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Abstract

The aim of adjuvant therapy in breast cancer is to reduce the risk of recurrence. Some patients develop metastases many years after 

apparently successful treatment of their primary cancer. Tumour dormancy may explain the long time between initial diagnosis and treat-

ment of cancer, and occurrence of relapse. The regulation of the switch from clinical dormancy to cancer regrowth in locoregional and 

distant sites is poorly understood. In this review, we report some data supporting the existence of various factors that may explain cancer 

dormancy including genetic and epigenetic changes, angiogenic switch, microenvironment, and immunosurveillance. A better definition and 

understanding of these factors should allow the identification of patients at high risk of relapse and to develop new therapeutic strategies 

in order to improve prognosis.
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Introduction

The term ‘dormancy’ was introduced in the first half of the 20th century by the Australian pathologist Rubert A. Willis in [1]. Tumour  

dormancy is part of the process of tumour progression characterized by the presence in specific organs of tumour cells that do not increase 

the tumour burden. Clinically, it is characterised by a long disease-free interval between primary tumour and relapse. The prevalence of 

clinical dormancy, which is frequently observed in several solid tumours such as breast, renal, thyroid, prostate cancer and melanoma [2], is 

still unknown. However, in recent years, molecular and genetic characterisation of disseminated tumour cells (DTCs) and circulating tumour 

cells (CTCs) has helped us to better understand the mechanisms underlying tumour dormancy [3]. Breast cancer (BC) remains the most 

frequently diagnosed cancer in women. Despite major advances in BC treatment, mechanisms of resistance and tumour heterogeneity may 

still render standard therapies ineffective in killing some subsets of cancer cells, such as dormant cells, thus resulting in late relapse. The 

biology of BC recurrence should be reviewed in order to improve the prognosis and therapies of these patients. The mechanisms underly-

ing the switch from clinical dormancy to cancer regrowth are poorly understood. In this review, we will discuss biological mechanisms and 

possible clinical implications of tumour dormancy in BC patients. 

Mechanisms underlying tumour dormancy

Mechanisms of metastasis include the release of cancer cells from primary tumour; invasion of the surrounding stromal tissue, lymphatic, 

and blood vessels as CTCs; and then colonisation of target organs as DTCs. The fate of DTCs may have several scenarios: (1) sponta-

neous apoptosis or cell killing by recognition of immune effectors; (2) cell proliferation with clinical early relapse; and (3) state of tumour 

dormancy (Figure 1).

Preclinical data have shown that tumour dormancy can occur both as a single dormant cell and as micrometastases. Single dormant cells  

are defined as cells undergoing cell cycle arrest and have the ability to develop mechanisms to evade immune surveillance [4, 5]. Only a small 

number of dormant cells (about 2%) can initiate growth as micrometastases, and an even smaller number (about 0.02%) grow into macroscopic 

Figure 1: the fate of tumour cells in metastatic process and dormancy: tumour cells released by primary tumour can die, grow, or enter into a  

dormant phase. After a variable period, even decades, cells can exit from dormancy causing later relapse.
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tumours [6]. In the micrometastasis dormancy, there is a state of balance between apoptosis and cell proliferation resulting in no increase 

of tumour burden [7].

For reasons that are still not clear, after variable periods, even years after the diagnosis of primary tumour, dormancy ends and cancer cells 

start to proliferate causing late relapse. There are many factors that might explain the regrowth of cancer cells, hence regulating the entry 

in or exit from tumour dormancy: (1) genetic and epigenetic changes; (2) angiogenic switch; (3) immune system and immune evasion; and 

(4) microenvironment. 

Genetic and epigenetic changes 

Genetic alterations have been observed in bone marrow cancer cells of BC patients. DTCs in the early setting do not present many of the 

end-stage genetic aberrations that are frequently observed in the metastatic setting. Data from Klein et al [8] demonstrated that tumour 

cells in patients with different metastatic disease had several aberrations at a genomic level and had a homogeneous profile. Dormant 

DTCs from patients with non-metastatic disease were genetically extremely heterogeneous, and their chromosomal abnormalities are very 

different from their matched primary tumours [9]. It is possible that DTCs originate from earlier stages of cancer progression and, over a 

variable period, only some of them accumulate genetic changes required to metastasise. The chromosomal heterogeneity among DTCs of 

an individual patient and the clonal expansion after clinically evident metastases suggests that chromosomal aberrations might be impor-

tant for the outgrowth of DTCs and may be for systemic spread [10]. To date, no specific genetic signature has been identified that could 

explain the molecular mechanisms associated with tumour dormancy, but several studies suggest genes and molecular pathways that 

might govern dormancy and escape from dormancy. 

