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Tumour-derived alkaline phosphatase
regulates tumour growth, epithelial plasticity
and disease-free survival in metastatic
prostate cancer
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Background: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival
in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect
the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL,
the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease
progression.

Methods: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed
from published PCa data sets, and correlated with disease-free survival and metastasis.

Results: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP
activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was
decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL
expression was associated with a significant reduction in disease-free survival.

Conclusions: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and
demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying
tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression.

Prostate cancer is the second most common cancer in men, with an
estimated 1.1 million men diagnosed with prostate cancer in 2012
worldwide (Torre et al, 2015). Whereas localised prostate cancer
has a good prognosis, advanced disease metastasises frequently to
the skeleton, and becomes castration resistant. Once prostate
cancer has metastasised to distant sites, the disease is ultimately
fatal and treatment is purely palliative. The most common
metastatic sites are the lymph nodes and the bone, with
bone metastases resulting in severe bone pain and fractures

(Gartrell and Saad, 2014). Despite many advances in research, a
greater understanding of the metastatic process is required, to
identify new therapeutic targets.

Recent evidence suggests that bone-related parameters are the
main prognostic factors for overall survival in advanced prostate
cancer. These include alkaline phosphatase, bone-specific alkaline
phosphatase, urinary n-telopepetide, previous skeletal-related
events and pain (Metwalli et al, 2014; Fizazi et al, 2015; Koo
et al, 2015). Alkaline phosphatase, also known as tissue nonspecific
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alkaline phosphatase (TNAP) or mesenchymal stem cell antigen 1,
is an enzyme that is expressed by a range of tissues including bone,
and also the liver (Buchet et al, 2013). There are four existing
isoforms of alkaline phosphatase, and the ALPL gene encodes for
TNAP. Alkaline phosphatase is highly expressed by osteoblasts and
a key component of osteoblastic activity, acting to hydrolyse
inorganic pyrophosphate resulting in mineralisation (Millan,
2013). The bone lesions associated with prostate cancer are
predominantly osteosclerotic, arising because of an increase in
osteoblastic activity and uncontrolled formation of new bone. As
such, the elevated circulating levels of alkaline phosphatase seen in
advanced prostate cancer are thought to reflect the dysregulated
bone formation associated with cancer-induced bone disease.
Advanced prostate cancer is associated with the necessity to
escape from the primary site, typically associated with increased
cellular migration and epithelial-to-mesenchymal transition
(EMT). Epithelial-to-mesenchymal transition is characterised by
a change in cellular morphology, a loss of epithelial markers such
as E-cadherin and a corresponding increase in mesenchymal
markers. Although the dependence of metastasis upon EMT has
recently been questioned in lung and pancreatic cancer, epithelial
plasticity remains a fundamental trait of metastatic tumour cells
(Brabletz, 2012; Fischer et al, 2015; Zheng et al, 2015). Upon
successful colonisation of the bone, there is evidence of a mixed
epithelial-mesenchymal phenotype, highlighting the importance of
both EMT and mesenchymal-to-epithelial transition (MET) in
metastasis (van der Pluijm, 2011). Within the tumour-bone
microenvironment, it is known that cancer cells can express
markers typically associated with bone cells, including osteopontin,
osteocalcin, RUNX2 and RANKL (Koeneman et al, 1999; Brubaker
et al, 2003; Zayzafoon et al, 2004; Huang et al, 2005; Fradet et al,
2013). Expression of bone-related markers, such as RUNX2, has
been shown to promote the bone-metastatic phenotype of prostate
cancer cells (Baniwal et al, 2010). However, in contrast to RUNX2,
the expression, regulation and function of the defining osteoblastic
enzyme alkaline phosphatase in tumour cells is poorly understood.
In this study, we have identified ALPL expression in metastatic
prostate cancer cells, with high ALPL expression associated with a
reduction in disease-free survival in patients with prostate cancer.
We have undertaken studies to elucidate the function of tumour-
derived alkaline phosphatase in the biology of prostate cancer, and
identified a novel role in both cell death and epithelial plasticity.

