriptional classifiers, and defined 

“early” and “late” categories of molecular subclasses from 8,158 PCa patients. Molecular subclasses were correlated with 

clinical outcomes and pathologic characteristics using Kaplan-Meier and logistic regression analyses.

RESULTS. We identified PTEN and CHD1 alterations as subtype-specific late progression events specifically in ERG-

overexpressing (ERG+) and SPOP-mutant tumors, respectively, and 2 distinct progression models consisting of ERG/PTEN 

(normal to ERG+ to PTEN-deleted) and SPOP/CHD1 (normal to SPOP-mutated to CHD1-deleted) with shared early 

tumorigenesis but distinct pathways toward progression. We found that within ERG+ and SPOP-mutant subtypes, late events 

were associated with worse prognosis. Importantly, the clinical and pathologic features associated with distinct late events at 

radical prostatectomy were strikingly different; PTEN deletions were associated with increased locoregional stage, while CHD1 

deletions were only associated with increased grade, despite equivalent metastatic potential.

CONCLUSION. These findings suggest a paradigm in which specific subtypes of PCa follow distinct pathways of progression, at 

both the molecular and clinical levels. Therefore, the interpretation of common clinical parameters such as locoregional tumor 

stage may be influenced by the underlying tumor lineage, and potentially influence management decisions.
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early and late progression events within specific subtypes, and 

investigating their unique and shared transcriptional alterations 

and signaling pathways. We developed transcriptional classi-

fiers to categorize subtype-specific early and late states, and 

applied these to a retrospective cohort including 1,626 patient 

samples and a prospective cohort including 6,532 samples using  

microarray-based gene expression data from a clinically available 

prognostic assay (the Decipher Prostate Cancer Test).

Results
Defining genomic late progression events in ERG-fusion and SPOP- 

mutant subclasses. To understand molecular progression in specific 

subtypes of PCa, we initially took an unbiased approach to define 

genomic alterations (including point mutations, amplifications, 

and homozygous deletions) associated with specific subclasses 

(Figure 1A, Supplemental Figure 1, and Supplemental Table 1; sup-

plemental material available online with this article; https://doi.

org/10.1172/JCI147878DS1). In the ERG-fusion subclass, PTEN 

deletion was the most enriched alteration, while CHD1 deletion 

was the most enriched alteration in the SPOP-mutant subclass 

(Figure 1A), consistent with prior results (4, 12, 30).

We next attempted to distinguish between early alterations 

and those more likely to represent late progression events. By 

investigating the clonal architectures of those genomic events 

in The Cancer Genome Atlas (TCGA) primary PCa cohort (4), 

Introduction
Prostate cancer (PCa) is a clinically and molecularly heteroge-

neous disease (1–7). Emerging next-generation DNA and RNA 

sequencing (RNA-seq) data point toward different molecular sub-

classes of PCa (3, 4, 8, 9), defined by underlying genomic alter-

ations. Approximately 50% of primary PCas harbor gene fusions 

involving members of the ETS family of transcription factors, 

including ERG, ETV1, ETV4, and FLI1 (1, 2, 4–6), while another 

key subclass representing approximately 10% of PCas is defined 

by recurrent mutations in SPOP (3, 4, 10–13). PCa has a natural 

history spanning decades and our understanding of the evolu-

tion of PCa over time is only beginning to emerge (4–6). Subtype- 

defining events like ERG fusion (which leads to ERG overexpres-

sion) and SPOP mutation appear to occur in early tumor devel-

opment (4, 12, 14, 15); events occurring later in the natural history 

of these cancers may drive progression to more aggressive local 

disease, transition to metastatic phenotypes, or resistance to ther-

apy (4, 12, 16, 17). However, understanding how specific subtype- 

defining events influence alterations that occur later and their impact 

on the clinical course of the disease remain unclear (4–7, 12, 18).

We previously established a framework using an RNA-based 

model to classify tumor subtype from transcriptional data (7), 

allowing the interrogation of cohorts with the long follow-up nec-

essary to define clinical outcomes (18–29). Here, we established 

distinct tumor lineage models of PCa progression, by defining 

Figure 1. Identification of subclass-specific 

late progression events in localized prostate 

cancer. (A) Enrichment of recurrent genomic 

alterations in ERG-fusion and SPOP-mutant 

subclasses from TCGA localized prostate 

cancer (PCa) cohort (n = 333). The alteration 

enrichment between 2 subclasses was 

calculated by 2-sided Fisher’s exact test. 