Xenograft models of human tumour dormancy from four tumour types (human breast carcinoma, glioblastoma, osteosarcoma, and lipos-

arcoma) were studied [11]. Genome-wide transcriptional analysis was used to compare gene expression profiles of cells that form either 

dormant or fast-growing tumours for each of the four tumour types. Genes that were differentially regulated between dormant and fast-

growing tumours had the same expression pattern in all tumour types. A consensus gene signature distinguishing all four dormant versus 

rapidly proliferating tumours was generated. Angiogenesis was the most differentially regulated pathway between the dormant and the 

fast-growing tumour phenotypes. In fact, the switch of dormant tumours was associated with down regulation of angiogenesis inhibitor 

thrombospondin (TSP) and decreased sensitivity of angiogenic tumours to angiostatin. 

In many other studies, other pathways (such as endothelial cell-specific molecule-1, 5′-ecto-nucleotidase, tissue inhibitor of metallopro-

teinase-3, epidermal growth factor receptor (EGFR), insulin-like growth factor receptor, and phosphatidylinositol 3-kinase signalling) and 

genes (metastatic-suppressor genes, that is, KISS1 metastasis-suppressor, CD82, NME/NM23 nucleoside diphosphate kinase 1) [12] have 

been described as implicated in tumour dormancy process. 

In recent years, particular interest has been attributed to microRNAs (miRNAs) small non-coding RNA molecules, considered as regulators 

of gene expression. A recent review identified a set of 19 miRNAs that control the phenotypic switch of human dormant breast carcinoma, 

glioblastoma, osteosarcoma, and liposarcoma tumours to exponential growth [13]. High expression levels of 16 miRNAs were found in 

dormant tumours. Downregulation of these miRNAs correlated with the switch of dormant tumour to the fast-growing angiogenic tumour. 

The expression pattern of two dormancy associated miRNA (DmiRs) (miR-580 and 190) correlated with disease stage in human glioma 

specimens and reconstitution of a single DmiR (miR-580, 588 or 190) led to phenotypic reversal of rapidly proliferating angiogenic tumours 

towards prolonged tumour dormancy.

In addition to genetic changes, epigenetic alterations are frequent both in dormancy and proliferation mechanisms. Metge et al [14] demon-

strated that in 20 BC samples, 45% of the primary tumours and 60% of the matched lymph node metastases displayed hypermethylation of 

breast cancer metastasis suppressor 1 (BRMS1) promoter, and this aberrant methylation caused loss of its expression. This and other epi-

genetic changes can occur in dormancy, and future studies will aim at understanding these mechanisms. In conclusion, molecular changes 

at genetic and epigenetic levels might play a central role in the regulation of dormancy, and further studies will likely validate some of these 

pathways or genes, leading to the development of therapeutic strategies addressing the induction and/or maintenance of a dormant state.
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Angiogenesis

Expansion of a tumour mass requires vascular supply by angiogenesis [15]. Some studies showed that dormant micrometastases are 

avascular tumour in which there is a balance between proangiogenic factors (vascular endothelial growth factor (VEGF), PDGR, fibroblast 

growth factor (FGF), angiopoietin) and anti-angiogenic factors (endostatin, agiostatin, TSP), with a slight prevalence of the latter ones 

(Figure 2) [16]. The capacity of micrometastasis to grow mainly depends on their ability to secrete angiogenic factors and downregulate 

angiogenic suppressors.

Figure 2: In dormant micrometastasis, there is a balance between angiogenic and anti-angiogenic factors. When this equilibrium is destroyed 

by the prevalence of angiogenic factors, tumour can grow.