MATERIALS AND METHODS

Cell lines and reagents. ARCaP, ARCaPE and ARCaPM human
prostate cancer cells lines were purchased from Novicure Inc.
(Birmingham, AL, USA). All three cell lines were routinely main-
tained in MCaP medium (Novicure; cat. no. 3300) with 5% foetal
bovine serum (FBS) and penicillin-streptomycin, unless otherwise
indicated. C4-2B human prostate cancer cells were a kind gift from
Prof. George Thalmann (University of Bern, Switzerland), and
maintained in RPMI-1640 medium with 10% FBS, vitamins, non-
essential amino acids, L-glutamine, sodium pyruvate and penicillin-
streptomycin (complete RPMI medium), unless otherwise indicated.

PC3 human prostate cancer cell line, obtained from American
Type Culture Collection (ATCC, Teddington, UK), were routinely
maintained in complete RPMI medium (Sigma-Aldrich, Gillingham,
UK) containing 10% FBS and penicillin-streptomycin. All other
prostate cancer cell lines were a kind gift from Dr Richard Bryant
(University of Oxford, Oxford, UK). 2T3 mouse preosteoblast cells
were obtained from ATCC and maintained in RPMI-1640 medium
with 10% FBS and antibiotics, unless otherwise indicated. Where
possible, cell lines were validated by genotyping. Periodic testing
ensured the absence of mycoplasma contamination in all cell lines.

Apyrase (A6535) and porcine kidney alkaline phosphatase (P4439)
were obtained from Sigma (Gillingham, UK).

Plasmid DNA transfection. Plasmid DNA was transfected using
Lipofectamine 2000 (Life Technologies, Renflew, UK) according to
the manufacturer’s protocol. Typically, 24 ug of plasmid DNA in
1ml of Opti-MEM (Life Technologies) was mixed with 60 ul of
Lipofectamine 2000 in 1ml of Opti-MEM and incubated for
5-10min at room temperature. The DNA-Lipofectamine com-
plexes were then added to cells at 80-90% confluence in 10cm
dishes in 10 ml of antibiotic-free growth medium.

Small interfering RNA transfection. Small interfering RNA were
transfected in prostate cancer cells using Lipofectamine RNAiMax
(Life Technologies) according to the manufacturer’s protocol.
Details of siRNAs are as follows: non-targeting control pool, cat.
no. D-001206-13-05; ALPL-targeting ON-TARGETplus siRNA pool,
cat. no. L-008658-00-0005; SNAIl-targeting ON-TARGETplus
siRNA pool, cat. no. L-010847-01-0005.

Lentiviral packaging and transduction. Lentiviral packaging was
performed using 293T cells using a third-generation packaging
system. Briefly, 10 ug of transfer vector, 5 ug of pMDLg/pRRE, 2.5 ug
of pRSV-Rev and 2.5 ug of pPCMV-VSVG were transfected into 293T
cells using Lipofectamine 2000 in a 10 cm tissue culture dish, and 3
days later, the culture supernatant containing the lentivirus was
collected. The lentivirus was made into a 10 x concentrated stock
using the Lenti-X Concentrator Solution (Clontech, Mountain View,
CA, USA; 631232) and was used at a dilution of 1:10 in the cell
suspension for transduction. Hexadimethrine bromide (Sigma) was
added at a concentration of 10 ugml ™" in the cell suspension, to
enhance transduction efficiency. The transfer vectors are scrambled
control (Sigma) or ALPL targeting short hairpin RNAs (Sigma; cat.
no. SHCLNG-NM 000478; TRCN0000052003: 5-CCGGCCCA-
CAATGTGGACTACCTATCTCGAGATAGGTAGTCCACATTG
TGGGTTTTTG-3/, TRCN0000052004: 5-CCGGCGTGGCTAA
GAATGTCATCATCTCGAGATGATGACATTCTTAGCCACGT
TTTTG-3’, TRCN0000052005: 5-CCGGGCGCAAGAGACACT
GAAATATCTCGAGATATTTCAGTGTCTCTTGCGCTTTTTG-3,
TRCN0000359258: 5-CCGGATGTCTCCATGGTGGACTATGC
TCGAGCATAGTCCACCATGGAGACATTTTTTG-3/, TRCNOO
00359332: 5'-CCGGAGTATGAGAGTGACGAGAAAGCTCGAG
CTTTCTCGTCACTCTCATACTTTTTTG-3'), designated as
shSCR and shALPL1-shALPL5, respectively. These plasmids have
a pLKO.1 backbone, which is suitable for both second- and third-
generation packaging systems.