Orange denotes enrichment in SPOP mutant, 

pink denotes enrichment in ERG subclass. 

Amp, amplification; homdel, homozygous 

deletion. (B) Clonality results of ERG fusion, 

PTEN deletion, SPOP mutation, and CHD1 

deletion from TCGA cohort. Alteration 

frequency from each event is shown on the 

y axis, and different colors represent clonal 

and subclonal changes. (C) Enrichment of 

genomic alterations from localized PCa to 

metCRPC nominate progression events. 

Alteration percentages in metCRPC samples 

(n = 150) are shown on the x axis, and 

those in localized TCGA samples (n = 333) 

are shown on the y axis. The significance 

of enrichment (2-sided Fisher’s exact test 

P value) is shown by the size of the dots: 

small, P < 0.05; medium, P < 0.01; and large, 

P < 0.001. Genes in bold have significant 

enrichments of genomic alterations by using 

Fisher’s exact test for alteration burden.
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ed distinct enriched functions between these 2 tumor lineages, 

in both human samples and genetically engineered mouse mod-

els (Figure 2D, Supplemental Figure 6, and Supplemental Table 

18). For instance, tumor lineage of SPOP/CHD1 was positively 

enriched in androgen response signature (Figure 2D), consistent 

with higher androgen receptor transcriptional activity in SPOP- 

mutant samples (4, 11) and higher prostate-specific antigen (PSA) 

in SPOP-mutant cases (7).

To further explore the transcriptional divergence between 

these tumor lineages, we examined putative upstream transcrip-

tional regulators for gene expression changes (36). We detected 

similar predicted upstream regulators from the normal to early 

states (Supplemental Figure 7 and Supplemental Tables 19 and 

20). However, distinct upstream regulators were identified from 

the early to late states in multiple cohorts: TCGA (4), Taylor (1), 

and ICGC PRAD-CA (33) (Figure 2E, Supplemental Figures 8 

and 9, and Supplemental Tables 21–26). Specifically, growth/

survival-related kinases such as MEK, PI3K, and Erb-B2 recep-

tor tyrosine kinase 2 (ERBB2) were predicted to be active in the 

ERG/PTEN lineage but inhibited in the SPOP/CHD1 lineage, 

while kinase inhibitors showed the opposite trend, suggesting dis-

tinct activities between the tumor lineages (Figure 2E). Consistent 

with its status as a known oncogenic SPOP substrate, TRIM24 was 

predicted to be activated only in the SPOP/CHD1 lineage, whereas 

putative GATA2 activity was restricted to the ERG/PTEN lineage 

(37–39). Broadly speaking, these analyses credential 2 distinct 

transcription-based tumor lineage progression models consisting 

of ERG/PTEN and SPOP/CHD1, with shared early tumorigenesis 

but distinct pathways toward progression.

Development of SCaPT models to classify PTEN and CHD1 dele-

tions from transcriptional data. We next sought to understand the 

impact of subtype-specific progression on clinical outcomes (7, 

18) using RNA-based machine-learning classifiers, similarly to 

that which we have previously reported (7). We developed sub-

class predictor based on transcriptional data (SCaPT) models to 

categorize prostate tumors according to subtype-specific molec-

ular events (ERG/PTEN and SPOP/CHD1). To define signatures 

of PTEN and CHD1 deletions, we selected transcriptional fea-

tures specific for these genomic events using TCGA cohort (ref. 

4 and Figure 3, A and B). We next utilized support vector machine 

(SVM) (40–42) models and performed 10-fold cross validation to 

define the best features and models with highest sensitivity and 

specificity (Figure 3A and Supplemental Figure 10), and thereby 

established 2 RNA-based classifiers for PTEN and CHD1 dele-

tions (Supplemental Tables 27 and 28). With unsupervised hierar-

chical clustering using the PTEN- and CHD1-deleted signatures 

on TCGA training data, we found expected enrichment of cases 

with PTEN and CHD1 genomic deletions (Figure 3C and Sup-

plemental Figures 11 and 12). To further validate these models, 

we applied our PTEN and CHD1 transcriptional classifiers to an 

independent cohort (1), and found approximately 80% sensitivity 

and 90% specificity compared with genomic annotations (Figure 

3D). These results demonstrated that our SCaPT models classify 

PTEN- and CHD1-deleted subclasses on the basis of transcrip-

tional data with high accuracy and confidence.