Naumov et al [17] developed a model of human tumour dormancy that compares non-angiogenic and angiogenic cancers, by using cell 

lines of BC, osteosarcoma, and glioblastoma. When non-angiogenic human cancer cell lines were subcutaneously implanted in SCID 

(severe combined innumodeficient) mice, most of the resulting tumours remained microscopic (<1-mm diameter) for prolonged periods. 

Some of them became angiogenic and were used to isolate angiogenic tumour cells. Unlike non-angiogenic cell lines, angiogenic cancer 

cells induced palpable tumours more frequently and earlier. Considering that no significant differences emerge by comparing the prolifera-

tion and apoptosis rates between the two cell types, authors concluded that the prolonged dormancy in the non-angiogenic cell lines was 

likely due to decreased angiogenic capacity, rather than the mechanisms of quiescence or apoptosis. This conclusion was supported by 

genome-wide transcriptional analysis that showed significant differences between different cancer cells of genes associated with angio-

genesis [11]. The ability of a tumour to progress from a non-angiogenic to an angiogenic phenotype is termed the ‘angiogenic switch’. This 

switch is driven by increased expression of angiogenic proteins and decreased expression of angiogenesis inhibitors by tumour cells and 

by stromal cells [18].

In several studies, investigators developed different models to show the importance of angiogenesis in the escape from dormancy and  

to induce tumour growth and progression [19]. In these studies, dormancy was induced by the presence of potent inhibitors of angiogen-

esis [20]. Moreover, the addition of angiogenic factors resulted in tumour cells escaping from tumour dormancy and switching to a rapidly 

growing state.

Giuriato et al [21] demonstrated that inactivation of MYC led to regression of haematopoietic tumours in transgenic mice, except in tumours 

that lost p53 function. Histological examination revealed that upon MYC inactivation, the loss of p53 led to a deficiency in TSP-1 expression 

and the subsequent inability to shut off angiogenesis. Restoration of p53 expression in these tumours re-established TSP-1 expression.  
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This allowed the suppression of angiogenesis and subsequent sustained tumour regression upon MYC inactivation. Cancer cells under-

going angiogenic switch also produce chemoattractants and mitogens, including HIF1-α (hypoxia-inducible factor 1-alpha), VEGF, 
FGF-1, CCL2 (C-C motif chemokine 2), and CXCL12 (stromal cell-derived factor 1), for endothelial cells and proangiogenic immune cells  

[22, 23]. Such cells also secrete matrix metalloproteinases (MMPs) that free angiogenic factors from the surrounding stroma and remodel 

the extracellular matrix to blood vessel branching [24]. Heat shock protein 27 kDa (HSP27) has finally been shown to be important in the 

study of dormancy and in the angiogenic switch, promoting the secretion of proangiogenic factors (VEGF-A, VEGF-C and b-FGF). Straume 

et al [25] demonstrated that stable downregulation of HSP27 in angiogenic human BC cells followed by long-term tumour dormancy in vivo. 

Conversely, overexpression of HSP27 in non-angiogenic cells resulted in expansive tumour growth in vivo.

Several efforts are needed to better understand the angiogenesis switch and, accordingly, identify potential therapeutic targets to either 

induce or maintain tumour dormancy or, conversely, to induce dormant cell death.

Immune surveillance

Although the role of the immune system in dormancy has been studied for a long time, it is not yet well established. It is possible that a 

balance between immune response modulated by T cells effectors and tumour cells leads to a long-term tumour dormancy. According to 

the cancer immune-editing hypothesis, tumour development goes through three phases: elimination, equilibrium and escape (Figure 3) 

[26]. The elimination phase represents the cancer surveillance, in which cells and molecules of the innate and adaptive immune systems 

may eradicate the tumour and protect the host against tumour development. However, if this process is not successful, the tumour cells 

may enter an equilibrium phase in which they may either be maintained chronically or immunologically sculpted by immuno-‘editors’ to 

produce new populations of tumour variants. The equilibrium phase corresponds to dormancy. The duration of this equilibrium depends on 

various factors, such as the chromosomal instability of the cancer cells. Tumour cells accumulate chromosomal aberrations and, over time, 

genetic instability translating in another phenotype enables them to avoid the antitumour immune response and to escape dormancy [27]. 

