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Abstract: The rapidly changing and wide dynamic range of combustion temperature in scramjet
engines presents a major challenge to existing test techniques. Tunable diode laser absorption
spectroscopy (TDLAS) based temperature measurement has the advantages of high sensitivity, fast
response, and compact structure. In this invited paper, a temperature measurement method based
on the TDLAS technique with a single diode laser was demonstrated. A continuous-wave (CW),
distributed feedback (DFB) diode laser with an emission wavelength near 1.4 µm was used for
temperature measurement, which could cover two water vapor (H2O) absorption lines located at
7153.749 cm−1 and 7154.354 cm−1 simultaneously. The output wavelength of the diode laser was
calibrated according to the two absorption peaks in the time domain. Using this strategy, the TDLAS
system has the advantageous of immunization to laser wavelength shift, simple system structure,
reduced cost, and increased system robustness. The line intensity of the two target absorption lines
under room temperature was about one-thousandth of that under high temperature, which avoided
the measuring error caused by H2O in the environment. The system was tested on a McKenna
flat flame burner and a scramjet model engine, respectively. It was found that, compared to the
results measured by CARS technique and theoretical calculation, this TDLAS system had less than
4% temperature error when the McKenna flat flame burner was used. When a scramjet model engine
was adopted, the measured results showed that such TDLAS system had an excellent dynamic range
and fast response. The TDLAS system reported here could be used in real engine in the future.

Keywords: tunable diode laser absorption spectroscopy (TDLAS); double-line thermometry; temperature
measurement; McKenna burner; scramjet model engine

1. Introduction

Fast and stable measurement of the temperature and the concentration of combustion
products in the combustion field is crucial for improving the combustion efficiency of the
engine, optimizing the combustion control strategy, and reducing pollutant emissions [1–3].
At the same time, the complexity of the combustion process in engines, which involves
high temperature, high pressures, and strong turbulence, poses a high challenge for mea-
surement techniques [4]. However, traditional contact temperature measurement methods
have the disadvantages of long response time, single-point measurement, and different
degrees of interference to the combustion field [5,6], which cannot meet the existing testing
requirements. Therefore, a non-contact combustion field temperature and gas concentration
detection method with fast and high accuracy has an important value in the combustion
diagnosis of engines.

The non-contact method analyzes the temperature change trend in the combustion
field through the response of acoustic [7] or optical [8] signals. However, the acoustic
methods are easily affected by the complex test environment and products within the
combustion field. With the merits of high sensitivity, online measurement, and fast re-
sponse [9–23], optical methods are based on various interaction modes of light and matter
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to obtain the temperature and concentration, including coherent anti-Stokes Raman spec-
troscopy (CARS) [24] and planar laser-induced fluorescence (PLIF) [25]. At present, these
studies have been preliminarily applied to flame temperature and plenty of optics elements,
and a clean operating environment, which are often difficult to meet at the test site.

The rapid development of near-infrared narrow linewidth diode lasers in recent years
has facilitated the applications of tunable diode laser absorption spectroscopy (TDLAS) in
flame measurement [26–30]. The TDLAS technique was widely used in combustion field di-
agnosis due to its advantages of high sensitivity, strong stability, and fast response [31–33].
The double-line temperature measurement method in TDLAS can effectively obtain the
temperature of flame by detecting the changes in the two characteristic spectral absorp-
tion lines. For example, Farooq, A. et al. used the carbon dioxide (CO2) absorption lines
at 3633.08 cm−1 and 3645.56 cm−1 to achieve the detection of flame temperature in a
shock tube [34]. However, water vapor (H2O) has a wider spectral line coverage, and its
content is higher than other products in the combustion process, so its absorption lines
are more suitable for temperature measurement. Chang Liu [35] and Li Fei [36] et al.
selected the absorption lines of H2O at 7185.597 cm−1 and 7444.350 + 7444.370 cm−1

(combined) and carried out temperature tests for flat flame burner and scramjet, respec-
tively. Qu Zhechao et al. [37] proposed an in-reactor H2O temperature test based on
calibration-free wavelength modulation spectroscopy (CF-WMS) using the 7153.74 cm−1

and (7154.35 + 7154.59 cm−1) combined absorption lines. Furthermore, some other similar
works of TDLAS-based temperature measurement were also reported [38–40]. However,
due to the limited tuning range of the diode laser, two diode lasers are usually required to
cover two spectral lines. In addition, wavenumber detection devices such as etalons are
added to the system to avoid errors caused by laser wavenumber shifts. These problems
greatly increase the complexity and instability of the processing of the test system.