Tumor lineage in 8,158 patients using the SCaPT models and 

decision tree. We applied RNA-based classifiers (SCaPT) and 

we found that all ERG fusions and SPOP mutations were clonal 

changes, consistent with early alterations. In contrast, a signifi-

cant fraction of PTEN and CHD1 deletions were subclonal chang-

es (Figure 1B and Supplemental Table 2), more suggestive of late 

progression events and consistent with previous findings (15). Fur-

thermore, we compared the fraction of samples with these alter-

ations in advanced metastatic castration-resistant prostate cancer 

(metCRPC) (16) and primary PCa (4); PTEN and CHD1 deletions 

were enriched in metCRPC (Figure 1C and Supplemental Table 

3), again consistent with late progression events (16, 31). Overall, 

these results confirmed that specific subtypes of PCa are associat-

ed with subsequent molecular changes; tumors with ERG fusions 

later may acquire PTEN deletions, while SPOP-mutant tumors 

may progress with CHD1 deletion.

Identification of 2 tumor lineage models: ERG/PTEN and SPOP/

CHD1. To understand the transcriptional landscape of molecular 

progression within subtypes, we established a tumor lineage model 

with 3 PCa states: (a) normal (benign prostate samples), (b) “ear-

ly” (ERG overexpressing or SPOP mutant), or (c) “late” (PTEN 

or CHD1 deleted) cancer from TCGA cohort (4). We investigated 

transcriptional alterations via unbiased differential expression 

analyses across these states within each genomically defined sub-

type (32). We hypothesized that transcriptional changes associat-

ed with disease progression follow a specific pattern: increasing 

or decreasing steadily from the normal to early to late states (Fig-

ure 2A). Using the 2 models, (a) normal to ERG+ to PTEN-deleted 

(ERG/PTEN) and (b) normal to SPOP-mutated to CHD1-deleted 

(SPOP/CHD1), we found 3,160 ERG/PTEN and 1,654 SPOP/CHD1 

progressively upregulated and downregulated genes (Figure 2A 

and Supplemental Tables 4 and 5). In contrast, testing the reverse 

order of events (normal to PTEN-deleted to ERG+, or normal to 

CHD1-deleted to SPOP-mutated) returned very few altered genes 

(Supplemental Figure 2 and Supplemental Tables 6 and 7), sup-

porting the temporal sequence of our original models. To define 

convergent signaling between the 2 lineage models, we compared 

affected genes and nominated pathways, and found that upregu-

lated genes shared among both subtype progression models were 

enriched in cell cycle function, while shared downregulated genes 

were enriched in focal adhesion function (Figure 2B, Supplemental 

Figure 3, and Supplemental Tables 8 and 9), consistent with broad 

common processes of tumorigenesis within the 2 tumor lineages (1, 

4). In contrast, uniquely altered genes displayed different function-

al annotation (Supplemental Figure 3).

By comparing the transcriptional pathways between these 2 

tumor lineages, we identified similar enriched functions from the 

normal to early states (Supplemental Figure 4 and Supplemental 

Tables 10 and 14), but divergent signatures from the early to late 

states, in multiple localized PCa cohorts: TCGA (4), Taylor (1), 

and International Cancer Genome Consortium Prostate Adeno-

carcinoma - Canada (ICGC PRAD-CA) (33) (Figure 2C, Supple-

mental Figure 5, and Supplemental Tables 11–13 and 15–17). To 

further validate these transcriptional differences and determine 

if underlying genomic alterations were causative, we examined 

the transcriptomes of prostate organoids and tissue samples from 

genetically engineered mouse models with conditional deletion 

of Pten or Chd1, corresponding to the late state with each sub-

type (34, 35). Gene set enrichment analysis (GSEA) demonstrat-
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and 28% (21% to 39%) to be ERG+PTENwt (ERG fusion with-

out PTEN deletion) (Figure 4B and Supplemental Figure 14). 

