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Abstract— A tunable decoupling and matching network (DMN) 

for a closely spaced two-element antenna array is presented. The 

DMN achieves perfect matching for the eigenmodes of the array 

and thus simultaneously isolates and matches the system ports 

while keeping the circuit small. Arrays of closely spaced wire and 

microstrip monopole pairs are used to demonstrate the proposed 

DMN. It is found that monopoles with different lengths can be 

used for the design frequency by using this DMN, which increases 

the design flexibility. This property also enables frequency tuning 

using the DMN only without having to change the length of the 

antennas. The proposed DMN uses only one varactor to achieve a 

tuning range of 18.8% with both return loss and isolation better 

than 10-dB when the spacing between the antenna is 0.05λ. When 

the spacing increases to 0.1λ, the simulated tuning range is more 

than 60%.  

 
Index Terms— Antenna array, compact array, mutual coupling, 

antenna decoupling, antenna diversity, MIMO. 

 

I. INTRODUCTION 

ultiple-input-multiple-output (MIMO) systems, which 

usually require a larger area for the antennas and their 
associated networks, can improve system performance 
compared to single-input-single-output (SISO) systems. 
However, when miniaturizing the MIMO antenna system, the 

mutual coupling between the antennas inevitably becomes 
stronger and the radiation efficiency and diversity of the 
antennas are affected.  

There are two techniques to improve the radiation efficiency 

when strong mutual coupling is present. The first technique 
employs a corporate feed to cancel the reflection coefficient of a 
single antenna and the mutual coupling [1]. The second 
technique uses matching networks to match the mode 

impedances which are also known as the eigenvalues of the 
compact array [2]. The first technique requires the specific 
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design of the spacing between the antenna array elements. The  

 
second technique is more adaptable for different antennas and 
spacings. Since the ports are isolated, the diversity of the 
antenna system is improved [3], [4]. 

Two methods are commonly used in the design of DMNs. In 
the first method, the ports are isolated from each other using the 
inherent characteristics of couplers [5]-[9] and then matched. In 
the second method, the reflection coefficients of different 

eigenmodes are canceled using networks of reactive 
components [10]-[15]. The first method assigns the individual 
eigenmodes to different ports, which causes the bandwidths of 
the ports to differ from each other. The couplers have low loss, 

but occupy a large area. The second method considers all the 
eigenmodes so that all ports have a similar bandwidth, and the 
realization is compact. Both methods yield narrow bandwidth 
due to the inherent high quality factors of some of the 

eigenmodes. The bandwidth is related to the type of elements 
and the element spacing. For example, the 10-dB return loss 
bandwidth of a two-element array with spacing of 0.1λ on a 
small metal ground plane is typically less than 2% [6], while the 

bandwidth of two printed monopoles on a substrate is typically 
around 4% [10]. It is desired to make the center frequencies 
tunable [16]. Recently, reconfigurable DMN for closely space 
antennas were reported, more than one varactor/switch were 

used [17], [18].  
In this paper, a compact DMN with frequency tuning 

capability using a single varactor is proposed. To minimize the 
number of components, the proposed DMN decouples and 

matches the ports simultaneously. More importantly, the center 
frequency is mainly determined by one design parameter of the 
DMN, and therefore the frequency of the array can be made 

tunable without changing the characteristics of the elements 
(e.g. the dipole length). As a proof of concept, two antennas on a 
substrate with a spacing of 0.05λ and a tunable DMN are 
designed and measured. The measured bandwidth is more than 

2.5%, and the frequency tuning range is 18%.  

II. PROPOSED COMPACT DMN DESIGN 

Fig. 1(a) shows the DMN that separately decouples and 
matches the two ports. Various networks can be used in the 
design of this network [5]-[11], [13]-[16]. Fig. 1(b) shows the 
concept of DMN where decoupling network and matching 
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network are combined into a single network [12], [19]. The  
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Fig. 1. (a) DMN with separate decoupling and matching, (b) DMN with 
combined decoupling and matching. 
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Fig. 2. (a) Proposed DMN, (b) mode a (even-mode), (c) mode b (odd-mode). 
 