In this invited manuscript, a diode laser with a center wavelength of 1397.8 nm
capable of simultaneously covering two H2O absorption lines was used for the temperature
measurement in the TDLAS system based on the direct absorption method. The use of a
single laser has the advantages of a simple system structure, reduced cost, and increased
system robustness. Furthermore, the spectral line intensity of the absorption lines with
wavenumbers of 7153.749 cm−1 and 7154.354 cm−1 was as low as 10−7 cm−2atm−1 under
room temperature, which is about one ten thousandths of the spectral line intensity in the
high-temperature region. Therefore, when the optical path length in the air is less than
0.1 times the effective absorption range, the absorption of H2O in the test environment
during the measurement can be neglected. In addition, two absorption lines covered by
one diode laser were used to calibrate the laser wavelength, which overcomes the error
caused by the wavelength shift of the laser and requires no additional wavelength detection
device. Experimental measurements were carried out for the flat flame burner and the
scramjet model engine, respectively. The TDLAS system showed excellent temperature
measurement performance. The system is expected to be applied in the combustion field
diagnosis of real engines in the future.

2. Selection of H2O Absorption Lines

The appropriate selection of spectral absorption lines is essential for temperature
measurement in TDLAS [41]. H2O is one of the main products of alkane fuel combus-
tion and contains a large number of spectral absorption lines in the near-infrared band.
Compared to lasers and detectors in the mid-infrared band, diode lasers and detectors in
the near-infrared band are mature and inexpensive and do not require operation at low
temperatures [42,43], which is beneficial to practical applications. In addition, lasers in
the optical fiber communication band (1.25 µm to 1.65 µm) can be transmitted over long
distances. Selecting absorption lines in this band can keep the instrument away from the
test site, to avoid the impact of the on-site interference on the TDLAS system. Based on the
above analysis, H2O spectral absorption lines in the optical fiber communication band will
be selected in this research.
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According to the HITRAN 2012 database [44,45], a large number of H2O absorption
lines exist near 1.3 µm in the overtone region. Many of them have a spectral line intensity
of ~10−4 cm−2atm−1. The selection principle of absorption lines can be considered from
the following aspects. Firstly, the selected absorption lines cannot be interfered with by
other absorption lines. Secondly, the absorption coefficient of the selected lines should
meet the test requirements. When the effective optical path length was determined, the
absorption rate mainly depends on the absorption coefficient. Therefore, to obtain a high
signal-to-noise (SNR) ratio, when the optical path length is less than 10 cm, the absorption
coefficient should not be lower than 10−4 cm−1. Finally, to ensure the high sensitivity of
the system for temperature measurement, the energy difference between the low transition
states of the two selected spectral lines should not be lower than 700 cm−1.

In this experiment, two H2O absorption lines located at 7153.749 cm−1 (L1) and
7154.354 cm−1 (L2) were selected as the target lines for temperature measurement using
double-line thermometry. The absorbance of H2O, methane (CH4), carbon monoxide (CO),
and CO2 which may be present in the test environment at different temperatures was
analyzed at concentrations of 30%, 30%, 5%, and 30%, respectively. It can be found from
Figure 1 that CH4 and its combustion products of CO and CO2 do not interfere with the
target absorption lines. Furthermore, wide fluctuations in temperature can cause changes
in spectral line broadening, so the effect of temperature on spectral linewidth must be
considered. If the absorption lines are too close to each other, it will lead to undesirable test
results. The trends of the absorbance of the target absorption lines at different temperatures
in Figure 1 were obtained from simulations based on the Voigt line function. It can be found
that the target absorption lines in the range of 500 to 2500 K do not interfere with each other,
which proves the applicability of the target absorption lines for temperature measurements.
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According to the principle of double-line pyrometry, the ratio of the intensity of the
two absorption lines is the same as the ratio of the spectral absorbance integral value, as
shown in Equation (1):