Expression thresholds defined 9% (7% to 12%) as non-ERG ETS 

fusion, and 35% (12% to 38%) without outlier expression, which 

we defined as an “other” subclass (Figure 4B). Among the pro-

spective cohort with 6,532 radical prostatectomy specimens, we 

classified 7% of cases to be CHD1del, 4% of cases to be SPOPmut,  

15% as ERG+PTENdel, 24% as ERG+PTENwt, 9% as ETS, and 

36% as other subclass (Supplemental Figure 15). Overall, the 

percentage of each molecular subclass is consistent with previ-

ous PCa studies (1, 4–6), supporting the validity of our SCaPT 

models and decision tree.

decision tree to define tumor lineage in 8,158 patients from 

retrospective and prospective Genomics Resource Information 

Database (GRID) cohorts (refs. 7, 18; Figure 4A, and Supple-

mental Figure 13). Among the retrospective cohort with 1,626 

radical prostatectomy specimens, we classified 8% (range, 4% 

to 10%) of samples to be CHD1del (CHD1 deleted), 8% (2% to 

13%) of samples to be SPOPmut (SPOP mutant), and 2% (1% to 

4%) of samples to be SPOPmut+CHD1del (SPOP mutant with 

CHD1 deletion) (Figure 4B and Supplemental Figure 14). Previ-

ously defined expression thresholds (7, 18) classified 42% (35% 

to 68%) as ERG fusion (overexpression, ERG+), and 14% (8% 

to 29%) to be ERG+PTENdel (ERG fusion with PTEN deletion), 

Figure 2. Transcriptional alterations of 2 distinct tumor lineage models: ERG/PTEN and SPOP/CHD1. (A) Two distinct tumor lineage models of PCa pro-

gression: ERG/PTEN and SPOP/CHD1 via ImpulseDE2 identified from TCGA cohort. Total genes in each category (transiently and progressively upregulated 

and downregulated) are represented in the bar plot with corresponding heatmaps. (B) Venn diagrams of shared and uniquely upregulated and downreg-

ulated genes between the 2 tumor lineage models. Numbers of shared and unique altered genes are indicated. (C) Normalized enrichment score (NES) 

from “early” to “late” states between the 2 tumor lineage models in TCGA and Taylor cohorts. R2 values of the linear regression model are shown. (D) 

Distinct pathways with NES from early to late events in TCGA cohort, ERG/PTEN mouse tissue, and Chd1 mouse organoid samples. (E) Divergent predicted 

upstream regulators from early to late events between the 2 tumor lineage models in TCGA cohort. Different colors represent upstream regulator groups.
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extracapsular extension, seminal vesicle invasion, and higher 

Gleason score in both retrospective and prospective cohorts 

(Figure 5, A and C, Supplemental Figures 18 and 19, and Sup-

plemental Tables 29 and 30), consistent with pathologic fea-

tures of late progression events. Strikingly, however, tumors 

with predicted CHD1 deletion were only associated with higher  

Gleason score but no other adverse clinical features (Figure 

5, A and C, and Supplemental Tables 29 and 30). When com-

pared with the early event of SPOP mutation, CHD1 deletion 

was associated with higher Gleason score in the retrospective 

cohort only (Supplemental Figures 18 and 19). Similarly, higher 

tumor stage (T3/T4) was associated with predicted PTEN dele-

tion, but not CHD1 deletion (Figure 5, B and D). We further val-

idated these associations in TCGA cohort (4), using genomic 

events to annotate subclass, rather than transcriptional signa-

tures (Supplemental Figure 20).

By comparing enriched signaling pathways between lymph 

node invasion, and from early to late states of 2 tumor lineages 

— ERG/PTEN and SPOP/CHD1 — we identified similar enriched 

functions from lymph node invasion and ERG/PTEN lineage. 

Strikingly, we found divergent signatures between lymph node 

invasion and SPOP/CHD1 lineage, supporting the clinical find-

ings that PTEN-deleted tumors were more likely to harbor adverse 

pathological features including lymph node invasion, whereas 

CHD1 deletion was not associated with locoregional adverse fea-

tures (Supplemental Figure 21). Interestingly, when compared 

with lymph node invasion and ERG/PTEN lineage, SPOP/CHD1 

lineage showed dysregulation in metabolism-related pathways 

(Supplemental Figure 22), which has been shown to represent a 

hallmark of cancer progression and metastasis (44–46).

