

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 27, 2022

Tunable Floating-Point Adder

Nannarelli, Alberto

Published in:
IEEE Transactions on Computers

Link to article, DOI:
10.1109/TC.2019.2906907

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Nannarelli, A. (2019). Tunable Floating-Point Adder. IEEE Transactions on Computers, 68(10), 1553-1560.
https://doi.org/10.1109/TC.2019.2906907

https://doi.org/10.1109/TC.2019.2906907
https://orbit.dtu.dk/en/publications/b5ebfd86-38b9-4230-8e93-ecc8b9cde65c
https://doi.org/10.1109/TC.2019.2906907

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

1

Tunable Floating-Point Adder

Alberto Nannarelli, Senior Member, IEEE

Abstract—In this work, we address the design of an adder in Tunable Floating-Point (TFP) precision. TFP is a variable precision

format in which a given precision can be chosen for a single operation by selecting a specific number of bits for significand and

exponent in the floating-point representation. By tuning the precision of an algorithm to the minimum precision achieving an acceptable

target error, we can make the computation more power efficient. In previous work, we introduced a unit for TFP multiplication. Here, we

focus on floating-point addition.

Index Terms—Floating-point, addition, IEEE rounding, energy efficiency.

✦

1 INTRODUCTION

Deep Learning (DL) is currently one of the hottest applica-
tion fields for arithmetic processors. DL algorithms execute
a huge number of operations, predominantly multiplica-
tions and additions, and resort to dedicated hardware, GPUs
[1] or FPGAs [2], to accelerate the execution.

Due to the size of the datasets in DL, the processing time
and the energy necessary is very large [3]. To increase the
power efficiency, the computation is migrated from double-
precision (binary64 in IEEE 754-2008 standard [4]) to single
(binary32) and half (binary16) precision. In addition to the
IEEE formats, several other formats have been introduced,
such as the Google’s Brain-FP format [5], or the Intel’s
“Flexpoint” format [6].

Although floating-point operations are more complex to
implement in hardware than fixed-point, the advantage is
that the precision scaling is handled by the unit and it is
transparent to the programmer (no operand shifting or re-
scaling).

In [7], we introduced the Tunable Floating-Point (TFP),
a format in which the precision of operands and results
can be chosen for a single operation by selecting a specific
number of bits for the significand and the exponent in the
floating-point representation. By tuning the precision of a
given algorithm to the minimum precision achieving an
acceptable target error, we can make the computation more
power efficient.

In [7], we described the implementation of a TFP mul-
tiplier. In this work, we present a Tunable Floating-Point
adder (TFP-add) to complete, along with the multiplier, a
TFP unit which can be used as part of on-chip accelerators.
The TFP unit can handle significand precision from 24 to 4
bits, and exponent from 8 to 5 bits. The maximum precision
(m = 24, e = 8) is that of binary32 (single-precision), and
the tunable range includes binary16 (m = 11, e = 5) and
Google’s Brain-FP format (m = 8, e = 8).

The contributions of this paper are: 1) The revisitation
of the “double-path” adder [8] implementing the baseline

• A. Nannarelli is with the Dept. of Applied Mathematics and Computer
Science (DTU Compute), Technical Univ. of Denmark, Lyngby, Denmark.
E-mail: alna@dtu.dk

binary32 adder. 2) The design of the TFP adder providing
correct rounding when reducing the precision of the signif-
icands – the main contribution. 3) An example showing the
benefits of the Tunable Floating-Point for a simple neural
network used to approximate a generic function and the
error-energy trade-offs.

2 TUNABLE FLOATING-POINT

The floating-point representation of a real number x is

x = (−1)SX ·MX · bEX x ∈ R

where SX is the sign, MX is the significand or mantissa
(represented by m bits), b is the base (b = 2 in the follow-
ing), and EX is the exponent (represented by e bits). The
representation in the IEEE 745-2008 standard [4] has sig-
nificand normalized 1.0 ≤ MX < 2.0 and biased exponent:
bias= 2e−1 − 1.

We introduced the Tunable Floating-Point (TFP) repre-
sentation in [7]. In TFP, we only consider dynamic ranges
from and below the binary32 representation. We support
significand’s bit-width m from 24 to 4 and exponent’s bit-
width e from 8 to 5.

We assume that the TFP representation is normalized
to have the conversions compatible with the IEEE 754-2008
standard. Therefore, the implicit (integer) bit is not stored.
Subnormals support is quite expensive and, therefore, we
opted to flush-to-zero TFP numbers when the exponent is
less than the minimum representable in e bits.
TFP supports three types of rounding:

- RTZ Round-to-zero (truncation);
- RTN Round-to-the-nearest where half ulp (unit in

last position) is always added before the rounding;
- RTNE Round-to-the-nearest-even (on a tie) which is

the default mode roundTiesToEven in IEEE 754.

For the rounding, we use the terminology of [8] summarized
for reference in Fig. 1.