(
A1

A2

)
T
=

−ln
(

It
I0

)
1

−ln
(

It
I0

)
2


T

=

(
(SPLX)1
(SPLX)2

)
T
=

(
S1

S2

)
T
= R (1)

where Ai is the integral value of the spectral absorbance corresponding to the different
absorption lines (i = 1, 2); I0 and It are the light intensities before and after crossing the
area to be measured, respectively; P is the pressure [atm]; T is the temperature [K]; L is the
effective light path length [cm]; X is the gas concentration; Si is the spectral intensity of
the different absorption lines (i = 1, 2) [cm−2atm−1]; R is the absorption line intensity ratio.
In addition, the measurement sensitivity of temperature can usually be expressed as the
differentiation of the ratio of spectral line intensity R against the temperature T, as shown
in Equation (2): ∣∣∣∣dR/R

dT/T

∣∣∣∣ = (hc
k

)
|∆E′′ |

T
(2)

where h, c, and k are Planck constant [J·s], lightspeed [m/s], and Boltzmann constant [J/K],
respectively; ∆E” is the low state energy level difference [cm−1].

The main parameters of wavenumber (v), line strength (S), lower state energy (E”), air-
broadened half-width (γair), and self-broadened half-width (γself) for the target absorption
lines are listed in Table 1. The wavenumber difference between the target absorption line
pairs is greater than 0.605 cm−1, which can be covered simultaneously in a single scan
period by a continuous wave distributed feedback (CW-DFB) diode laser. Therefore, the
laser wavenumber can be calibrated using the absorption peak position. The energy level
difference between the two absorption lines is ∆E” = E1 − E2 > 700 cm−1, which can
meet the test requirements. At room temperature and standard pressure, the absorption
coefficient of the target absorption lines is about 10−7 cm−1, which is much lower than
10−4 cm−1 in the test region. Therefore, when the absorption coefficient in the air is much
smaller than the region of interest, the interference caused by H2O in the environment can
be ignored, which can ensure a high test accuracy of the system.

Table 1. Comparison of the main parameters of the absorption spectral lines (T = 1200 K).

v (cm−1) S (cm−2atm−1) E” (cm−1) γair (cm−1atm−1) γself (cm−1atm−1)

7153.749 1.849 × 10−3 2552.857 0.027 0.184

7154.354 4.868 × 10−3 1789.043 0.022 0.145

Figure 2 shows the variation trend of the spectral intensity of the two H2O absorption
lines with temperature. In the temperature range of T < 400 K, the intensity of selected
absorption lines is much lower than 10−4 cm−2atm−1, so the H2O absorption in the envi-
ronment can be neglected. When the temperature is greater than 500 K, the spectral line
intensity S(T) > 2.7 × 10−4 cm−2atm−1, which can ensure that the measured signal has a
high SNR and meet the temperature measurement requirements. According to the sensitiv-
ity calculation Equation (2), it can be known that the greater the energy level difference ∆E”
produces the higher the temperature sensitivity. As shown in Figure 3, the sensitivity value
of this TDLAS system is greater than 0.47 in the entire temperature range (500 to 2500 K),
which ensures high sensitivity for the test system to temperature measurement.
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3. Experimental Setup