Late progression events are associated with worse clinical progno-

sis. To investigate the association of molecular progression with 

clinical progression and patient prognosis, we examined the clin-

ical outcomes associated with early and late progression events 

within each molecular subclass (Supplemental Figure 16). We 

found worse metastasis-free survival in both CHD1del and PTENdel  

tumors compared with the early state within each subtype  

(SPOPmut and PTENwt) (Figure 4, C and D). Of note, early states 

of each subtype had similar favorable prognosis, while both late 

states showed similar unfavorable prognosis (Supplemental Fig-

ure 16). Endpoints of biochemical recurrence–free survival and 

PCa-specific mortality–free survival rates followed similar pat-

terns (Supplemental Figure 17), consistent with previous findings 

(7, 43). These results show that genomic alterations defined as late 

progression events at the molecular level also show clear evidence 

of more aggressive disease, consistent with clinical progression. 

Furthermore, these data suggest that the degree of progression 

within each subtype, rather than the initial lineage, is more associ-

ated with clinical prognosis.

Distinct clinical and pathologic characteristics among late pro-

gression events. Finally, having established that molecular pro-

gression within each subtype was associated with similar prog-

nosis regarding detection of metastatic disease, we examined 

the association of clinical and pathologic characteristics in the 

2 late-progressed states, using retrospective and prospective 

cohorts of 8,158 radical prostatectomy specimens, compared 

to various references. Consistent with known association with 

aggressive disease features, we found that tumors with predict-

ed PTEN deletion were more likely to harbor adverse patho-

logical features at radical prostatectomy: lymph node invasion, 

Figure 3. Development of SCaPT models to classify PTEN and CHD1 deletions from transcriptional data. (A) Overview of SCaPT models to predict PTEN 

and CHD1 deletions from transcriptional data, including steps of feature selection, model selection, 10-fold cross validation, and validation testing on 

independent cohort. (B) PTEN signature of differentially expressed genes between PTEN-deleted and WT samples from TCGA ETS-fusion samples, and 

CHD1 signature of differentially expressed genes between CHD1-deleted and WT samples from TCGA non–ETS-fusion samples. Different colors represent 

molecular subclasses. Homdel, homozygous deletion; hetloss, heterozygous loss. (C) Significant enrichment of PTEN- and CHD1-deleted samples with 

PTEN and CHD1 features based on unsupervised hierarchical clustering of TCGA samples. Different colors represent genomic alterations. (D) Accuracy and 

confidence of PTEN- and CHD1-deleted subtype classifications by SCaPT model determined by testing on an independent data set (n = 106).
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Broadly, these results demonstrate that despite similar met-

astatic potential, PTEN-deleted tumors show evidence of locore-

gional progression at radical prostatectomy, while CHD1 deletion 

is only associated with higher Gleason score, suggesting distinct 

pathways to metastatic disease.

Discussion
PCa is a molecularly heterogeneous disease, with a specific  

temporal sequence of early and late genomic events (4–6). 

Previous studies demonstrated that ERG rearrangements and 

SPOP mutations designate mutually exclusive tumor subclass-

es (4, 12, 13), which may represent distinct tumor lineages. In 

this study, we examined co-occurring genomic alterations, 

defined their temporal sequence, and established 2 tumor lin-

eage models of PCa progression: ERG overexpression followed 

by PTEN deletion, and SPOP mutation followed by CHD1 dele-

tion. By investigating these tumor lineage models, we found 

progressive changes in transcriptional alterations, with shared 

altered genes from the 2 tumor lineages enriched for broadly 

common tumorigenic functions (cell cycle and focal adhesion), 

while uniquely altered genes were enriched in distinct signal-

ing pathways that were subsequently validated using mouse 

model systems. These data provide a framework for exploring 

the unique biology of these tumor lineages, allowing future 

functional studies to define the relationship between the early 

and late progression events using in vitro and in vivo models, 

and investigate why specific early events favor specific  

subsequent genomic alterations.

In addition to its molecular heterogeneity, PCa also 

displays striking clinical variability. Here, we provide a 

clear link between molecular and clinical progression, 

showing that genomic alterations defined as late pro-

gression events are associated with worse prognosis. 

Furthermore, our data suggest that in terms of impact 

on clinical prognosis, the initial tumor lineage is much 

less important than the degree of progression within the 

lineage, nominating biomarker-driven strategies for risk 

stratification and surveillance of patients.

