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Tunable diffraction-free array in 
nonlinear photonic crystal
Dongmei Liu1,3, Dunzhao Wei1, Yong Zhang1, Zhenhua Chen1, Rui Ni1, Bo Yang1, 

Xiaopeng Hu1, Y. Q. Qin1, S. N. Zhu1 & Min Xiao1,2

Diffraction-free beams have attracted increasing research interests because of their unique 
performances and broad applications in various fields. Although many methods have been developed 
to produce such beams, it is still challenging to realize a tunable non-diffracting beam. Here, we report 
the generation of a tunable diffraction-free array through second-harmonic generation in a nonlinear 
photonic crystal, i.e., a 2D periodically-poled LiTaO3 crystal. In such a crystal, the second-harmonic 
wave is engineered by properly designing the domain structure based on the Huygens-Fresnel principle. 
The characteristics of the generated diffraction-free array including its period, propagation length, and 
wavelength can be tuned by simply changing the input wavelength. Our observation not only enriches 
the diffraction-free optics, but also has potential applications for photolithography and imaging.

Di�raction, originating from the Helmholtz equation, has long been considered as a universal characteristic 
of all classical waves. However, Durnin et al. reported in 1987 an exact di�raction-free mode solution of the 
Helmholtz equation1,2, which has a transverse intensity distribution independent of the propagation distance. 
�e �rst experimental demonstration was a nearly non-di�racting Bessel beam1. Since then, investigations 
of such di�raction-free beams and their applications in metrology3, nonlinear optics4, atomic optics5, optical 
micro-manipulation6–8, medical imaging9, electron microscope10, and wireless optical communications11 have 
become an active research area. Besides this Bessel beam, other non-di�racting solutions12,13 including the Airy 
beam14,15 were also discovered. So far, the di�raction-free beams are mainly generated through linear optical 
methods, such as Fabry-Pérot interferometer16, spatial light modulator17, holographic process18, di�ractive phase 
elements19, axicon20 and surface plasmon polariton (SPP)21,22. �e experiments using nonlinear optical tech-
niques are less reported23–25. In most of these methods, the performances of the generated di�raction-free beam, 
such as its wavelength, beam size, and propagating length, are �xed in the devices. �e few tunable methods 
require certain complicated instruments like spatial light modulators17. In this Letter, we propose and demon-
strate a novel nonlinear optical method to produce a tunable di�raction-free array of beams in a single nonlinear 
photonic crystal, i.e., a two-dimensional (2D) periodically-poled LiTaO3 (PPLT) crystal.

PPLT crystals have been extensively investigated because they can realize highly-e�cient frequency conver-
sions through the quasi-phase-matching (QPM) technique26. Since the concept of nonlinear photonic crystal, i.e., 
2D PPLT crystal, was proposed by Berger27 in 1998, numerous interesting phenomena have been discovered such 
as non-collinear second-harmonic generation (SHG)28, nonlinear Čerenkov radiations29–31, and nonlinear Talbot 
self-imaging32. Recently, domain engineering in nonlinear photonic crystals for spatial light modulation attracts 
an increasing research interest. Scientists have developed various domain structures to realize dual-focused 
second-harmonic (SH) spots33, conical SHG34,35, optical orbital angular momentum states36,37, beam shaping38,39, 
and superfocusing40. By utilizing the domain-engineering method based on the Huygens-Fresnel principle, we 
can design the desired domain structure to realize certain tunable di�raction-free SH array in a single PPLT chip. 
Our results not only extend the concept of di�raction-free optics, but also open a door for broader applications of 
non-di�racting beams in photolithography and imaging.

Results
Theory. �e idea is intrigued by the free-space Bessel beam, in which the di�raction-free �eld can be decom-
posed into plane-wave components with wave vectors on a cone1. Similarly, two plane waves can form a di�rac-
tion-free array with a cosine transverse pro�le, which has been demonstrated in SPPs21. Such cosine beam can be 
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considered as the 2D counterpart of the Bessel beam21. Here, we produce a tunable di�raction-free array through 
a SHG process in a 2D PPLT crystal as shown in Fig. 1a. �e coupled-wave equation can be written as
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where E1 and E2 are the electrical �elds of the fundamental wave and SH wave, respectively; k2 is the wave vector 
of the SH wave; K is the coupling coe�cient; and t(x, y) is the structural function of the PPLT crystal. We seek a 
di�raction-free cosine solution for the SH wave (Fig. 1b), which can be written as

