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Objective: The main objective of this retrospective

work was the study of three-dimensional (3D) hetero-

geneity measures of post-contrast pre-operative

MR images acquired with T1 weighted sequences of

patients with glioblastoma (GBM) as predictors of

clinical outcome.

Methods: 79 patients from 3 hospitals were included in

the study. 16 3D textural heterogeneity measures were

computed including run-length matrix (RLM) features

(regional heterogeneity) and co-occurrence matrix (CM)

features (local heterogeneity). The significance of the

results was studied using Kaplan–Meier curves and Cox

proportional hazards analysis. Correlation between the

variables of the study was assessed using the Spearman’s

correlation coefficient.

Results: Kaplan–Meyer survival analysis showed that 4 of

the 11 RLM features and 4 of the 5 CM features considered

were robust predictors of survival. The median survival

differences in the most significant cases were of over

6 months.

Conclusion: Heterogeneity measures computed on the

post-contrast pre-operative T1 weighted MR images of

patients with GBM are predictors of survival.

Advances in knowledge: Texture analysis to assess

tumour heterogeneity has been widely studied. However,

most works develop a two-dimensional analysis, focusing

only on one MRI slice to state tumour heterogeneity. The

study of fully 3D heterogeneity textural features as

predictors of clinical outcome is more robust and is not

dependent on the selected slice of the tumour.

INTRODUCTION
Glioblastoma (GBM) is the most frequent malignant brain
tumour in adults and the most lethal type, with a median
survival of 14.6 months for patients receiving the standard
of care, i.e. maximal safe surgery plus radiotherapy and
chemotherapy.1 Pre-operative MRI is routinely used for
diagnosis, treatment planning, response evaluation and
follow-up.

The typical GBM appearance upon diagnosis on MRI
consists of an enhanced ring with a central non-enhanced
core of necrosis observed mainly on contrast-enhanced T1
weighted images. Recently, there has been an increased use
of advanced imaging techniques alone or in combination
with conventional MRI modalities to characterize the

connection of the so-called radio phenotype with the tu-
mour genotype, the so-called radiogenomics (e.g. recent
reviews for GBM2,3). However, the use of those techniques
requires further research and validation to achieve a broad
clinical applicability. Thus, in clinical practice and trials, T1
contrast-enhanced and T2/fluid-attenuated inversion-
recovery images are still the gold standard for diagnosis
and treatment planning.4

One of the most important characteristics of GBM is its
marked intratumour heterogeneity. In fact, these tumours
are usually referred to as “glioblastoma multiforme”, in
order to highlight their heterogeneous nature. GBM
tumours are formed by tumour cells which differ in
their morphology, genetics and biological behaviour
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and may underlie the inability of conventional therapies to
significantly impact patient outcomes.5 It is well known that
heterogeneous tumours are most able to resist treatments like
chemotherapy or radiotherapy. Owing to this fact, the study of
heterogeneity within the tumour has gained attention in the
recent decades.6

The purpose of this work was to study the predictive potential of
fully three-dimensional (3D) textural heterogeneity measures of
post-contrast T1 weighted MR images in a large data set (resolution,
absence of previous treatment). We selected this medical image
sequence instead of T2 or fluid-attenuated inversion recovery owing
to its high quality. Textural analysis can be defined as a method for
quantifying the spatial distribution of voxel intensities in a set of
images. Then, a textural measure is a parameter that characterizes
the content of those images. Textural analysis has many applications
in a wide number of fields and many different methods have been
developed over the recent decades.7

Applied to MR tumour images, as the textural features quantify the
relationships between voxels, they can be associated with hetero-
geneity patterns within the segmented volume of the tumour.8

According to the scale, the heterogeneity parameters can be clas-
sified as local, if the relationships considered relate to only pairs of
voxels [e.g. co-occurrence matrices (CMs)9]; regional, if groups of
voxels are considered as connected volumes [e.g. run-length ma-
trices (RLMs)7,9]; or global, if the analysis describes the whole
group of images (e.g. voxel intensity histograms10). These methods
have been widely used to analyze lung or breast cancer images.11–14

However, to our knowledge, only two works have studied two-
dimensional (2D) textural features for outcome assessment.15,16