Clinical and pathological features after prostatecto-

my are the critical components of risk assessment in PCa. 

Current risk stratification guidelines, such as those from 

the NCCN (47), AUA/ASTRO (48), and EAU-ESTRO- 

SIOG (49) rely heavily on surgical pathology, including 

tumor stage and lymph node invasion status, to guide 

management decisions for clinically localized disease. 

In this study, we found that different tumor lineages 

showed similar prognostic outcomes with respect to dis-

tant metastasis, but divergent clinical and pathological 

features at radical prostatectomy: PTEN-deleted tumors 

were more likely to harbor stage-associated adverse 

pathological features, such as lymph node invasion, 

extracapsular extension, and seminal vesicle invasion, 

whereas CHD1 deletion was only associated with high-

er Gleason score but not stage-associated adverse fea-

tures. These data potentially nominate distinct clinical 

pathways toward distant metastasis in specific molecular 

subtypes of PCa, with the potential to provide guidance 

for therapies and imaging focused on specific patterns of disease 

progression. Whether tumor lineages and molecular subclasses 

will add clinical value to current risk stratification tools remains 

unclear, and need to be prospectively tested in future clinical stud-

ies. However, these data do provide compelling rationale to con-

sider molecular subclass in future clinical trial designs.

The relationship between specific molecular events in can-

cers can offer insight into functional interactions; co-occurrence 

can suggest cooperativity or predisposition, while mutual exclu-

sivity can suggest epistasis or synthetic lethality. There is evi-

dence for several of these interactions regarding PCa molecular 

features. SPOP and ERG have been reported as both functionally 

redundant (50, 51) and synthetically unfavorable (13, 52). Sim-

ilarly, CHD1 and PTEN have been reported to be synthetically 

essential (53–55) through effects on the immune microenviron-

ment (56). Here, we present the concept that these relationships 

are related to tumor lineage, established by early events (SPOP 

mutation and ERG fusion), with specific late events (CHD1 and 

PTEN deletion) restricted to each lineage. This paradigm has 

implications for the distinct biology, progression pathways, and 

clinical features of these disease subtypes, which need to be fur-

ther explored in both preclinical and clinical studies. Moreover, 

current genomic and clinical data are derived from bulk tumor 

samples and limited by intratumor heterogeneity. Molecular 

and clinical progression for distinct subtypes needs to be further 

investigated at the single-cell level.

Figure 4. The molecular subclass prediction via SCaPT models and its prognostic 

outcomes from the Decipher retrospective cohort. (A) Overview of molecular subclass 

classification in Decipher cohorts via SCaPT models and gene expression thresholds. 

(B) Subclass classifications from the Decipher retrospective cohort with 1,626 samples, 

on the basis of SCaPT models and decision tree. Different colors represent molecular 

subclasses. (C) Significant difference in prognostic outcome between PTEN-deleted 

and WT subclasses via Kaplan-Meier analysis for metastasis-free (MET-free) survival 

rates. (D) Significant difference in prognostic outcome between CHD1-deleted and 

SPOP-mutant subclasses via Kaplan-Meier analysis for MET-free survival rates.

https://www.jci.org
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In conclusion, we established mutually exclusive tumor lin-

eage models of PCa progression: ERG/PTEN and SPOP/CHD1. 

Using transcriptional classifiers to categorize progressive events, 

we predict lineage and progression status from a large population 

of human patients, and find that molecularly defined late progres-

sion events are associated with worse clinical outcome, but may be 

associated with distinct clinical pathways toward metastasis. More 

broadly, these data suggest a paradigm in which specific subtypes 

of PCa follow distinct molecular pathways of tumor progression, 

and the interpretation of common risk stratification parameters 

such as locoregional tumor staging may be influenced by the 

underlying tumor lineage and degree of molecular progression.