=E x y A ik y k x( , ) exp( )cos( ) (2)y x2 2 2

Here, A is a constant, k2x and k2y are the x and y components of the SH wave vectors, respectively. �e electrical 
�eld distribution along z direction is uniform in this case. �e cosine beam described by Eq. (2) can be decom-
posed into two plane-wave components (Fig. 1c). Obviously, such solution has a transverse intensity pro�le inde-
pendent of the propagation direction y, which represents a di�raction-free SH array. Based on Eqs (1) and (2), we 
use the nonlinear Huygens-Fresnel principle33 to engineer the domain structure t(x, y) for the realization of such 
beam (see Methods for the details). As well known, it is impossible to experimentally realize an ideal Bessel beam 
because it carries in�nite energy1. Alternatively, one can generate a Gaussian-Bessel beam (i.e. the Bessel solution 
modulated by a Gaussian envelope) in experiment, which preserves the di�raction-free properties in the paraxial 
approximation41. Because the non-di�racting solution in Eq. (2) su�ers from the same problem, we introduce the 
cosine-Gaussian beam21 in the experiment.

�e cosine beam consisting of two SH components can be understood through another view point, i.e., QPM. 
In a typical QPM con�guration, SHG can be greatly enhanced by using the reciprocal vectors in a PPLT crystal to 
compensate for the phase mismatch between the fundamental wave and the SH wave26. Luckily, there exist abun-
dant non-collinear reciprocal vectors in a 2D domain structure, which can realize non-collinear QPM SHG27,28 
as shown in Fig. 2a. For instance, in a squarely-poled LiTaO3 crystal as shown in Fig. 1a, the reciprocal vectors 
(Fig. 2b) are de�ned by

π

=
+

Λ
G

m n2
(3)m n,

2 2

Figure 1. Experimental con�guration. �e experimental setup is shown in (a). �e input laser propagates 
along the y-axis of the squarely-poled LiTaO3 crystal. �e generated SH pattern is recorded by a CCD camera. 
�e di�raction-free cosine beam in (b) can be decomposed into two components (c).
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where the subscripts m and n denote the orders of the reciprocal vector along the longitudinal and transverse 
directions, respectively. Λ is the period of the domain structure. �e QPM condition under non-collinear con�g-
uration (Fig. 2a) requires

− − =

� � ��

k k G2 0 (4)m n2 1 ,

where k1 and k2 are the wave vectors of the fundamental and SH waves, respectively. Interestingly, Gm,n and its 
mirror-symmetrical vector Gm,−n can simultaneously generate two SH waves as shown in Fig. 2a, which can be 
considered as the decomposed components of the cosine beam in Eq. (2). �ey interfere with each other and 
result in a di�raction-free SH array as shown in Fig. 1b and c. Considering that the two SH components of the 
cosine beam have an in-between angle of 2θ  (decided by Equation (4)), the transverse pro�le of the SH intensity 
(Fig. 1b) can be easily deduced to be
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Obviously, the period of the obtained SH array is

=
Λ

n
T
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From Fig. 1c, the propagation distance of the di�raction-free beam can be written as

= θL D/ sin (7)max

where D is the diameter of the SH component. Unlike other di�raction-free schemes which are usually �xed by 
the sample structures, a given PPLT structure can actually generate di�raction-free arrays with varied periods 
and propagation distances by involving di�erent Gm,n. �is can be easily realized by changing the input wave-
length or tuning the operation temperature. In our scheme, the prerequisite to realize di�raction-free is to sat-
isfy the non-collinear QPM condition. If not ful�lled, one cannot obtain the di�raction-free array because no 
non-collinear SH beams are e�ciently generated.

Experimental demonstration of the tunable diffraction-free array. �e PPLT crystal for the gener-
ation of a di�raction-free SH array is designed to have a squarely-poled structure with a period of Λ  =  5.5 µ m 
(Fig. 1a). A Ti:Sapphire femtosecond laser serves as the input fundamental �eld, which can be continuously tuned 
from 690 nm to 1050 nm in wavelength. �is fundamental beam is �rst reshaped to produce a near-parallel beam. 
�en, it travels along the y direction with its polarization parallel to the z-axis of the crystal (Fig. 1a). �e coordi-
nate system is set according to the crystal axis. Under this experimental con�guration, the involved nonlinear 
optical coe�cient d33 is the biggest one in the LiTaO3 crystal. A short-pass �lter is placed a�er the crystal to block 
the fundamental �eld. �e SH patterns near the PPLT crystal are magni�ed by a 100× objective lens with a 
N.A. =  0.7 and then recorded by a CCD camera. By moving the objective lens along the y direction, we can inves-
tigate the di�ractive characteristics of the SH patterns.