RNA isolation. Total RNA was isolated from cultured cells using
Trizol reagent (Life Technologies; 15596026), according to the
manufacturer’s protocol. Quality of the RNA was assessed by
measuring the ratios of absorbance (As0/Azs0 and Ass0/Az30);
ratios > 1.8 were considered suitable for further analysis.

Real-time qRT-PCR. For quantitative reverse transcription—
polymerase chain reaction (QRT-PCR) of mRNA, 1 ug of DNAse
I-treated RNA was reverse transcribed using iScript cDNA
Synthesis Kit (Bio-Rad, Hemel Hempstead, UK; 1708890). This
cDNA was appropriately diluted and was used in a qPCR reaction
with Fast SYBR Green Real-time Mastermix (Life Technologies;
4385612). ALPL: F, 5-ACGTGGCTAAGAATGTCATC-3' and R,
5'-CTGGTAGGCGATGTCCTTA-3; CDHI: F, 5-AGGCCAA-
AGCAGCAGTACATT-3' and R, 5-ATTCACATCCAGCACA-
TCCA-3'; GAPDH QuantiTect Primer Assay No. QT01192646
(Qiagen); KRT14: F, 5-GGCCTGCTGAGATCAAAGACT-3'
and R, 5-TCTGCAGAAGGACATTGGCAT-3'; SNAIL: Quanti-
Tect Primer Assay No. QT00010010 (Qiagen); VIM: F, 5'-CCTTG-
AACGCAAAGTGGAATC-3' and R, 5-GACATGCTGTTCCT-
GAATCTGAG-3'; ZEBI: F, 5-CCAGGGAGGAGCAGTGAAAG-
3’ and R, 5'-CCCCAGGATTTCTTGCCCTT-3'.
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Protein isolation and western blotting. Cultured cells were lysed
with CelLytic M Cell Lysis Reagent (Sigma; C2978) containing a
protease inhibitor cocktail (Sigma; S8830). Protein concentration
was quantified using a Pierce Bicinchonic Acid Assay Kit (Life
Technologies). Western blotting was performed as described
previously, using E-cadherin, vimentin and ZEB1 antibodies from
the EMT Antibody Sampler Kit (Cell Signaling; 9782) and f-actin
antibody (Sigma; A5316).

Cell viability. Viability of cultured cells in vitro was determined
using the Alamar Blue assay. Briefly, a working solution
(1 mgmlfl) of resazurin (Sigma; R7017) was added to the
cultured cells at a ratio of 1:10 with respect to the volume of
growth medium (10 ul in each well of a 96-well plate containing
100 ul of growth medium). The cells were then incubated in a
humidified CO, incubator at 37 °C until a change in colour was
visibly noticeable (or for a duration of 2.5h for time-course
experiments) and the plate was read using a fluorimeter
(FLUOstar, BMG Labtech, Aylesbury, UK) (excitation: 545nm
and emission: 585 nm).

YO-PRO-1 staining. YO-PRO-1 iodide stain (Life Technologies;
cat. no. Y3603) (stock concentration: 1 mm in DMSO) was added
to the growth medium of cells growing in 96-well plates, to a final
concentration of 1um (1:1000 dilution). The cells were then
incubated in a humidified CO, incubator at 37 °C for 60 min and
the plate was read using a fluorimeter (excitation: 490 nm and
emission: 510 nm). Live cells do not take up YO-PRO-1; therefore,
changes in expression are indicative of cell death.

Flow cytometry. Transfected cells were washed with phosphate-
buffered saline and resuspended in Annexin Binding Buffer
(ThermoFisher Scientific; V13246) at a concentration of 10° cells
per ml. The cells were then stained with Annexin V-Pacific Blue
(ThermoFisher Scientific; A35122) and propidium iodide (PI)
according to the manufacturer’s specifications and incubated at
room temperature for 15 min, following which they were analysed
using a BD Fortessa flow cytometer (BD Biosciences, Oxford, UK).
Early apoptotic cells were defined as positive for Annexin V, but
negative for PI

Staining for alkaline phosphatase activity. Staining for alkaline
phosphatase activity was performed using the Leukocyte Alkaline
Phosphatase Kit (Sigma; 86C) according to the manufacturer’s
protocol.