METHODS AND MATERIALS
Patients
This retrospective, three-centre (blinded for review) study was
approved by the local institutional review boards (blinded for
review). All subjects provided written informed consent at
hospital admittance for research and treatment. The respective
ethical committees approved the study. Patients with patholog-
ically confirmed GBM diagnosed in the period 2006–14 were
included in the study. The inclusion criteria were: availability of
all the relevant clinical variables [sex, age, type of resection
performed, scheme of treatment followed, survival and
progression-free survival (PFS)] and availability of pre-operative
3D diagnostic post-contrast T1 weighted MR images. Exclusion
criteria were: (a) multifocal GBMs, (b) tumours with no contrast
enhancement, (c) post-contrast-enhanced T1 weighted MR
images that are not in 3D, (d) grid size, 2563 256 and (e) slice
thickness.2mm. 79 cases satisfying the inclusion criteria and
not the exclusion criteria were selected. Their main character-
istics are summarized in Table 1.

PFS was measured according to the Revised Assessment in
Neuro-oncology criteria. Patients who showed no recurrence at
the last follow-up were considered as censored events in the PFS
Kaplan–Meier analysis. Overall survival (OS) was measured
from the time of surgery to the patient’s last contact or death.
Patients who were still alive at the last follow-up were considered
as censored events in the OS Kaplan–Meier analysis.

Image analysis
All MRI examinations were carried out on either 16-channel 1.5 T
or32-channel 3 T. Among them, contrast-enhanced 3D T1

Table 1. Summary of patient characteristics, MRI data and relevant volumetric parameters

Characteristics/parameters Median or mean value (range)

Patient characteristics

Median age (interquartile range) (interval) (years) 64 (18) (31, 85)

Sex (%) 36 (45.57) males; 43 (54.43) females

Median survival (interquartile range) (interval) (months) 10.88 (16.17) (0.56, 58.97)

Type of resection (%)

43 (54.43) total resection

22 (27.85) subtotal resection

14 (17.72) biopsy

MRI characteristics

Average pixel spacing (standard deviation) (interval) (mm) 0.88 (0.14) (0.56–1.02)

Average spacing between slices (standard deviation) (interval) (mm) 0.95 (0.12) (0.78, 1.20)

Average slice thickness (standard deviation) (interval) (mm) 1.65 (0.37) (1.00, 2.00)

Average number of slices per patient (standard deviation) (interval) 170.03 (20.26) (124, 202)

Relevant volumetric parameters

Average 3D tumour volume (standard deviation) (interval) (cm3) 31.21 (26.73) (0.66, 120.82)

Average 3D contrast-enhancing volume (standard deviation)
(interval) (cm3)

17.73 (15.87) (0.29, 86.33)

Average 3D maximal tumour diameter (standard deviation) (interval) (cm) 4.89 (1.75) (1.37, 11.09)

3D, three-dimensional.
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weighted gradient echo sequences were analyzed. Imaging
parameters were: voxel size range: 0.97–1.02mm and gap range:
0.78–1.2mm. The matrix was 2563 256 pixels for 68 patients and
higher for the remaining cases (range: 448–2563 448–256 pixels).

Images were processed using a semi-automatic in-house image
segmentation program written in the scientific software MAT-
LAB R2015b (The MathWorks, Inc., Natick, MA). It works by
dynamically selecting the grey-level value (threshold) which best
determines the tumour contour. The resulting segmented
tumours were manually corrected by an image analysis expert
blinded to clinical information. He was trained by an advisory
board consisting of three specialists with more than 10 years’
experience in the interpretation of brain MR images (a radiol-
ogist, a neurosurgeon and a radio-oncologist).

Owing to the high resolution of MRI data, the segmentation
was a time-consuming process, although key for obtaining high-
quality results. Results were discussed in consensus readings
with the advisory board. To avoid differences in textural analysis
due to resolution,17,18 matrices above 2563 256 (for 11 patients)
were resampled to this resolution. After segmentation, all images
were normalized to 32 grey levels following the standard practice
in textural analysis.7 These techniques ensure consistency in terms
of contrast and spatial resolution, a common problem in brain
tumour imaging.19

Heterogeneity measures
A set of 16 classical heterogeneity measures was computed au-
tomatically using MATLAB software and added to a database.
These measures provide a (local or regional) characterization of
the spatial relations between the voxels within the tumour. Our
choice of heterogeneity measures is listed in Table A1.