proposed DMN is shown in Fig. 2(a), which contains fewer 
components compared to the separated decoupling and 
matching networks. The modal impedances of a given array are 
found from the eigenvalues of the impedance matrix [2]. In the 

case of two antennas, the eigenvectors are given by ea=[1, 1]T 

(even mode) and eb=[1, -1]T (odd mode). The corresponding 
modal impedances are Za=Z11+Z12 and Zb=Z11−Z12, from which 
the reflection coefficients Гa and Гb can be obtained as shown in 

Fig. 2. When Гa=Гb, the even-mode and odd-mode powers at 
port 2 have the same magnitude but opposite direction, so that 
the ports are isolated. When the same network is used for port 
matching, Гa =−Гb. The network should thus be designed to 

have the two modes self-matched, i.e. Гa= Гb=0. To achieve this 
requirement, the characteristics of the elements need to be 
carefully adjusted before being decoupled and matched by the 
DMN. The design procedure is as follows: 

1. To match the even-mode in Fig. 2.(b), the elements are 
designed such that: 

 ( )11 12 0Re Z Z Z+ =  (1) 

where Z0 is the chosen system impedance. When monopoles are 
used, the self impedance and mutual impedance in (1) are 

mainly determined by the length of the antenna when the 
spacing is fixed. If (1) is not satisfied, a transmission line or a 
shunt admittance can be used to rotate the reflection coefficient 
to the R=Z0 circle in the Smith Chart.  

2. X1 is then chosen so that the even-mode is matched, i.e. 

 ( )1 11 12ImX Z Z= − +  (2) 

3.  To match the odd-mode, B1 and B2 are determined by 

2 2
0 1

1
1

1

2 2

b b b
Z G X G B

B
X

± −
= −  (3) 
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Fig. 3. Performance with DMNs for wire and microstrip monopoles. 
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Fig. 4. 10-dB bandwidth versus different antenna length for microstrip 
monopoles. 
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 (4) 

where Gb=Re(1/Zb) and Bb=Im(1/Zb). If the susceptances B1, 

and B2 are not realizable, the designer should go back to step 1 
and adjust the antenna parameters and/or the matching network. 
Fig. 3 shows two examples for the wire and microstrip 
monopoles [15] with a spacing of 10 mm (0.05λ) and length of 

40 mm for a design centered at 1.5 GHz. For ease of comparison, 
the bandwidth is defined as the intersection of a return loss and 
an isolation of 10 dB. It is found that the microstrip monopoles 
have a larger bandwidth (~3%) compared to the wire monopoles 

(~0.6%). For a range of microstrip monopole lengths, the 10-dB 
bandwidth and the corresponding value of B1 are shown in Fig. 
4. The bandwidth percentage is with reference to the tuned 
center frequency, and B1 is responsible for frequency tuning, 

and will be discussed in the next section. 
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III. FREQUENCY TUNING OF PROPOSED DMN 

One problem of the mode-based decoupling of closely spaced 

array elements is the resulting narrow bandwidth. In a 
two-antenna system, the reflection coefficient Гb is the main  
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Fig. 5. Reflection coefficients |Γa| and |Γb| together with the return loss and 
isolation of the array for an element spacing of 0.05λ. 
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Fig. 6. Relation between the center frequency of |Γb| and values of B1 and B2. 
 

limitation for both return loss and isolation. The inherent high 
quality factor of mode b, which is determined by the spacing of 

the elements, reduces the bandwidth of Гb. A reduction in the 
element spacing causes a decrease in bandwidth. Fig. 5 shows 
the reflection coefficients | Гa,| and |Гb| as well as the return loss 
and isolation of the array for microstrip monopoles with a  

length of 33 mm and the spacing is 10 mm (0.05λ). As expected 
(refer to Fig. 4), a slightly larger bandwidth is achieved 
compared to Fig. 3, where the monopole length is 40 mm. To 
increase the range of applications, frequency tunability is 

desired. From Fig. 2, the S parameters of the ports are found as  

( )11 22 0.5 Γ Γa bS S= = +  (5) 

( )12 21 0.5 Γ Γa bS S= = −  (6) 

From Fig. 5, it is observed that mode a contributes little 
reflected power over a much larger bandwidth compared to 
mode b. The return loss and isolation are therefore largely 

determined by Гb in (5) and (6). Both the return loss and 
isolation can therefore be tuned by adjusting Гb. 