Methods
RNA-seq and microarray data of PCa samples. A total of 8,622 radi-

cal prostatectomy tumor expression profiles were used for training, 

testing, and validation in SCaPT models. For training and testing, 

we utilized RNA-seq expression and DNA genomic alteration data 

from TCGA prostate cancer project (n = 333) (4), and Human Exon 

1.0 ST microarray data from a Memorial Sloan Kettering Cancer 

Center (MSKCC) primary PCa (n = 131) cohort (1). For validation, 

the expression profiles of retrospective (n = 1,626) and prospective 

(n = 6,532) cohorts were derived from the Decipher GRID registry 

(NCT02609269). The retrospective GRID cohort was pooled from 7 

published microarray studies: Cleveland Clinic (CCF, ref. 57), Eras-

mus MC (EMC, ref. 19), Johns Hopkins (JHMI, ref. 25), MSKCC (1), 

Mayo Clinic (Mayo I and Mayo II, refs. 20, 21), and Thomas Jefferson 

University (TJU, ref. 22). The prospective GRID cohort was from clin-

ical use of the Decipher test (GenomeDx Biosciences Laboratory). 

DNA and RNA from the TCGA and MSKCC cohorts were extracted 

from fresh frozen radical prostatectomy tumor tissue, as previously 

described (1, 4). RNA from the GRID cohorts was extracted from rou-

tine formalin-fixed, paraffin-embedded radical prostatectomy tumor 

tissues, amplified and hybridized to Human Exon 1.0 ST microarrays 

(Thermo Fisher Scientific) (18). Gene expression data of the ICGC 

PRAD-CA cohort (n = 144) were downloaded from the ICGC Data 

Portal (https://dcc.icgc.org/), and genomic alterations were annotated 

based on a previous study (33).

Clonality analysis. Primary PCa and metCRPC samples from 

TCGA (4) and the SU2C-PCF (16) cohorts were uniformly reprocessed 

through an in-house pipeline. Briefly, the output includes somat-

ic copy-number aberrations (SCNAs), computed on paired whole- 

exome samples by CNVkit (58), and tumor ploidy and purity assess-

ments together with SCNA clonality analysis by CLONETv2 (59, 60). 

CLONETv2 uses the sequence coverage of the set of patient’s specific  

germline heterozygous SNPs at sites of somatic hemizygous and 

homozygous deletions to assess the fraction of tumor cells harboring 

the aberration, i.e., the clonality of the deletion. Similarly, SNV clonal-

ity estimation is performed, where the variant allelic fraction (VAF) is 

adjusted for tumor purity; observed and theoretical VAFs were com-

Figure 5. Distinct pathological characteristics in CHD1- and PTEN-deleted subclasses from the Decipher retrospective and prospective cohorts. (A) 

Clinical and pathological difference between PTEN- and CHD1-deleted status in the Decipher retrospective cohort (n = 1,626) via univariate analyses, 

with other samples as reference. GS, Gleason score. (B) Alluvial diagrams of Gleason scores, lymph node invasion status (LNI), and tumor stages from 

molecular subclasses in retrospective cohort. Different colors represent molecular subclasses. (C) Clinical and pathological difference between PTEN- and 

CHD1-deleted status in the Decipher prospective cohort (n = 6,532) via univariate analyses, with other samples as reference. In A and C, box size indicates 

significance and red color indicates P < 0.05. *P < 0.05, **P < 0.01, ***P < 0.001. (D) Alluvial diagrams of Gleason scores, lymph node invasion status, and 

tumor stages from defined molecular subclasses in prospective cohort.
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features from TCGA cohort. Testing data were the transcriptional 

z scores from RNA-seq or microarray expression data of PTEN and 

CHD1 signatures.

Classification of molecular subclasses in PCa by decision tree. In 

each individual study of retrospective and prospective GRID cohorts, 

ERG+ (ERG overexpressing) and ETS+ (ETV1, ETV4, ETV5, or FLI1 

overexpressing) subclasses were firstly classified based on previous-

ly developed microarray-based expression thresholds (7, 18). Next, 

we predicted SPOP-mutant and PTEN- and CHD1-deleted subclass-

es using SCaPT models. Then we classified samples with both ERG 

overexpression and predicted PTEN-deleted status as ERG+PTENdel 

subclass, and ERG-overexpressing and predicted PTEN WT status as 

ERG+PTENwt subclass. For ERG and ETS WT samples, we classified 

CHD1del subclass based on predicted CHD1-deleted status without 

predicted SPOP-mutant status, SPOPmut subclass without predict-

ed CHD1-deleted status, and SPOPmut+CHD1del with both predicted 

CHD1-deleted and SPOP-mutant status. The remaining samples with-

out PTEN, CHD1, and SPOP calling and outlier expression were con-

sidered as “other” subclass (Supplemental Figure 13).