Quantitative measurement of alkaline phosphatase activity. Cell
lysates were obtained as described above. A 20 x stock solution
was made by dissolving 1.025mgml ™' of 4-methylumbelliferyl
phosphate (substrate for alkaline phosphatase; Sigma; cat. no.
M8168) in 50 mm Tris (pH 8) buffer. A working solution was made
by diluting the stock solution with 50 mm Tris (pH 8) buffer. To
60 pl cell lysate or conditioned medium in an opaque 96-well plate,
100 pl of working substrate solution was added and incubated in
the dark at 37°C for 45min. Subsequently, the reaction was
stopped by adding 100 ul of 1 M Na,COj; and the plate was read in a
fluorimeter at an excitation wavelength of 360 nm and an emission
wavelength of 450 nm.

Statistics. All statistical analyses for in vitro experiments were
performed using GraphPad Prism (Graphpad Software Inc., La
Jolla, CA, USA). Comparisons between two groups of data were
performed using two-tailed unpaired Student’s t-test. Variances of
data between the two groups were compared using an F-test; where
there was unequal variance between the two groups, Welch’s
correction was used. For comparisons between more than two
groups, multiple t test with Holm-Sidak correction was used. In all
cases, significance was considered at «<0.05. Analysis of
previously published prostate cancer data sets was performed in
R. The Taylor et al. data set (Taylor et al, 2010) was downloaded

from cBioportal (http://www.cbioportal.org/) and the Tomlins
et al. data set (Tomlins et al, 2007) was downloaded from Gene
Expression Omnibus (accession no.. GDS3289). For survival
analysis, samples were stratified into ‘high’ and low’ expressers
using the median expression for the respective genes as the cutoffs.

RESULTS

Alkaline phosphatase is expressed by prostate cancer cells and
increased in metastatic prostate cancer. Circulating alkaline
phosphatase is well known to be elevated in prostate cancer-
induced bone disease, indicative of osteoblast-derived alkaline
phosphatase resulting in increased bone formation. In contrast, the
expression and function of tumour-derived alkaline phosphatase is
poorly understood. To determine the expression of alkaline
phosphatase specifically in prostate cancer cells, we first examined
a panel of prostate cancer cell lines that vary in their in vivo
metastatic potential, demonstrating high gene expression in some,
but not all, metastatic prostate cancer cell lines (Figure 1A). Low to
non-existent expression was observed in the non-tumourigenic
normal human prostate epithelium cell lines PNTIA and PNT2,
and in MCEF-7 breast cancer cells, previously demonstrated to
exhibit low basal levels of alkaline phosphatase expression (Tsai
et al, 2000). Using the paired cell lines ARCaPE and ARCaPM,
which differ in their metastatic ability, we demonstrated a
significant increase in ALPL expression and alkaline phosphatase
enzymatic activity in metastatic ARCaPM cells as compared with
non-metastatic ARCaPE cells, with prostate cancer cells demon-
strating increased alkaline phosphatase activity per mg protein as
compared with 2T3 preosteoblasts (Figure 1B-D, Supplementary
Data Figure S1). We also observed differences in the ability of
ARCaPE and ARCaPM cells to mineralise, with only ARCAPM
cells staining positively for Alizarin Red, indicating the presence of
calcium deposits and mineralisation (Supplementary Data Figure S2).
To determine the clinical relevance of alkaline phosphatase
expression in prostate cancer cells, we analysed gene expression
data from a publicly available data set in which prostate cancer
cells from primary and metastatic sites were isolated by laser
capture microdissection (Tomlins ef al, 2007). A significant
increase in ALPL expression was detected in metastatic prostate
cancer cells as compared with localised prostate cancer (Figure 1E).

Inhibition of alkaline phosphatase activity reduces prostate
cancer cell viability and induces apoptosis. To begin to
determine the functional role of alkaline phosphatase in prostate
cancer biology, we took molecular and pharmacological
approaches to inhibit ALPL gene expression and alkaline
phosphatase enzymatic activity. Following lentiviral delivery of
ALPL shRNA (or scrambled control) to ARCaPM cells, we
confirmed a significant decrease in alkaline phosphatase gene
expression and enzymatic activity (Figures 2A and B). Knockdown
of ALPL resulted in a significant reduction in cell viability (Figure
2C and D and Supplementary Data Figure S3) and an increase in
apoptotic cell death (Figure 2E and F, Supplementary Data Figure $4).
ALPL knockdown cells did not survive for long-term culture (data
not shown). The pharmacological inhibitor of alkaline phosphatase
activity levamisole was shown to inhibit alkaline phosphatase
activity in vitro (Supplementary Data Figure S5), and treatment of
ARCaPM cells with levamisole resulted in a dose-dependent
decrease in cell viability and increase in cell death (Figure 2G and H).
Knockdown of ALPL was also confirmed in PC3 prostate cancer
cells, and associated with a reduction in cell viability and an
increase in cell death (Figure 2I-K).