Several studies demonstrate that both the humoral and the cellular immune system contribute to maintain the state of dormancy. It is pos-

sible to induce tumour dormancy in immune-competent hosts by prior immunisation against tumour cells. For example, in the BCL1 mouse 

lymphoma model, tumour dormancy can be induced by immunisation with BCL1-derived immunoglobulin (Ig) to generate an anti-idiotype 

immune response. This usually induces cell cycle arrest, and about 70% of mice maintain tumour cells in the spleen [28]. Alterations in the 

tumour cells seemed to be responsible for loss of anti-Id sensitivity and the subsequent escape from dormancy.

Figure 3: Immunoediting hypothesis: immunity coordinated by T cells and B cells causes elimination of tumour cells or some of them enter a 

phase to equilibrium and tumour border does not increase. After a variable period, cells can escape from immunosurveillance and grow,  

causing tumour mass expansion.
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The cellular immune response plays a critical role for maintaining cancer dormancy. This is supported by the evidence that depletion of 

CD4+ and CD8+ T cells in mouse models causes escape of tumour cells from dormant state [29]. In humans, when patients with BC and 

healthy women were compared, the proportion of CD4+ and CD8 memory T cells was higher in bone marrow of patients than in healthy 

women [30]. Tumour cells can circumvent immune response through overexpression of B7 homolog 1 (B7-H1) that inhibit T-cell activation 

and the cytotoxic T lymphocyte (CTL) response [31]. Moreover, several studies demonstrated that DTCs became resistant to T-cell-medi-

ated lysis and had less ability to CTL to secrete interferon (IFN)-g and tumour necrosis factor (TNF)-a [32].

Finally, several immune cells are present in the tumour microenvironment, such as regulatory T-cells (TREG cells) [33] and tumour-associ-

ated macrophages (TAMs) [34] that secrete mitogens, proangiogenic factors, MMPs and cytokines, might allow the escape from dormancy 

thus stimulating the tumour growth. 

A better understanding of the influence of the immune system on dormancy could lead to the development of immunological therapies in 

order to prevent the progression of the tumour and then the switch from the state of dormancy to tumour growth.

Microenvironment

The fate of solitary DTCs is influenced by interactions between tumour and host occurring in primary tumours and target organs. Studies in 

vivo demonstrate that a loss of growth signals and cell-to-cell signalling attachments can lead to dormancy, suggesting that a microenviron-

ment, with inappropriate cell contacts and signalling, can contribute to tumour cell dormancy [35]. Conversely, tumour cells able to establish 

appropriate interactions in their new environment can grow and form successful metastases. Bragado et al [36] described three potential 

scenarios that might explain the interaction of tumour cells and microenvironment.

In the first scenario, authors suggest that target organ microenvironment determines the fate of DTCs. If DTCs seed in a permissive 

microenvironment, DTCs proliferation will be promoted. Instead, if DTCs seed in an unfavorable microenvironment, there will be inactiva-

tion of proliferative signals or interaction with growth-restrictive signals that in turn will lead to dormancy. 

The second scenario proposes that reciprocal influence of the primary tumour and ‘microenvironment stress’ induced by hypoxia or thera-

pies in primary sites generates signatures that can inform about DTCs survival, dormancy, or proliferation. Published data prove that 

gene signatures present in the primary tumours predict long-term relapse in the absence of the primary tumour from which the signature 

derived [37]. The dormancy signature identified in dormant D-HEp3 cells predicted for longer metastasis-free periods in oestrogen receptor 

(ER) positive BC primary tumours. In contrast, when this signature was under-represented, recurrences were more frequent. This sug-

gested that while the signature does not influence primary tumour growth, it might induce slower progression probably through dormancy  

program.

In the third scenario, authors hypothesised that ‘pre-malignant’ cells can undergo epithelial mesenchymal transition (EMT), making them 

invasive and promoting early dissemination. But it is possible that these early DTCs, carrying specific genetic and epigenetic alterations, 

are not able to initiate metastatic growth and thus undergo dormancy. During the earliest stages of progression, the EMT is reversible; 

moreover, the stress signalling or suppressive signals from the microenvironment are able to maintain DTCs quiescent till arrival to the 

target organ. However, subsequent genomic alterations eventually produce cells able to initiate metastasis.