We also developed a TFP simulator [7] consisting in a
library of C functions and implementing TFP operations.
Each operation is implemented with a standard FP algo-
rithm by limiting the computation of the significand bits to
m and applying the specified rounding mode. The simulator

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

2

L G R T
︷ ︸︸ ︷

X . . . • • • • • • • • •
◦

Round(X) . . . • • •

Fig. 1. Rounding. From the left: L last bit; G guard bit; R round bit; T
sticky bit; ◦ rounding position.

provides the error double-precision vs. TFP in key points of
the algorithm and generates test patterns for the hardware
verification.

3 BASELINE FP ADDER

The algorithm for floating-point addition can be summa-
rized in the following steps [8]:

1) Subtract exponents D = EX − EY .
2) Align significands MX , MY by shifting right D

positions the significand with the smallest exponent.
3) Add, or subtract, the significands and determine the

sign of the result.
4) Normalize and round the result.

Among the different implementations of the FP addition
algorithm, we select as the baseline FP adder a “double-
path” architecture derived from the schemes of [8] and [9].
The architecture is sketched for the significand part in Fig. 2
for binary32. The significands MX , MY and MZ include the
integer bit (“1” if the biased exponent is larger than zero).
The exponent difference (D) is performed at the beginning
of the FP operation to determine the alignment of the two
operands and to set which path will produce the correct
result.

The CLOSE path is taken when the effective operation
is subtraction (EOP=1) and the exponent difference is one
(D=1) or zero (D=0). Therefore, the select signal CLS in Fig. 2
is set as:

CLS = EOP AND ((D=1) OR (D=0))

The FAR path is taken for all additions and subtractions
when D > 1 (CLS=0).

The main advantage of the double-path implementation
is that only one variable shifter is in the critical path so
that the FP-addition latency is reduced. The unit can be
pipelined in two stages as suggested in [8]. In the following,
we explain how this is done for the baseline unit. The
architectures in the CLOSE and FAR paths are shown in Fig. 3
and Fig. 4. With respect to the implementation of [8], the
unit to swap the operands is not shared but moved in the
FAR path to reduce the latency in the CLOSE path.

3.1 CLOSE Path

The CLOSE path is taken when the effective operation is
subtraction (EOP=1) and the exponent difference is one
(D=1) or zero (D=0). The architecture of the CLOSE path is
shown in Fig. 3. We explain next how it works.

Since in the CLOSE path the exponent difference is one
or zero, operands alignment can be done by shifting one
position to the right the significand of the number with the
smallest exponent when D=1. This alignment is done by the

1 0
MUX

Mz

CLS

24 24

24

Mx My

2424

C L O S E F A R

Fig. 2. Double-path architecture (significands only).

X Y

bit invert

Mx My

5

10 MUX

Incrementer

L O D

0 1
MUX

0 1
MUX

SHIFT X SHIFT Y

>>1 >>1

S

SHAMT

RND

NEG

24 24

24

carry−around
adder

LG

cin

left−shift

25

25

25 25

2424

S (CLOSE)

Fig. 3. CLOSE path (binary32).

two 2:1 multiplexers “MUX” in Fig. 3. The control signals
are set as:

SHIFT X = sign(D) AND (D=1)

SHIFT Y = sign(D) AND (D=1)

Determining the sign of the result before the actual
subtraction is expensive because it requires to compare the
two significands when the exponent is the same (D=0) to
decide which operand to invert.

An alternative is to complement a fixed operand, for
example MY , and then complement the subtraction result
if negative. Since two’s complementation requires a full
precision addition, we opted for a one’s complement adder,
or carry-around adder [8], followed by conditional bit com-
plementation, implemented by an array of XOR gates. These
are the blocks indicated as “carry-around adder” and “bit
invert” in Fig. 3. The complementation of the bits of MY is
marked by the circle at the output of the MUX.

Next, a leading-one-detector (LOD) detects the position
of the leading one for subtractions producing leading zeros.
The position (SHAMT) is then used in the variable left-
shifter to normalize the result.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

3

In the CLOSE path, rounding is required when D=1 and
the result is normalized. In contrast, variable shifting is
required when the result is not normalized. Since rounding
and shifting are mutually exclusive, they are implemented
in parallel paths in Fig. 3. The selection is done by the signal

RND = MSB(S) AND (D=1)

For the rounding, a simple incrementer is used. The
result is rounded up when the last (L) and the guard (G)
bits are both “1”: LG = 1.

The blue horizontal line in Fig. 3 shows the optimal
placement of the pipeline registers in the CLOSE path.

3.2 FAR Path

All additions and subtractions with exponent difference
larger than one are executed in the FAR path (Fig. 4).

Due to many positions shifts that may be necessary to
align operands and to the fact that the shifter is expensive,
one barrel shifter is used. To shift the significand with the
smallest exponent in one shifter, it is necessary to swap
the operands. This is done by the “swap” and “right-shift”
blocks in Fig. 4. The swap is activated when EY > EX :
sign(D) = 1.

The “right-shift” block does preserve the shifted out bits
(22 least-significant bits, or LSBs) which are used to compute
the sticky bit1.

The most-significant part, 26 bits including guard (G)
and round (R) bits, is conditionally inverted in case of
subtraction (EOP=1).