Inhibition of alkaline phosphatase activity induces MET and
decreases migration in prostate cancer cells. As our data
suggested that alkaline phosphatase activity was increased in
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Figure 1. Alkaline phosphatase is expressed by prostate cancer cells and increased in metastatic prostate cancer. (A) ALPL mRNA expression
(normalised with GAPDH (glyceraldehyde 3-phosphate dehydrogenase) expression) was measured using qRT-PCR in a panel of prostate cancer
cell lines, the breast cancer cell line MCF7 and the bone marrow stromal cell line HS5. Bars for metastatic cell lines (ARCaPM, C4-2B and PC3) are
shaded in black. (B) ALPL mRNA expression (normalised with GAPDH expression) was measured using qRT-PCR and (C) alkaline phosphatase
activity (normalised with total protein) was measured using a quantitative fluorimetric assay, in ARCaPE and ARCaPM cells. (D) ARCaPE, ARCaPM
and 2T3 cells were stained for alkaline phosphatase activity. (E) The Tomlins et al. data set (Tomlins et al, 2007) was analysed for ALPL mRNA
expression in benign prostatic hyperplasia, localised prostate cancer and metastatic prostate cancer samples. (**P<0.01, ***P<0.001).

metastatic prostate cancer cells, we investigated the role of alkaline
phosphatase in key metastatic features. ARCaPM cells exhibit
a mesenchymal phenotype and ALPL knockdown resulted in a
marked change in the morphology of ARCaPM cells from a
spindle-shaped, scattered appearance to a rounded shape, with cells
aggregating in clusters (Figure 3A). Similar to ARCaPM, knock-
down of ALPL expression in PC3 prostate cancer cells was also
associated with a change in morphology (Figure 3A). Associated
with these morphological changes was a significant increase in the
expression of the epithelial marker E-cadherin mRNA and
protein (Figure 3B and C). Although no significant difference
was detected in mRNA expression of the mesenchymal markers
vimentin or ZEBI, a reduction in protein expression was observed
(Figure 3B and C). Taken together, these suggest that knockdown
of ALPL induces MET. In addition to MET, knockdown of ALPL
resulted in a significant reduction in migration by up to 80%
(Figure 3D).

The EMT transcription factor Snail regulates alkaline phospha-
tase activity in prostate cancer cells. Our results identify alkaline
phosphatase as a novel regulator of EMT in prostate cancer cells,
with high expression associated with metastatic disease; however,
the effect of EMT on alkaline phosphatase remains unknown. To
address this, expression of the key EMT transcription factor Snail
was decreased in ARCaPM cells using siRNA. A significant
reduction in Snail expression was confirmed by real-time PCR
(Figure 4A), which induced a change from mesenchymal-to-
epithelial morphology (Figure 4B). The decrease in Snail expres-
sion and resultant morphology change was associated with a
significant decrease in alkaline phosphatase enzymatic activity
(Figure 4C).

To determine whether alkaline phosphatase may regulate EMT
in patients with prostate cancer, gene expression data from publicly
available data sets were analysed. A significant positive correlation
between ALPL expression and Snail expression was detected,
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Figure 2. Inhibition of alkaline phosphatase activity decreases cell viability and increases apoptosis. Knockdown of alkaline phosphatase was
confirmed in ARCaPM cells transduced with scrambled shRNA (shSCR) or ALPL-knockdown shRNA (shALPL2 and shALPL3) by measuring (A) ALPL
mRNA using gRT-PCR and (B) alkaline phosphatase activity (normalised with total protein) using a quantitative fluorimetric assay, 72 h after
transduction. (C) Viability of the transduced cells was measured using Alamar Blue assay and (D) cell death was measured using YO-PRO-1.