The CM describes the arrangements of pairs of elements (voxels)
within 2D images.11,12,14,20 As it measures relations between
only two voxels at a time, it is usually considered to provide
information on the local texture of images. Our CM was con-
structed by including the relationships between voxels in the 13
possible directions in 3D9 taking only adjacent voxels, i.e. con-
sidering simultaneously the relations with the 26 neighbours of
each voxels in 3D.

The RLM is another standard measure for texture feature ex-
traction.13 It characterizes large areas within the tumour (groups
of voxels) to provide information of regional heterogeneity.8,9,15,21

Each cell in RLM (i,j) was computed as the number of runs of
length j formed by voxels of intensity in box i in all the 13 possible
directions in 3D.9

Statistical methods
Kaplan–Meier plots and log-rank analysis were used to identify
the heterogeneity measures associated with prognosis. A two-
tailed significance level (p-value) of p, 0.05 was applied. We
tried to find measures separating patient populations into two
subgroups with significant differences in terms of survival (OS
and PFS). To fix the threshold values separating the relevant
populations, an optimization strategy was used: (i) the p-values
for the full range of thresholds of each heterogeneity feature

were computed, (ii) thresholds that separated the populations
into reasonably sized subgroups with at least 20 patients were
only accepted and (iii) the minimum p-value was selected. In the
relevant cases, minima with p, 0.05 were found pointing out to
relevant regions of the parameter space. For each population
split, the hazard ratio as an indicator of risk was computed by
using a single-variable Cox proportional hazards regression
analysis.

Then, the correlations between the significant variables of the
previous analysis were computed in order to identify parameters
with similar information. Owing to its non-parametric nature,
Spearman’s correlation coefficient was considered to study the
relation between independent quantitative variables. Correlation
coefficient values below 0.1 were taken as indicators of no cor-
relation between the variables while values over 0.7 were taken as
indicators of a strong correlation. SPSS software v. 22.0.00 (IBM
Corp., New York, NY; formerly SPSS Inc., Chicago, IL) was used
for all the statistical analysis.

RESULTS
We segmented and analyzed brain image data sets belonging to
the selected 79 patients. Kaplan–Meier curves were constructed
for all the variables (taking the mean, median and optimal
threshold values to split the patient population into two sub-
groups). Table 2 and Figure 1 summarize the results obtained.

Overall survival
For OS, the most significant RLM variables of the study were
long run emphasis (LRE) (p5 0.004) (Figure 1a), high grey-level
run emphasis (p5 0.030) (Figure 1b), long run high grey-level
emphasis (LRHGE) (p5 0.006) (Figure 1c) and run percentage
(RPC) (p5 0.001) (Figure 1d). The increases in the median
survival times for the favourable subgroups were 6.71, 6.28, 6.77
and 7.17 months, respectively.

Regarding CM features, the outstanding variables were the en-
tropy (p5 0.013) (Figure 1e), homogeneity (p5 0.018)
(Figure 1f), contrast (p5 0.013) (Figure 1g) and dissimilarity
(p5 0.010) (Figure 1h). The increases in the median survival
times for the favourable subgroups were 8.22, 3.42, 5.16 and
6.71 months, respectively.

The thresholds selected in Table 2 are those providing the best
results. However, for the most significant variables, there was
a large interval of possible significant thresholds. For example,
for the RPC, a range of 16 different patient splits were strong
predictors of clinical outcome (p, 0.05).

Progression-free survival
For PFS, and using the same thresholds, six of the previous eight
variables were strongly related to survival: the three RLM fea-
tures LRE (p5 0.019), LRHGE (p5 0.039) and RPC (p5 0.003)
and the three CM features: entropy (p5 0.044), contrast
(p5 0.028) and dissimilarity (p5 0.046).

Correlations
Table 3 shows the Spearman’s correlation coefficient between
every pair of variables. We have also included in this table the
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correlations of the significant textural features with the patient
age, tumour volume and the immunohistochemical pro-
liferation marker Ki67. It is relevant to point out that the CM
and RLM 3D features are strongly correlated. The patient age is
not correlated with any other parameter while the tumour
volume has correlation with almost every significant textural
feature.