The schematic of the reported TDLAS system is depicted in Figure 4. A CW-DFB
diode laser (NEL NLK1E5GAAA) emission at 1397.80 nm was chosen as the excitation
source. The laser was driven by a laser controller (Healthy Photon DFB-2000) whose drive
signal was derived from a triangular wave generated by a signal generator. The laser beam
was collimated and sent to the burning area of the flat flame (McKenna standard burner).
The collimator (f = 30 mm) was fixed on the z-axis stage by a clamp, and fine adjustment
down to ~10 µm can be achieved by an adjustable platform. A gold-coated reflector
(Thorlabs CM508) was used to refract the laser beam back to a photodetector for twice
absorption. The signal from the photodetector (Thorlabs DET20C/M) was finally collected
by a data acquisition card (DAQ, Healthy Photon USB2066) and uploaded to the computer.
A narrow-band filter (Thorlabs FB1400-12) was placed in front of the photodetector to
reduce disturbances such as the spontaneous emission spectrum generated during the
combustion process. The laser beam was adjusted to pass through the center of the flat
flame burner as it travels across the combustion area to ensure an adequate absorption path.

The McKenna burner [46–48] was chosen in the experiment to generate a flat flame for
the test. The certified gas CH4 and air were used as the fuel and accelerant for the flat flame
burner, respectively. The flow rates of CH4 and air were controlled separately by two mass
flow meters to achieve the change of the burner equivalence ratio. The mass flow meter
has a systematic error of about 3%, which affects the accuracy of the equivalence ratio
setting slightly. The flat flame burner is capable of producing a disc-shaped flame [40] with
a burning area of approximately 60 mm in diameter. The Cartesian coordinate system was
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constructed with the center of the flat flame burner as the coordinate origin. The direction
along which the flame burns was defined as the z-direction.
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Figure 4. Schematic diagram of TDLAS sensing system.

The output wavenumber of the diode laser can be controlled using temperature tuning
and current tuning. In this experiment, the CW-DFB laser can cover the two selected
absorption lines simultaneously in a single scanning period, and its scanning range was
shown in Figure 5. The wavelength tuning coefficient of the current was 0.023 cm−1/mA.
In the investigations, the laser temperature was set to 18.5 ◦C, and the current range of the
sawtooth wave was from 25 to 90 mA. The two absorption peaks correspond to currents and
powers of 49 mA, 72 mA, 12.55 mW, and 18.16 mW, respectively. However, the long-term
operation of the laser and environmental changes can cause a wavenumber shift, which
affects the accuracy of the TDLAS system. Usually, an additional device of etalon [49],
wavelength meter [50], etc., are used to monitor the changes in laser wavenumbers. In this
manuscript, the relative positions of target absorption lines were used to determine the
interval of scanning wavenumbers. Therefore, the wavelength tuning coefficient for the
scanning current can be corrected timely. According to this coefficient, the trend of the
absorption ratio as a function of time can be obtained. The system sampling rate determines
the resolution of wavenumber calculation, and the resolution of wavenumber increases
with the increase in the sampling rate. In this experiment, the sampling rate of the system
was set to 1 MSa/s, which is about 1000 times that of the triangular wave signal.
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4. Results and Discussion

The temperature of the flat flame burner at the equivalence ratios (ϕ) of 1.0, 1.1, 1.2,
1.3, and 1.4 was measured by this TDLAS method with a scanning rate of 1 kHz. The CH4
flow rate was set to 1.733 L/min, and the airflow rate was set to 16.50 L/min, 14.96 L/min,
13.70 L/min, 15.00 L/min, and 11.80 L/min, respectively.