In the conventional approaches where decoupling network 
and matching network are separated, both networks should be 
tuned to shift the center frequency of Гb. A large number of 

varactors or switches are required [17], [18]. For coupler-based  
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Fig. 7. Frequency tuning achieved by changing the capacitance C1=B1/ω for an 
element spacing of 0.05λ.  
 

DMNs, a broadband coupler [20] and a constant 180º phase 
difference are required [21], which increases the circuit 
complexity and size. In the proposed tunable DMN, only Гb 

needs to be tuned, while X1 in Fig. 2 can remain unchanged. The 
relation between the center frequency of |Гb| on B1 and B2 is 
depicted in Fig. 6. It is observed that the center frequency of |Гb| 
largely depends on B1. According to Fig. 4, the required 

susceptance for an element length of 33 mm is B1=0.0267 S, 
which is equivalent to a capacitance of C1=2.83 pF at 1.5 GHz. 
Fig. 7 shows the frequency response for different values of C1. 
When C1 is varied from 1.1 pF to 5 pF [22], a return loss of 

10-dB is achievable over a frequency range of 20%, while a 
return loss of 15-dB bandwidth is possible over a range of 8%. 
Note that the antenna spacing is only 0.05λ. According to 
simulations, the covered bandwidth can be further increased to 

achieve a 10-dB return loss frequency range of 60% and a 
15-dB return loss range of 15% if an element spacing of 0.1λ is 
used instead. The DMN affects the radiation pattern at each 
frequency, as described in [15]. However, we have found that 

the radiation pattern does not change significantly in the 
frequency range of interest here. The loss in the DMN is most 
significantly affected by the Q factor of the reactive components. 
The loss due to the varactor mainly contributes to the loss in the 

odd-mode. For larger arrays, more varactors would be required 
[5], [14], [18]. 

IV. EXPERIMENTAL RESULTS  

To verify the concept, a tunable two-antenna system with a 
centre frequency of 1.5 GHz was implemented on FR-4 
substrate. Microstrip monopoles were chosen as elements, with 

a spacing of 10 mm (0.05λ). The ground plane size and element 
lengths are varied such that (1) is fulfilled. A TRL calibration 
was used to measure the S parameters of the array, and the 

measured values were used to design the DMN with the aid of 
Agilent’s Advanced Design System (ADS). The photograph of 
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the fabricated DMN and antennas is shown in Fig. 8. The 
connection lines were used for impedance transformation so 
that (1) is satisfied. The length of the connection line was 

determined by the element spacing and the physical size of the  

 
Fig. 8. Photo of the tunable decoupled and matched antenna pair. 
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Fig. 9. Measured S parameters of the proposed tunable decoupled and matched 
antennas. 
 

varactor. Then the corresponding components were determined 
using equations (2)-(4). Murata inductors (Series LQW15 
L1=4.7 nH, L2=6.2 nH) were used to implement X1 and B2, while 

a Skyworks varactor (SMV1233-079LF) was utilized to provide 
an adjustable capacitor representing B1. The varactor has a 
measured capacitance range from 0.8 pF to 5 pF when the 
control voltage decreases from 15 V to 0 V. The tunable 

frequency response is shown in Fig. 9. If larger capacitances 
were possible, the upper limit could have been extended even 
further. The achievable frequency range for 10-dB return loss 
and isolation covers from 1.39 GHz to 1.68 GHz (18.8%), while 

the corresponding range for 15-dB return loss and isolation was 
from 1.44 GHz to 1.64 GHz (13%). For each tuning frequency 
sample, the 10-dB bandwidth is between 2.5% and 5%. 

V. CONCLUSION 

A compact and tunable decoupling and matching network for 

closely spaced antennas is presented. Both wire and microstrip 
monopole elements were studied and microstrip monopoles 
were used to demonstrate the concept. A single varactor is used 
to tune the matching and the isolation of the ports. The realized 

10-dB tuning range is around 18.8% and the 15-dB tuning range 
is around 13%. 
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