(E) Apoptotic nuclei, identified from their fragmented appearance, were counted in ImageJ (imagej.nih.gov). (F) Apoptosis was quantitated using
annexin V/PI staining. Viability (G) and (H) cell death were also measured in ARCaPM cells treated with increasing concentrations of levamisole
using Alamar Blue assay and YO-PRO-1 staining, respectively. (I) ALPL knockdown in PC3 cells was confirmed using qRT-PCR and (J) the effects of
viability were measured using Alamar Blue assay and (K) cell death was measured using YO-PRO-1 staining. (*P<0.05, **P<0.01, ***P<0.001,

*xxxP < 0.0001).

concomitant with a significant negative correlation between
ALPL expression and E-cadherin (Figure 4D). This is supported
by a negative correlation between ALPL and E-cadherin gene
expression in prostate cancer cells transduced with shALPL
(Supplementary Data Figure S6). When gene expression data from
patients with prostate cancer was stratified according to ALPL
expression, Snail expression was significantly higher in ALPL-high
samples, whereas E-cadherin expression was significantly lower
(Figure 4E). To confirm the association between ALPL expression
and EMT, two further independent data sets were analysed, with a
significant positive correlation between ALPL expression and Snail
expression detected in each study (Supplementary Data Figure S7)
(Tomlins et al, 2007; Robinson et al, 2015).

ATP induces MET and decreases viability, but does not mediate
the effects of alkaline phosphatase. One of the possible substrates
of alkaline phosphatase is the nucleotide ATP, which is known to
have direct antitumour effects in prostate cancer. Treatment of
ARCaPM prostate cancer cells with 300 um ATP resulted in a
change from an elongated spindle shape to a more rounded,
epithelial-like morphology (Figure 5A) and a dose-dependent
decrease in cell viability (Figure 5B). Further evidence for ATP
induction of MET was provided by an increase in expression of
epithelial markers E-cadherin and cytokeratin 14, and a reduction
in mesenchymal markers vimentin and ZEB-1 (Figure 5C and D).

To determine whether ATP may mediate the effects of alkaline
phosphatase, expression of ALPL was silenced in prostate cancer
cells in the presence and absence of apyrase, which acts to degrade
ATP (Supplementary Data Figure S8). The addition of 5Uml '
apyrase had no effect on the reduction in cell viability induced by a
loss of ALPL expression, suggesting that degradation of ATP was
not responsible for the effects of ATP in prostate cancer cells
(Figure 5E). In contrast, treatment of prostate cancer cells with
ATP was found to significantly reduce alkaline phosphatase gene
expression and activity (Figure 5F and G).

High expression of tumour-derived alkaline phosphatase is
associated with decreased disease-free survival in prostate cancer
patients. Our studies have identified tumour-derived alkaline
phosphatase as a novel mediator of prostate cancer cell growth and
EMT. To determine the clinical significance of alkaline phospha-
tase expression, we analysed gene expression as associated with
disease-free survival in men with prostate cancer. Samples from the
Taylor et al. data set (Taylor et al, 2010) were stratified into ‘high’
or ‘low’ based on ALPL or CDH1 (E-cadherin) expression, with the
median expression as the cutoff. High expression of E-cadherin
was associated with an increase in disease-free survival (Figure 6A).
In contrast, high expression of ALPL in prostate cancer cells was
associated with a significant reduction in disease-free survival
(Figure 6B and Table 1).
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Figure 3. Inhibition of alkaline phosphatase activity induces MET and decreases migration. Prostate cancer cells transduced with scrambled
shRNA (shSCR) or ALPL-knockdown shRNA (shALPL) were studied for features of EMT. (A) Cell morphology was documented by phase-contrast
microscopy in ARCaPM cells and PC3 cells. (B) Protein levels and (C) mRNA expression of EMT markers were measured in ARCaPM cells using
western blotting and gRT-PCR, respectively. (D) Cell migration was measured in ARCaPM using a scratch assay with light microscopy images taken
at the indicated hours and quantitated using ImageJ. (*P<0.05, ****P<0.0001).