DISCUSSION
Tumour heterogeneity at the microscopic level is one of the major
causes of treatment failure in cancer in general and specifically in
GBM.6 Although heterogeneity in GBM occurs at a molecular
scale,22–24 it is clearly reflected macroscopically in different tex-
tures observed in tumour images, both histologically as well as by
non-invasive imaging. Hence, textural analysis on GBM MRI T1

Table 2. Summary of Kaplan–Meier and univariate Cox analysis for the more representative variables

Variables
OS PFS

HR (CI 95%) p-value HR (CI 95%) p-value

RLM-LRE

Best: (#22,000 vs .22,000) 2.034 (1.250, 3.308) 0.004 1.749 (1.091, 2.803) 0.019

Mean: (#79,086.80 vs .79,086.80) 1.384 (0.821, 2.334) 0.221 1.340 (0.797, 2.253) 0.267

Median: (#24,524.51 vs .24,524.51) 2.034 (1.250, 3.308) 0.004 1.749 (1.091, 2.803) 0.019

RLM-HGRE

Best: (.131 vs #131) 1.810 (1.051, 3.116) 0.030 1.592 (0.928, 2.731) 0.088

Mean: (.117.99 vs #117.99) 1.219 (0.770, 1.929) 0.397 1.131 (0.714, 1.790) 0.599

Median: (.116.51 vs #116.51) 1.272 (0.803, 2.014) 0.305 1.217 (0.771, 1.921) 0.398

RLM-LRHGE

Best: (#940,000 vs .940,000) 1.943 (1.195, 3.158) 0.006 1.646 (1.021, 2.654) 0.039

Mean: (#4,438,948.8 vs .4,438,948.8) 1.321 (0.799, 2.184) 0.275 1.206 (0.733, 1.985) 0.460

Median: (#1,412,436.3 vs .1,412,436.3) 1.608 (1.006, 2.571) 0.045 1.396 (0.877, 2.222) 0.157

RLM-RPC

Best: (.0.068 vs #0.068) 2.167 (1.334, 3.519) 0.001 2.009 (1.248, 3.235) 0.003

Mean: (.0.092 vs #0.092) 1.585 (0.986, 2.547) 0.055 1.395 (0.871, 2.235) 0.163

Median: (.0.069 vs #0.069) 2.011 (1.238, 3.266) 0.004 1.756 (1.095, 2.816) 0.018

CM-entropy

Best: (.4.66 vs #4.66) 1.815 (1.128, 2.919) 0.013 1.612 (1.009, 2.574) 0.044

Mean: (.4.52 vs #4.52) 1.540 (0.970, 2.445) 0.065 1.386 (0.878, 2.189) 0.159

Median: (.4.50 vs #4.50) 1.442 (0.910, 2.286) 0.117 1.318 (0.835, 2.081) 0.233

CM-homogeneity

Best: (#0.49 vs .0.49) 1.789 (1.089, 2.916) 0.018 1.538 (0.952, 2.485) 0.076

Mean: (#0.47 vs .0.47) 1.539 (0.971, 2.441) 0.065 1.320 (0.837, 2.084) 0.230

Median: (#0.47 vs .0.47) 1.539 (0.971, 2.441) 0.065 1.320 (0.837, 2.084) 0.230

CM-contrast

Best: (.5.20 vs #5.20) 1.829 (1.128, 2.965) 0.013 1.699 (1.054, 2.738) 0.028

Mean: (.7.62 vs #7.62) 1.180 (0.718, 1.941) 0.513 1.220 (0.743, 2.002) 0.431

Median: (.5.67 vs #5.67) 1.426 (0.900, 2.261) 0.129 1.286 (0.814, 2.029) 0.279

CM-dissimilarity

Best: (.1.62 vs #1.62) 1.875 (1.155, 3.042) 0.010 1.612 (1.004, 2.589) 0.046

Mean: (.1.83 vs #1.83) 1.635 (1.019, 2.624) 0.040 1.496 (0.934, 2.395) 0.091

Median: (.1.66 vs #1.66) 1.397 (0.882, 2.214) 0.153 1.211 (0.767, 1.910) 0.410

CI, confidence interval; CM, co-occurrence matrix; HGRE, high grey-level run emphasis; HR, hazard ratio; LRE, long run emphasis; LRHGE, long run high
grey-level emphasis; OS, overall survival; PFS, progression-free survival; RLM, run-length matrix; RPC, run percentage.
Bold results correspond to significant results.
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weighted images was used to correlate “macroscopic” heteroge-
neity with disease outcomes, by means of OS and PFS.