Experimental models suggested the involvement of the urokinase receptor (uPAR), extracellular signal-regulated kinase (ERK) and p38 

pathways in the regulatation of dormancy (Figure 4) [38]. In fact, uPAR seems to play a central role to regulate the balance between tumour 

cells proliferation and tumour dormancy, it is also found to be expressed by DTCs, and its expression might potentially be considered a 

predictive marker for unfavourable prognosis [39]. uPAR interacts and actives the fibronectin receptor alpha5b1 integrin. This complex 

recruits focal adhesion kinase (FAK) and EGFR, which promotes mitogenic signals through the ERK pathway. In squamous carcinoma cells 

(HEp3), it was shown that reduced uPAR expression made these cells incapable of binding efficiently to fibronectin [35]. This resulted not 

only in reduced FAK and EGFR signalling but also in p38/MAPK activation. In vitro and in vivo studies showed that the downregulation or 

blocking of uPAR, beta1integrin, FAK or EGFR, alone or in combination causes activation of p38/MAPK pathway resulting in a cell cycle 

arrest and dormancy (Figure 4) [40, 41].
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Figure 4: The activation of p38 pathway through the fibronectin receptor alpha 5b1 causes the cell cycle arrest and dormancy. The activation of 

ERK pathway instead leads to cell proliferation and tumour mass expansion. Furthermore, the secretion of MMPs by stromal cells determines 

the release of angiogenic or anti-angiogenic factors.

Thus, the proposed molecular mechanisms of the growth inhibition that occurs in dormancy involve either activation of the p38/MAPK path-

ways or inhibition of the ERK/MAPK pathways. Instead, the interaction of uPAR with fibronectin receptor and EGFR leads a shift from the 

state of dormancy to cell proliferation. The ratio of ERK to p38 is very important for dormancy; a high ERK to p38 ratio is linked to prolifera-

tion, whereas low ERK to p38 expression ratio is linked to growth arrest and dormancy [42].

In addition, in vivo studies demonstrated that ATF6 alpha promotes survival of dormant tumour cells through the upregulation of Rheb and 

activation of mTOR signalling, independent of Akt [43]. Finally, the microenvironment might contribute to tumour dormancy or its switch to 

metastatic growth because the secretions and expression of MMPs by leukocytes and macrophages can lead to the release of angiogenic 

factors (FGF and VEGF) [44] or anti-angiogenic factors (endostatin, restin, arrestin, the three chains of collagen IV, and macrophage 

elastase) [45].

CTCs, DTCs, and cancer stem cell hypothesis

Several studies evaluated the prognostic value of CTCs or DTCs at the time of initial diagnosis and before the start and/or the end of adju-

vant chemotherapy [46, 47]. DTCs and CTCs are theoretically the targets of adjuvant treatment and their fate after systemic therapy could 

be a potential useful marker for the estimation of the risk of recurrence.

In a recent study, authors suggested a possible value of CTCs in predicting the risk of late relapse, defined as relapse that occurs at least 

two years after the end of adjuvant chemotherapy in 312 patients with operable BC at stage I–II–III either hormonal receptor positive or 

negative, who were disease free during the first two years of follow-up [48]. The patients were divided into four groups: the first group 

included patients with CTCs persistently positive and 36.4% of whom experienced disease relapse; in the second group, patients without 

detectable CTCs were included and only 11.2% of whom showed disease relapse; the third group included patients with CTCs during the 

first two years. These patients had similar relapse risk to the persistently negative patients (7.8%). In the last group of patients with detect-

able CTCs after the first two years, the relapse risk was 18%. Patients with CTCs persistently positive had distant relapse-free survival  

(P = 0.001) and overall survival (OS) (P = 0.001) worse than other groups of patients, regardless of ER status. These results suggest that 
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resistant dormant cells have a proliferative and survival advantage; they may resist the conventional anticancer therapy and may start to 

proliferate even many years after the diagnosis of primary tumour. Why not all patients with detectable CTCs develop late recurrence, while 

some patients without detectable CTCs relapse, could be explained by the evidence that CTCs showed significant genetic heterogeneity.