DISCUSSION

Alkaline phosphatase activity in serum, a measure of alkaline
phosphatase expressed by osteoblasts, has long been used as an
indicator of increased bone remodelling, and hence, bone
metastatic disease in prostate cancer (Brown and Sim, 2010).
Activity is thought to reflect alkaline phosphatase originating from
bone, liver and kidney. Our data demonstrate that alkaline
phosphatase is expressed in prostate cancer cells, with a significant
differential expression in mesenchymal prostate cancer cells
compared with their epithelial counterpart. This is supported by
our analysis of the Tomlins et al. data set (Tomlins et al, 2007),
where expression of alkaline phosphatase in metastatic samples
was much higher compared with primary prostate cancer samples.
Importantly, this data set was generated from prostate cancer cells
isolated by laser capture microdissection from the primary or
metastatic site, thus removing the risk of contamination from
surrounding stromal cells. The clinical importance of tumour-
derived alkaline phosphatase in prostate cancer is evident from the
significant decrease in disease-free survival in patients with high
expression of alkaline phosphatase in the Taylor et al. data set
(Taylor et al, 2010).

Alkaline phosphatase is a defining marker of osteoblast activity
(Wennberg et al, 2000), and as such alkaline phosphatase
expression by prostate cancer cells provides further support for
the concept of osteomimicry, the process by which tumour
cells express bone-specific markers, which may allow them to
survive better in the bone microenvironment during metastatic

colonisation (Koeneman et al, 1999; Rucci and Teti, 2010). In the
present study, alkaline phosphatase expression in the panel of
prostate cancer cell lines was not directly associated with
tumourigenicity or with the bone-destructive nature of the cell
lines, suggesting that tumour-derived alkaline phosphatase does
not merely promote osteoblastic bone disease. Instead, reduced
alkaline phosphatase expression or activity in prostate cancer cells
was found to induce MET and prostate cancer cell death, revealing
a novel role for this gene in tumour cell biology. While the most
striking phenotype of knocking out alkaline phosphatase in mice is
neurological abnormalities (characterised by early-onset seizures)
and diminished bone mineralisation, there is evidence of increased
apoptosis in the thymus (Waymire et al, 1995; Fedde et al, 1999).
Knockdown of alkaline phosphatase in murine osteoblasts also
results in increased apoptosis (Liu et al, 2014). These studies
support our findings whereby loss of alkaline phosphatase
expression or activity results in an increase in prostate cancer cell
death. The high concentrations of the alkaline phosphatase
inhibitor levamisole required to induce cell death suggest that
either these effects of levamisole are independent of alkaline
phosphatase inhibition or that a stronger inhibition of alkaline
phosphatase activity is required to induce prostate cancer cell
death, as compared with reduce osteoblast mineralisation. As EMT
is associated with resistance to apoptosis (Robson et al, 2006), it is
intriguing to speculate that the increase in cell death is a result of
the concomitant MET. In addition to an increase in cell death, loss
of alkaline phosphatase was associated with MET and a reduction
in migration. Knockdown of alkaline phosphatase in ARCaPM
cells resulted in an increase in E-cadherin mRNA expression, but
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Figure 4. Snail regulates expression of alkaline phosphatase in vitro and in vivo. In vitro, Snail expression was inhibited by transfecting siRNA in
ARCaPM cells and (A) knockdown was confirmed using qRT-PCR. (B) Change in morphology after Snail knockdown was documented using phase-
contrast microscopy. (C) Alkaline phosphatase activity was measured in siRNA-transfected ARCaPM cells using a quantitative fluorimetric assay.
The correlation of (D) Snail mMRNA or (E) CDH1 (E-cadherin) mRNA with ALPL mRNA expression was calculated in prostate cancer samples from the
Taylor et al. data set (Taylor et al, 2010). In each case, the samples were also stratified into ALPL-high or ALPL-low samples (with median ALPL
expression as the cutoff) and Snail or E-cadherin expression were plotted, respectively (NSP>0.05, *P<0.05, **P<0.01, ***P<0.001,

*x*P<0.0001).

there was no change in the mRNA expression of the mesenchymal
markers vimentin and ZEBI, suggesting that the MET observed
could be partial (Leroy and Mostov, 2007). However, there was a
clear decrease in the protein levels of vimentin and ZEBI, raising
the possibility of a post-transcriptional regulatory mechanism.
Knockdown of the key EMT transcription factor Snail resulted in
reduced alkaline phosphatase activity, suggesting a mechanism by
which alkaline phosphatase may be regulated. In human samples
from the Taylor et al. data set Taylor et al, 2010, alkaline
phosphatase expression was positively correlated with Snail
expression and negatively correlated with E-cadherin expression,
providing clinical evidence to support our in vitro findings.