�e input laser is �rst set to be 906 nm. At this wavelength, the non-collinear SHG can be phase-matched with 
the reciprocal vectors G1,3 and G1,−3 (Fig. 2). At the output face of the PPLT crystal, one can observe a SH array 

Figure 2. Noncollinear QPM. �e di�raction-free cosine beam can be understood from the non-collinear 
QPM con�guration (a). �e reciprocal vectors Gm,n and Gm,−n can produce two non-collinear SH waves, which 
can be considered as the decomposed components of the cosine beam. �e reciprocal vectors in a squarely-
poled PPLT crystal are shown in (b).
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with a period of 0.92 µ m as shown in Fig. 3a, which is well consistent with the theoretical period of 0.917 µ m  
from Eq. (6) with |n| =  3. �e corresponding numerical simulation based on the Huygens-Fresnel principle is 
shown in Fig. 3d. �e period of the simulated SH pattern is 0.93 µ m. �e small deviation may result from that the 
dispersion relation of the LiTaO3 crystal used in the calculation does not perfectly match our sample. By moving 
the objective lens along the y direction, we can record the SH patterns at di�erent observation planes. Figure 4a 
shows the measured evolution of the SH carpet within y =  200 µ m, which clearly presents the di�raction-free 
performance. As propagating along the y direction, the intensity of the SH array decreases because of the 
cosine-Gaussian mode; however, the array period does not change. �e numerical simulation in Fig. 4b also con-
�rms such di�raction-free behavior. For simplicity, we have assumed a plane-wave illumination in simulations, 
which cannot predict the attenuation of the SH intensity along the propagation direction in Fig. 4a. As shown 
in Fig. 4c and d, the standard deviation from the theoretical di�raction-free array increases from 1.37 ×  10−4 to 
2.29 ×  10−4 as the experimentally generated cosine-Gaussian beam propagates from y =  25 µ m to y =  198 µ m. It 
should be noted that the SH array presents such di�raction-free performance only near the center of the whole 
picture (within the area of ~100 µ m ×  10  µ m in our experiment) because of the Gaussian modulation of the Bessel 
solution.

Next, we change the input laser wavelength to 928 nm and 944 nm, respectively, to tune the di�raction-free 
array. �e fundamental beam power is kept at 50 mW for all the wavelengths. As shown in Fig. 3b and c, the SH 
arrays change dramatically comparing to the pattern excited by a 906 nm fundamental beam (Fig. 3a). �e period 
of the SH pattern at the pump wavelength of λ  =  928 nm is 1.38 µ m (Fig. 3b), which is one quarter of the domain 
period. When further increasing the input wavelength to λ  =  944 nm, the array period becomes 2.75 µ m (Fig. 3c). 
�e dependence of the period of the di�raction-free array on the wavelength originates from the involvement 
of di�erent reciprocal vectors, and therefore G1,2/G1,−2 (Fig. 2) at 928 nm and G1,1/G1,−1 (Fig. 2) at 944 nm corre-
spond to 1/4 and 1/2 of the domain period, respectively, according to Eq. (6). �e numerical simulations based 
on Huygens-Fresnel principle for these two cases are shown in Fig. 3e and f, which are well in agreement with 
the experimental results. Our measurement shows that the non-di�racting SH pattern can be observed at a dis-
tance of up to 4.5 mm away from the sample with an input wavelength of 944 nm. �is is slightly shorter than 

Figure 3. Di�raction-free SH arrays generated by di�erent fundamental wavelengths. �e measured (a–c) 
and simulated (d–f) cross sections of the di�raction-free SH arrays at certain observation planes. �e periods 
of the array in the experiment are 0.92 µ m, 1.38 µ m, and 2.75 µ m at the fundamental wavelengths of 906 nm 
(a), 928 nm (b) and 944 nm (c), respectively, which are well consistent with the corresponding numerical 
simulations.
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the theoretically predicted propagation length of 4.8 mm from Eq. (7) with D =  400 µ m. From the experimental 
images (Fig. 3a–c), one can easily see that the intensity of the SH pattern increases when the laser is tuned to a 
longer wavelength, which is mainly caused by the more e�ective nonlinear coe�cient. Usually, a lower-order Gm,n 
has a higher e�ective nonlinear coe�cient, which can realize a higher SHG e�ciency. At a non-QPM wavelength, 
we can hardly observe a di�raction-free array pattern in the experiment because the prerequisite condition has 
been broken.