It was also investigated the potential role of DTCs in predicting risk of relapse after the completion of adjuvant chemotherapy. Six hundred 

and seventy-six patients with operable BC stage I–III were analysed [49]. Median follow-up time was 89 months from diagnosis. Persistent 

DTCs were detected in 15.5% of patients. Distant relapse-free survival and OS were significantly shorter in patients with DTCs compared 

with patients without DTCs (log-rank test: P = 0.002 and P < 0.001, respectively) during the first five years following cancer diagnosis.

The detection of these cells after therapy could be considered as an indirect evidence for the presence of dormant cells chemotherapy/

hormonal therapy resistant. However, not all patients with detectable DTCs or CTCs will experience late recurrence. Thus, additional prog-

nostic markers are needed to define those patients are at high risk of late relapse. 

In 2003, Clarke et al [50] first described cancer stem cells (CSCs) in a solid tumour. Several studies suggest that tumours include het-

erogeneous populations of CSCs and non-stem cancer cells. These two groups of cells interact with each other and their microenviron-

ment. Non-stem cancer cells rapidly become the dominant population in a tumour and induce the CSCs into quiescence. Because of 

the limited proliferation capacity of non-stem cancer cells, the tumour population eventually ceases to expand, and the tumour enters 

and maintains the state of dormancy even decades until unknown events lead the CSCs to be reactivated to renewed proliferation in 

order to drive tumour progression beyond dormancy [51]. According to this theory, dormant tumour cells might represent CSCs. In fact, 

various evidences suggest that a subpopulation of cancer cells exhibits stem-like properties and is capable of tumour initiation, inva-

sive growth, and late relapse [52]. These CSCs have the ability to self-renew to give rise to other stem-like cells, as well as undergo 

differentiation to give rise to the non-stem cancer cells that form the rest of the tumour. It has been proposed that, in some patients, 

the cancer cells remain dormant until some unknown event triggers renewed proliferation, or alternatively, it is possible that the DTCs 

arise from CSCs, and only when CSCs disseminate and subsequently self-renew, the patients will relapse with macroscopic metastases 

[53]. CSCs express high levels of anti-apoptotic proteins (such as members of the Bcl-2 family) [54] and can resist apoptotic proteins  

by a number of mechanisms, including activation of the Hedgehog (HH) pathway and dysregulated transforming growth factor-beta 

(TGF-beta) signalling [55].

Moreover, some studies investigated the interactions between the microenvironment and CSCs. These cells could find (or create) a new 

specialised microenvironment or ‘tumour niche’ in secondary sites that generates extrinsic factors that control stem cell number, growth, 

and differentiation. It could be hypothesised that CSCs remain dormant in their niche either as solitary cells or as dormant micrometastases 

until they are activated by improper signalling from the microenvironment [56]. Furthermore, despite a limitless self-renewal capacity, CSCs 

are relatively quiescent and divide infrequently unless activated. Since many cancer molecules are designed to kill actively dividing cells, 

CSCs may escape cytotoxic drugs, and this is important in disease relapse. For example, it has been shown that stem-like subpopulation 

of cancer cells expresses high levels of ATP-binding cassette (ABC) transporters that can actively efflux drugs and shield them from the 

adverse effects of chemotherapeutic insult [57]. Finally, a recent research suggests that CSCs can control EMT process, during which epi-

thelial cells acquire the ability to invade, resist apoptosis and disseminate. The EMT may not only contribute to the self-renewal ability and 

drug resistance of these cells but may also be responsible for creating and maintaining CSCs [58].

Clinical implications

Since early tumour detection is a critical determinant of survival in patients with cancer, the recognition of dormant tumours and/or cells and 

their possible eradication with targeted therapies is one of the major goals of care of BC survivors.