The transformation of epithelial cells to a motile mesenchymal
phenotype has long been considered as a key step in the metastatic
cascade, allowing tumour cells to invade their surrounding stroma
and ultimately migrate to their metastatic site. Within the bone
marrow microenvironment, there is evidence to suggest that cells
can revert back to their epithelial phenotype, although the
frequency and function of this MET is poorly understood (van
der Pluijm, 2011). The current study identifies tumour-derived
alkaline phosphatase as an important regulator of epithelial
plasticity, associated with metastasis and disease-free survival in
patients with prostate cancer. Alkaline phosphatase is well
characterised as a marker of pluripotent stem cells, and as EMT
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Table 1. Survival analysis in ALPL-low and ALPL-low samples (MSKCC data set)

Relapsed cases

ALPL status Total cases with survival data Observed Expected Me.dlan months
(total cases) disease free

Low 71 (75) 12 19.4 NA

High 69 (75) 24 16.6 92.98

l Hazard ratio (log rank)

ALPL-low ALPL-high
Ratio (and its reciprocal) 0.4261 2.347
95% Cl of ratio 0.2254-0.8360 1.196-4.437

observations were deleted owing to missingness.

Abbreviations: Cl= confidence interval; d.f. = degrees of freedom; MSKCC =Memorial Sloan Kettering Cancer Center; NA=not applicable. 12:6.2 on 1d.f, P=0.0127; n=140, and 10

has been associated with the acquisition of cancer stem cell
properties, it is intriguing to speculate that alkaline phosphatase
expression may contribute to the development of a cancer stem cell
state (Stetkova et al, 2015; Ye and Weinberg, 2015).

One of the major substrates of alkaline phosphatase is ATP, and
Diez-Zaera et al (2011) demonstrated that alkaline phosphatase
regulates the growth of neuronal axons by affecting the levels of
extracellular ATP. As extracellular ATP was previously shown to
be an inducer of cell death in prostate cancer (Shabbir et al, 2008),
we hypothesised that the effects of alkaline phosphatase knock-
down in prostate cancer cells may be mediated by the increased
levels of extracellular ATP, with differing concentrations of
extracellular ATP well known to activate distinct purinergic
receptors such as the P2X7 receptor. However, despite the
similarity of their effects in inducing MET, our data with apyrase
treatment suggest that extracellular ATP does not have a role in
alkaline phosphatase knockdown-induced reduction in cell viabi-
lity. Hence, the exact mechanism by which alkaline phosphatase
knockdown causes MET and cell death in prostate cancer cells
remains to be explored. It is interesting to note that ATP treatment
induced a reduction in alkaline phosphatase mRNA expression and
activity in prostate cancer cells, similar to the effects seen in
osteoblasts (Orriss et al, 2007).

Our studies identify tumour-derived alkaline phosphatase as
elevated in metastatic prostate cancer, associated with reduced
disease-free survival. These findings, when combined with the
elevated circulating alkaline phosphatase levels that are associated
with advanced prostate cancer, identify alkaline phosphatase
as a potential therapeutic target. In addition to the association
with disease-free survival identified in the present study, increased
expression of alkaline phosphatase is associated with vascular
calcification. Considerable advances have been made to identify
small-molecule inhibitors of TNAP for the treatment of diseases
associated with arterial medial calcification (Narisawa et al,
2007; Sidique et al, 2009), and our results suggest that these
inhibitors would be of interest to evaluate in the setting of
metastatic prostate cancer. Recent studies have demonstrated
that bone-targeted alkaline phosphatase can act as enzyme-
replacement therapy for hypophosphatasia, highlighting the
promise of alkaline phosphatase as a therapeutic target (Whyte
et al, 2012).

The inevitable fatality associated with advanced prostate cancer
and bone metastasis, and the unpredictable nature of progression
from primary prostate cancer make it imperative to identify
mechanisms that will ultimately enhance our understanding of
disease progression, leading to new therapeutic approaches or
prognostic indicators. Tumour-derived alkaline phosphatase
represents one such mechanism, where a previously unrecognised
role in tumour cell biology is associated with disease progression.

Collectively, our studies have identified a novel role for tumour-
derived alkaline phosphatase in MET and cell death. Moreover, we
have highlighted the clinical association between tumour-derived
alkaline phosphatase expression and metastatic disease, further
supported by a significant decrease in disease-free survival in
prostate cancer patients with high alkaline phosphatase expression.
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