In principle, for each pair of Gm,n and Gm,−n in a 2D PPLT crystal, one can always �nd a suitable wavelength 
to satisfy the non-collinear QPM condition and then to generate the di�raction-free array. However, this might 
not be realizable in experiment because (1) the high-order reciprocal vector may have an e�ective nonlinear 
coe�cient which is too small to e�ciently generate the SH waves; (2) the above prediction is only valid under the 
paraxial approximation, which rules out its applicability to the reciprocal vectors with big subscript n. To design 
a practical PPLT crystal for generating such non-di�racting arrays, it is important to suppress the collinear SHG 
process because the unwanted background could completely ruin the di�raction-free beam pattern. Usually, the 
input wavelength should be chosen as far as possible away from the QPM wavelength for the collinear SHG 
process.

Discussion
In conclusion, we have presented the generation of a tunable di�raction-free array, i.e. cosine-Gaussian beam, 
through non-collinear QPM SHG processes in a nonlinear photonic crystal. Beyond the previously demonstrated 
techniques, this work has extended the generation of di�raction-free beam in two fronts. First, the introduction 
of SHG produces a non-di�raction array at a shorter wavelength, which can have potential applications in photo-
lithography and optical imaging. �e resolution of the beam is improved by a factor of 2 due to SHG. Second, one 

Figure 4. Di�raction-free “carpets”. Experimental (a) and theoretical (b) di�raction-free “carpets” along the 
propagation direction are obtained at a 906 nm input laser. (c) and (d) show the deviations of the measured 
beam pro�le from an ideal non-di�racting array at propagation distances of 25 µ m and 198 µ m, respectively.
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can easily tune several characteristics of the di�raction-free cosine-Gaussian beam in a single chip, which makes 
it more convenient to utilize it in integrated photonic devices. Here, we have demonstrated the wavelength- and 
range-tunable non-di�racting array in a PPLT crystal by using varied input wavelength. Actually, there are more 
tools to modulate and optimize the generated array in the PPLT crystals. For example, by utilizing the excel-
lent thermo-optical, electro-optical and acoustic-optical performances of the LiTaO3 crystal, the di�raction-free 
array can be modulated by changing the operation temperature, and applying an electrical or acoustic �eld. �e 
performance of the non-di�racting array can be further improved through additional domain engineering tech-
niques. For instance, it has been experimentally shown that chirped, ring-shaped and quasi-periodic structures 
can greatly enhance the tunable properties of the QPM processes42,43. One can utilize these structures to further 
tune and modify the non-di�racting array. Most importantly, such nonlinear photonic crystals provide a useful 
integrated platform to manipulate the propagations of di�raction-free beam arrays and other spatial light beams 
for their potential applications in photolithography and optical imaging.

Methods
Analytical expressions of the fundamental field E1 and the SH field E2 for numerical simulations.  
�e numerical simulations are performed by using the Huygens-Fresnel principle33, in which each part of the 
crystal is considered as a point source which emits the SH wave. �ere is a π  phase-shi� between the SH waves 
generated from positive and negative domains44. �e input fundamental beam propagates along the y axis of the 
crystal (Fig. 1). Under the slowly-varying-envelope approximation, the evolutions of the fundamental �eld E1 and 
the SH �eld E2 in the squarely-poled LiTaO3 crystal can be described by
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where µ ε ω ω=K d2 0 0 1 2 33 is the coupling coefficient with d33 being the nonlinear coefficient of the crystal. 
∆ = −k k k22 1 is the phase mismatch between the fundamental wave and the SH wave. From Eq. (8), one can 
write the di�erence equations as
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Here, ∆ x and ∆ y are the space steps. �en, we apply the �nite di�erence method45 to calculate SHG process in the 
2D PPLT crystal. It should be noted that the above equations are valid in the paraxial approximation.
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