Currently, there are no markers able to exactly predict the risk of late recurrence, and it is not possible to predict which dormant tumours 

and/or cells will eventually grow and which will stay dormant and will never switch to the rapidly proliferating phenotype [59]. We do not 

know if any features tumour or patient related are able to predict, at diagnosis, which patients will develop late metastases after a period 

of dormancy. 
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In order to overcome this medical need, it might be useful to develop gene signature as a means by which tumour behavior can be  

predicted. Several genes involved in many cellular pathways have been identified and have been associated with the conversion of dor-

mant lesions into fast-growing tumours, and they could represent potential targets and markers for tumour dormancy. For example, differ-

ent cellular and animal models showed that both MYC and Ras significantly affected the dormancy, through the regulation of expression 

of genes involved in angiogenesis [60]. The identification and the modulation of activities of these and other genes might help us to avoid 

tumour progression. However, it is not clear if these genes and proteins directly contribute to control tumour dormancy or are just correlated 

with the disease state. 

Kim et al [61] suggested a correlation between gene signature and the biological features of the tumour, such as hormonal receptors 

expression. The risk of relapse in the first 5 years after diagnosis is lower in the ER+ disease than ER− disease, but patients with hormone 
dependent disease have a greater chronic annual risk of relapse than those with ER− tumours [62]. The question arises as to whether 

these differences are related to different growth rate patterns or to differences in dormancy phenomenon. Based on expression profiles 

obtained from BC cells and clinical samples, the authors generated a gene signature for tumour dormancy, in which they considered genes 

upregulated and gene down-regulated in dormant cells and then they defined the dormancy score. They found that the dormancy scores 

were significantly higher in ER+ tumours compared with ER− tumours (P < 0.0000001) [61]. Moreover, they demonstrated that a higher 

dormancy score was significantly associated with higher metastasis-free proportion. So it would be useful to develop the exact dormancy 

signature for each BC subtype to define both the prognosis and the therapeutic possibilities. 

The identification of miRNAs associated with tumour dormancy might contribute to understand tumour dormancy and manipulation of their 

expression level could help us to delay or prevent the dormancy periods [13].

In addition to CTCs, DTCs, and CSCs, various efforts are being made to identify biomarkers in circulation that correlate with the presence 

of dormant tumours, such as platelet-associated PF-4 [63]. Carlsson et al [64] identified a 21-protein signature from 240 sera of 64 patients 

with primary BC. They assessed the risk of developing distant relapse after the primary surgery for each patient, using his or her molecular 

portrait. This risk assessment was not dependent on the type of adjuvant therapy given to the patients.

The dormant phase of tumours is also a promising therapeutic target. Dormant tumour cells are refractory to current cancer therapies. In 

an experiment using mouse mammary carcinoma cell lines, treatment with doxorubicin reduced the size of large metastases but did not 

reduce the number of solitary dormant cells [65]. Although quiescent, dormant cells are difficult to kill, and it could be possible to destroy 

them after they have reinitiated growth. Appropriate targeted drugs should be developed in order to eliminate or control these persistent 

tumour cells and thereby prevent their occasional transformation into growing metastases. To meet these endpoints, we have to target 

mechanisms underlying dormancy such as genetic and epigenetic changes with treatments that might modulate activity of dormancy-

associated genes or with DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors that might constitute a promising 

strategy for therapy. It might be useful to develop therapeutic strategies to regulate balance between p38 and ERK pathways, for example, 

by blocking the uPAR, fibronectin receptor, but it would be complicated because of the limited specificity for cancer cells.

Angiogenesis is another potential therapeutic target. Many anti-angiogenic drugs are currently approved in the treatment of metastatic 

cancer, such as Bevacizumab. To evaluate their capacity to influence dormancy, these agents should be tested in patients at high risk 

for relapse, without evidence of disease. Results from recent trials (AVANT and NSABP-08) failed to show a clear benefit from the anti-

angiogenic therapy bevacizumab when it was given as one year of adjuvant treatment in early-stage colon cancer [66, 67]. In the USA, 

large intergroup trial examines the impact of postoperative Sunitinib (a small-molecule tyrosine kinase inhibitor that inhibits VEGFRs and 

PDGFRs, among other targets) versus Sorafenib (a small molecular inhibitor of several tyrosine protein kinases and Raf kinases) versus 

placebo in patients with kidney cancer at moderate-to-high risk for relapse after nephrectomy, and it has now completed accrual. The 

results of this adjuvant study will determine the efficacy of anti-angiogenic drugs in delaying the relapse of cancer. 