Figure 6 shows the measured signal using the TDLAS system when the equivalence
ratio of CH4 was 1.0 and the height (z) was 15 mm. The transmitted light intensity It in
the time domain was captured by the photodetector after the laser beam passes through
the burning region. The initial light intensity I0 was obtained by baseline fitting with It.
According to the positions of the absorption peaks of H2O, the wavenumber calibration of
the light intensity signals can be carried out. Based on Beer–Lambert law the absorbance of
the two lines was obtained as a function of wavenumber. Using the Voigt multi-peak fitting
function, the absorbance was fitted, and the results were shown in Figure 6b. Comparing
the fitted absorbance curve with the test data, the residual was shown in Figure 6c, and the
standard deviation was 0.02. The integrated area A corresponding to the absorption peak
was obtained, respectively, and the corresponding temperature values can then be derived
using the principle of double-line thermometry [26–28].
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By gradually changing the height of the laser beam across the burning region in the
z-axis direction, the flame temperatures were measured as shown in Figure 7a. It can
be found that the flame temperature firstly increased with increasing height and then
gradually stabilized at ~2000 K. Compared with the values obtained using the CARS
method and theoretical calculation [51], it was found that the relative errors of the TDLAS
results were less than 4% and were all distributed within the error band. Subsequently, the
laser height was fixed at 15 mm to measure the flame temperature distribution at different
equivalent ratios. The obtained results in Figure 7b showed that the flame temperature
decreases as the equivalent ratio increases. CH4 fuel in the rich combustion state did not
burn sufficiently, so less heat was released, and the temperature decreased. The temperature
measured by TDLAS for different combustion equivalent ratios followed the same trend as
the temperature measured by CARS technique and theoretical calculation [47]. The error
bar was as small as 70 K at the same equivalent ratio, which may be caused by the flame
jitter in the combustion process.

To further verify the performance of such TDLAS technique, temperature measure-
ment was performed on a scramjet model engine. The schematic diagram is shown in
Figure 8, with the laser beam passing through the tail flame region directly. Kerosene was
used as the fuel for the scramjet model engine, and the combustion products included
H2O, CO, and CO2. The combustion process in a scramjet model engine is much more
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violent than in a flat flame burner. Therefore, to guarantee the test stability, the reflector was
removed, and the frequency of the triangular wave was increased to 3 kHz. Figure 9 shows
the trend of temperature variation in the tail flame region of the scramjet model engine.
With the decrease in fuel equivalence ratio, the tail flame temperature gradually decreased
from 2250 K to 900 K. The TDLAS system was able to respond quickly to temperature
changes by adjusting the fuel equivalent ratio in 1.5 s intervals. Compared to the McKenna
flat flame burner, the temperature testing results from the scramjet model engine have
suffered high jitter noise, which can be attributed to the strong turbulent flow field in the
tail flame region. This TDLAS system had shown an excellent response capability and a
wide temperature measuring range during the measurement of the scramjet model engine.
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5. Conclusions

A TDLAS system based on a single diode laser was developed for temperature mea-
surement with a large dynamic range and high measurement accuracy. A CW-DFB diode
laser with an emission wavelength of near 1.4 µm was selected to cover the two H2O
absorption lines located at 7153.749 cm−1 and 7154.354 cm−1, simultaneously. The use of a
single laser has the merits of a simple system structure, reduced cost, and increased system
robustness. In addition, two absorption lines covered by one diode laser can be used to
calibrate the laser wavelength, which overcomes the error caused by the wavelength shift
of the diode laser and requires no additional wavelength measurement device. The line
intensity of these two absorption lines under standard conditions (room temperature and
1 atm) with 10−7 cm−2atm−1 is about one ten thousandths of the spectral line intensity in
the high-temperature region (500 to 2500 K). If the optical path length in air is less than
0.1 times the interesting region, the measurement error in the TDLAS system caused by
environmental H2O is avoided. The wavenumber interval of the target absorption line
pairs was 0.605 cm−1 and the low-state transition energy level difference was greater than
700 cm−1, which guarantees the TDLAS system has a high resolution, SNR, and response
capability. Firstly, such a TDLAS system was used to measure the temperature of the flat
flame burner at different equivalence ratios and different flame heights. Compared with the
results obtained by the CARS technique and theoretical calculation, the measurement errors
of temperature were less than 4% and the variation trend of temperature was consistent.
Finally, this TDLAS system was used for temperature testing on a scramjet model engine,
which demonstrated a good dynamic range and fast response. In the future, this reported
TDLAS system can be applied to multi-parameter testing of complex flow fields in scramjet
engines, aero-engines, and other combustors.
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