As a non-extensive review of GBM works based on texture analysis,
we would like to mention the one by Upadhaya et al,25 who ana-
lyzed data of 40 patients with GBM using 39 textural heterogeneity
features on CM and RLM. The objective of their study was to
investigate the prognosis value of those textural measures in MR
images. Although their study has several limitations,25 the results
suggest that global, regional and local textural features quantifying
heterogeneity can provide some prognostic information.

Chaddad et al24 analyzed 528 CM features (22 features for 24
CM in 2D) of 13 patients with GBM in order to discriminate

GBM phenotypes in MR images. Their results demonstrate that
texture analysis based on the CM can be helpful in identifying
the GBM phenotype.

Some works26–28 have made use of different textural CM fea-
tures for the automatic detection and classification of low- and
high-grade glioma in MR images. Their results support the
hypothesis that the observable heterogeneity in tumours con-
tains information to distinguish gliomas of different grades.

In comparison with previous studies, our data set of 79 patients
(i) is larger than that of most of the previous studies (mostly
below 50), (ii) includes only high-resolution MRIs (thus re-
ducing noise due to a large voxel size and/or voxel interspacing)

Figure 1. Kaplan–Meier curves for the significant RLM and CM textural features and their respective best threshold included in

Table 2. The p-value, median difference between the two subgroups and size of each subgroup are provided for each individual

case. The triangle mark in the months indicates patients who have survived long. The results shown correspond to the RLM-LRE

(a), the RLM-HGRE (b), the RLM-LRHGE (c), the RLM-RPC (d), the CM-Ent (e), the CM-Hom (f), the CM-Con (g) and the CM-Dis (h).

CM, co-occurrence matrix; Con, contrast; Dis, dissimilarity; Ent, entropy; HGRE, high grey-level run emphasis; Hom, homogeneity;

LRE, long run emphasis; LRHGE, long run high grey-level emphasis; mo, months; RLM, run-length matrix; RPC, run percentage.
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and (iii) includes only pre-operative images to avoid post-therapy
imaging artefacts/distortions, and (iv) all the analyses are fully 3D
on the reconstructed tumours. As in previous works,24,25,27 we
considered together patients with different treatments, as we
wanted to relate image heterogeneity with clinical outcome in-
dependently of the patient treatment. Although slightly different
MRI protocols were used (1.5T and 3T), it is well known that
changes to MRI sequence parameters are less critical for the
outcome of texture analysis than spatial resolution, which may be
the most important factor to consider.17,18

In this work, we selected a set of classical textural features of
local (CM) and regional (RLM) nature. Histograms are also
classical tools for heterogeneity computation. However, we did
not include histogram features in this work, as we wanted to
study the spatial information contained in the tumour.

Kaplan–Meier analysis provided a set of eight heterogeneity
measures as significant variables. Five of these measures were
more robust in terms of the existence of intervals with broad
ranges of threshold values. Specifically, the 3 RLM features LRE,
LRHGE and RPC and the 2 CM features entropy and dissimi-
larity were predictors of survival for .10 different and con-
secutive patient splits. High values of variables describing
tumour homogeneity (homogeneity, LRGHE, LRE) were asso-
ciated with longer survival groups, while high values of measures
of heterogeneity were associated with bad survival (high grey-
level run emphasis, RPC, entropy, dissimilarity, contrast).

Interestingly, the significant variables could identify most of the
long-term survivors (survival longer than 24 months after di-
agnosis) in the same group. In Figure 1, we represented this
threshold with a triangle mark on the survival axis. It is
straightforward to see that most of the heterogeneity features
could separate well the long-term survivors.

Table 3 shows strong correlations between 3D CM and RLM fea-
tures, which point out to redundant information between many of
the different heterogeneity measures. Indeed, a detailed observation
of Kaplan–Meier curves points out to a similar separation of the
patients using different measures. This fact can be due to the
3D analysis developed, which translates into an averaged non-
directional mapping of tumour heterogeneity, instead of most
standard 2D analyses, where different distances or directions
lead to different matrices with partial information.15,16

However, according to Ng et al,29 whole-tumour analysis was
indeed better than single cross-section analysis in separating
the Kaplan–Meier survival curve in colorectal cancer, for
which they concluded that whole-tumour analysis seems to be
more representative of tumour heterogeneity.30

Moreover, among these texture features, entropy is found again,
which reflects the unpredictability of the information content of
an image. It has been considered to be one of the representative
prognostic textural parameters in other tumours.31

Thus, one may choose any of these variables as a representative
description of tumour heterogeneity applied on MR images ac-
quired with T1 weighted sequences and use it together with otherT
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more standard clinical features (age, Karnofsky performance
status, tumour volume) to define improved metrics of patient
prognosis. We would suggest using the two RLM features LRHGE
and RPC because of their predictive value in the Kaplan–Meier
analysis (p5 0.006 and p5 0.001, respectively), presence of a high
number of thresholds (13 and 16), significantly different survival
between the obtained subgroups of patients and their capability to
classify most long-term survivors in the best subgroup.