Statistics. Statistical analyses were performed in R v3.5.1 (R 

Foundation). All statistical tests were 2-sided, and a P value of less 

than 0.05 was considered significant. We evaluated the associations 

between molecular subclasses and patient outcomes including bio-

chemical recurrence, metastasis, and PCa-specific mortality, based 

on Kaplan-Meier analysis. Univariate logistic regression analyses were 

performed on the combined cohort to test the statistical association 

between molecular subclasses and clinical variables, including age, 

race, preoperative PSA, Gleason score, lymph node invasion, surgical 

margin status, extracapsular extension, and seminal vesicle invasion.
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pared to estimate the percentage of aberrant tumor cells. Finally, for 

each aberration, minimum and maximum estimated clonality values 

are provided to account for sequencing coverage instability; lower and 

upper bounds allow the discretization of continuous clonality values 

into clonal or subclonal statuses. The clonality analysis was performed 

on top-quality data samples, including 297 primary and 355 metastatic 

PCa samples, respectively. 

Differential expression analysis from normal to early and late pro-

gression events. Based on the strategy from time-course RNA-seq 

analysis, we performed differential expression analysis to identify 

early and late progression events based on multiple categories: from 

normal prostate to ERG fusion without PTEN deletion and then ERG 

fusion with PTEN deletion samples (N→ERG→PTEN), from normal 

prostate to ERG fusion with PTEN deletion and then ERG fusion with-

out PTEN deletion samples (N→PTEN→ERG), from normal prostate 

to SPOP mutation without CHD1 deletion and then SPOP mutation 

with CHD1 deletion samples (N→SPOP→CHD1), and from normal 

prostate to SPOP mutation with CHD1 deletion and then SPOP muta-

tion without CHD1 deletion samples (N→CHD1→SPOP), via Impul-

seDE2 (32), based on TCGA-PRAD reads count data (https://portal.

gdc.cancer.gov/) (4). The transiently and progressively upregulated 

and downregulated genes were derived from ImpulseDE2 output at 

FDR < 10–10, and compared between 2 tumor lineages. The altered 

signaling pathways from Pten-deleted mouse tissue and Chd1-deleted  

mouse organoid were downloaded from previous studies (34, 35). 

The enriched pathway analyses were performed via DAVID (61) and 

GSEA (62–64) at P < 0.05. The enriched signaling pathways asso-

ciated with lymph node invasion were identified by comparing the 

samples with and without lymph node invasion via DESeq2 (65) and 

GSEA from TCGA-PRAD RNA-seq data. The upstream regulators 

were predicted by Ingenuity Pathway Analysis (IPA) software (36) at 

P < 0.05 based on differentially expressed genes.

Development of SCaPT models to classify PTEN and CHD1 deletions 

purely from transcriptional data. The expression of PTEN and CHD1 

was not correlated with genomic alterations well, and other mecha-

nisms such as methylation and signaling alterations may contribute to 

transcriptional alterations. Therefore, we developed 2 SCaPT models 

to classify PTEN and CHD1 deletions purely from transcriptional data, 

based on a similar strategy from a previous SPOP prediction model  

(7). The RNA-based classifier via SCaPT models includes feature 

and model selections, on the basis of an SVM model (40–42). First, 

transcriptional features were selected for PTEN and CHD1 deletions, 

by comparing PTEN-deleted and WT samples with ETS family gene 

fusions, and comparing CHD1-deleted and WT samples that lack ETS 

family gene fusions, via Wilcoxon’s rank-sum test and controlled for 

false discovery. Second, we included SVM in SCaPT model selection 

with different cost parameters, because the prediction for PTEN dele-

tions from samples with ETS family gene fusions and prediction for 

CHD1 deletions from samples lacking ETS family gene fusions are 

2-class classification problems, and SVM is intrinsically suited for 

2-class problems. Then, we performed 10-fold cross validation to find 

the best feature and cost with highest sensitivities and specificities on 

TCGA training data set. Finally, we established 2 RNA-based classifi-

ers of SCaPT models including PTEN transcription signature with 45 

differentially expressed genes, and CHD1 transcription signature with 

148 differentially expressed genes. In our SCaPT models, training 

data were defined as the transcriptional z scores of PTEN and CHD1 

https://www.jci.org
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https://www.jci.org/articles/view/147878#sd
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