Immunological therapy might represent a possible strategy to prevent late recurrence. Most of the vaccines are tested in patients with 

metastatic disease. Therapeutic vaccines may be more effective in patients with microscopic disease or in adjuvant setting at high risk or 

relapse, because this therapy could prevent the loss of immunological surveillance and promote persistent dormancy. A limited number of 

adjuvant trials are in progress. 
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Many dormant cancer cells metastasise to the bone marrow as blood flow is high in this area. The tumour cells also produce adhesive  

molecules that bind them to marrow stromal cells and bone matrix (osteo-niche). In 1889, Stephan Paget described for the first time 

this ‘seed-and-soil hypothesis’ of the mechanism of bone metastasis [68]. The reciprocal interaction between cancer cells and the bone 

microenvironment causes the production and the release of angiogenic factors, growth factors, and bone-resorbing factors that may acti-

vate DTCs from a dormant to a proliferative state resulting in tumour growth and bone destruction [69]. These factors also increase the 

expression of receptor activator of nuclear factor-kB ligand (RANKL), a potent inducer of osteoclast formation. RANKL binds its receptor, 

RANK, on the surface of osteoclast precursors and signals through the nuclear factor-kB (NFkB), and Jun N-terminal kinase (JNK) path-

ways induce the formation of osteoclasts and promote osteoclast survival. RANKL inhibitors (i.e. denosumab) block the activation, survival 

and differentiation of osteoclasts from their precursors resulting in complete absence of osteoclasts in the treated bone. 

Traditionally, bone-targeted agents are used as a therapy to prevent or reduce the incidence of skeletal-related events in patients with 

malignant bone disease. However, recent evidences suggest that they may act as antitumour agents [70], able to delay disease progres-

sion and prolong survival in solid tumours such as BC [71]. In the AZURE trial, treatment with zoledronic acid did not show a statistically 

significant increase in DFS compared with standard therapy alone in the overall (intention to treat) population, but, among patients who 

were postmenopausal for at least five years before study entry, treatment with zoledronic acid demonstrated a statistically significant reduc-

tion of risk of DFS events by 25% and of the risk of death from any cause by 26% [72]. There are also ongoing adjuvant studies with deno-

sumab; ABCSG-18 [73] is a placebo-controlled study of monthly administration of denosumab 60 mg for six months in postmenopausal 

women receiving an aromatase inhibitor, whereas the D-CARE study [74] is evaluating a more intensive schedule of denosumab 120 mg, 

administered initially monthly for six months and then every three months thereafter in stage II–III BC.

Finally, patients with ER+ tumours might derive benefit from extended endocrine therapy. As discussed above, the initiation of metastatic 

growth is not equivalent to the dissemination of tumour cells [75]. This suggests that a single treatment or a combination of therapies, 

introduced at varying time intervals, could be necessary to interrupt the process of clinical recurrence. Recent clinical trials in BC support 

the idea that continued therapy or therapy that is applied late in follow-up may be of benefit in preventing cancer recurrence [76]. Ma17 trial 

evidenced that the extension of endocrine therapy with an aromatase inhibitor, letrozole, for five years after the initial five years of tamoxifen 

treatment resulted in an important reduction in the risk of relapse and in an improvement in disease-free survival [77]. SOLE trial, a phase III 

ongoing trial, will evaluate whether continuous letrozole versus intermittent letrozole treatment after four to six years of adjuvant endocrine 

therapy, can reduce the risk of relapse in early-stage BC patients. These clinical trials in hormone-dependent BC suggest that dormant cells 

remain vulnerable to this therapy. The open question is to evaluate the risk and benefit of long-term therapy.

Conclusion

A better understanding of the regulatory mechanisms that govern the state of dormancy will help us to identify markers of early tumour 

progression and to detect early tumour cells prior to their rapid growth in order to treat tumours or recurrent cancer years before they 

become symptomatic. This could lead to a reduction in cancer mortality. Moreover, future studies on tumour dormancy could lead to the 

development of novel targeted strategies for eliminating dormant tumour cells or for maintaining dormant status of tumour cells, keeping 

the disease in a chronic state. 
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