Among advantages, this study is larger than those reported in
the literature32 and reflects the typical patient subgroups that are
routinely referred for GBM MRI examinations. Patients were
recruited in a multicentre setting, with images from different
vendors. However, care was taken to use the same matrix size for
textural analysis.

The main interest of the analysis developed in this article is the
identification of simple heterogeneity parameters of direct
prognostic significance. The subgroup analyses, however, may be
underpowered for characterization using heterogeneity features
alone owing to data scarcity; therefore, a prospective cohort of
patients would most likely be required.

CONCLUSION
We have performed a high-resolution 3D study of GBM het-
erogeneity in order to verify the prognostic value of different

textural features of MRI T1 weighted post-contrast pre-operative
images. The Kaplan–Meyer survival analysis points out the rel-
evance of most of the measures considered as significant pre-
dictors of survival and may help in patient selection for surgical
intervention. Specifically, patients were found to have better
prognosis if their tumour presented a high LRHGE, low RPC,
low entropy, high homogeneity or low dissimilarity. We hope
that these measures alone or combined could be incorporated
into multivariable predictive models of survival for patients
with GBM.
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APPENDIX A

Table A1 includes the definition of the heterogeneity measures
computed in this study. For CM measures, CM (i,j) stands for the

co-occurrence matrix and N is the number of classes of grey levels
taken (in this study, 32). For RLM measures, RLM (i,j) is the run-
length matrix, nr is the number of runs, N is the number of classes
of grey levels andM is the size in voxels of the largest region found.

Table A1. Definition of the heterogeneity measures computed in this study

Type of measure Name Formula

CM Entropy14 2 +
N

i51

+
N

j51

CMði; jÞ×ln½CMði; jÞ�

CM Homogeneity14 +
N

i51

+
N

j51

CMði; jÞ
11 ði2 jÞ2

CM Contrast25 +
N

i51

+
N

j51

CMði; jÞ×ði2 jÞ2

CM Dissimilarity25 +
N

i51

+
N

j51

CMði; jÞ×ji2 jj

CM Uniformity11 +
N

i51

+
N

j51

½CMði; jÞ2�2

RLM LRE7
1

nr
+
N

i51

+
M

j51

RLMði; jÞ×j2

RLM SRE7
1

nr
+
N

i51

+
M

j51

RLMði; jÞ
j2

RLM LGRE7
1

nr
+
N

i51

+
M

j51

RLMði; jÞ
i2

RLM HGRE7
1

nr
+
N

i51

+
M

j51

RLMði; jÞ×i2

RLM SRLRE20
1

nr
+
N

i51

+
M

j51

RLMði; jÞ
i2×j2

RLM SRHGE20
1

nr
+
N

i51

+
M

j51

RLMði; jÞ×i2
j2

RLM LRLGE20
1

nr
+
N

i51

+
M

j51

RLMði; jÞ×j2
i2

RLM LRHGE20
1

nr
+
N

i51

+
M

j51

RLMði; jÞ×i2×j2

RLM GLNU20 1

nr
+
N

i51

�
+
M

j51

RLMði; jÞ
�2

RLM RLNU20 1

nr
+
M

j51

�
+
N

i51

RLMði; jÞ
�2

RLM RPC7

nr

+
N

i51

+
M

j51

RLMði; jÞ×j

CM, co-occurrence matrix; GLNU, grey-level non-uniformity; HGRE, high grey-level run emphasis; LGRE, low grey-level run emphasis; LRE; long run
emphasis; LRHGE; long run high grey-level emphasis; LRLGE; long run low grey-level emphasis; RLM, run-length matrix; RLNU, run-length
non-uniformity; RPC, run percentage; SRE; short run emphasis; SRHGE, short run high grey-level emphasis; SRLRE, short run low grey-level emphasis.
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