The rounding is combined with the addition to re-
duce the latency. The sum of FX and FY is performed in
a compound adder depicted by the two carry-propagate
adders, or CPAs, followed by the MUX in Fig. 4. Block
CPA0 in Fig. 4 computes FX + FY = S0, CPA1 computes
FX + FY + 1 = S1. The selection between the two sums is
done according to the rounding.

To explain the rounding, we separate between the case of
effective operation addition (EOP=0) and effective operation
subtraction (EOP=1).

3.2.1 FAR Path Rounding: Addition

When the effective operation is addition, we obtain for the
sum FX + FY a rounding pattern similar to the one in Fig. 1.

For the round-to-the-nearest-even mode (roundTiesTo-
Even), we round up (select S1) if

MUXC(0) : G(R ∨ T ∨ L) = 1 (1)

where we use “∨” as a compact way for the logic OR to
avoid confusion with the “+” used for addition. However,
if the sum result is larger than 2.0, we have an overflow
(OVF=1) and the result is not normalized. In this case, we
need to shift the sum one position to the right2 (block “shift-
1 L or R” in Fig. 4) and perform the rounding as follows. By
considering L∗, the bit to the left of bit L, we round up if:

MUXC(1) : L(L∗ ∨G ∨R ∨ T) = 1 . (2)

That is, the guard bit is L and the last bit is L∗.

1. The sticky bit T is needed to detect a tie. T is computed by ORing
the trailing bits of the result beyond bit R (Fig. 1).

2. The exponent need to be incremented by one when OVF=1.

X

bit invert

SWAP

Mx My

D
5

signD

S

S1S0

10 MUX

shift−1
L or R

MUXR

OVF SH1L

sticky bit
calc.

22 (LSBs)26 (MSBs)

48

24

T

24

0 1

Y

24

L,G,R EOP

EOP

rounding
control 1

control 2

rounding

OVF SH1L M
U

X
C

2

right−shift

26 26Fx Fy

cinCPA0 cinCPA1

ADD1

ADD1

(FAR)

26 26

26

Fig. 4. FAR path (binary32).

Expressions (1) and (2) are evaluated in block “rounding
control 1” in Fig. 4 from LGR (and L∗) extracted from
FX + FY and the sticky bit T. The output is the 2-bit MUXC
signal.

By indicating with Si the bit of weight 2i of the sum, the
overflow detection is done by

OVF = (S11 · S01) ∨ (S11 · MUXC(1) · MUXC(0))

where the second term is used for correction when the round
up bit causes overflow.

Based on the overflow, either MUXC(0) or MUXC(1) is
selected to determine the result between S0 and S1

MUXR = (OVF · MUXC(1)) ∨ OVF · MUXC(0)) .

3.2.2 FAR Path Rounding: Subtraction

When the effective operation is subtraction (EOP=1), the
significand with the smallest exponent Y may be shifted and
its 26 most-significant bits (MSBs) are one’s complemented
to form FY . To perform two’s complement, a “1” must
be added in the least-significant position of Y (before the
shifting). However the complement’s “1” is propagated to
the 26 MSBs (FY) only if the shifted out bits of Y are all
zero. Consequently, we can use the sticky bit T to determine
if we need to add the complement’s “1” to −FY . Therefore,
the condition to add a “1” to the LSB of −FY is

ADD1 = EOP AND T . (3)

Consequently, for EOP=1, ADD1 is the complement of T.
Since FX is a normalized 24-bit significand represented in 26

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

4

1) Normalized result:
L G R T

︷ ︸︸ ︷

S . . . • • • • • • • • •
ADD1 •

◦
Round(S) . . . • • •

2) Not normalized result:
L G R T

︷ ︸︸ ︷

S . . . • • • • • • • • •
ADD1 •

◦
Round(S) . . . • • • •

Fig. 5. Rounding for subtraction in the FAR path. ◦ rounding position.

bits, and its G and R bits are zero, the ADD1 bit is appended
in the LSB of FX .

The result of subtraction can be not normalized if
FX ≃ 1.0, for example, 1.0− 0.125 = 0.875 < 1.0. In this
case, the result must be shifted one position to the left,
and the exponent decremented by one. This condition is
signaled by SH1L=1. Therefore, also for subtraction we need
to consider two rounding positions, as in Fig. 5.
1) The result is normalized (SH1L=0).
Comparing expression (1) with the bit positions in Fig. 5
(top), if G = 1 either there are non-zero bits shifted out
(T=1), or we have to add ADD1 (T=0). Therefore, we have
to check for G only. However, there is an extra case when
round up is needed: L=1 (odd LSB), G=0, R=1 and T=0. In
this case, R + T = 2 produces G=1 and the tie condition.
Consequently, the result must be rounded up.
Summarizing, when SH1L=0 the round up condition is

MUXC(0) : G ∨ LGRT = 1 . (4)

2) The result is not normalized (SH1L=1).
In this case, the rounding position is in R as in Fig. 5
(bottom) and the last bit is G. The condition for the round
up is

MUXC(1) : G(R ∨ T) ∨RT = 1 . (5)

Also expressions (4) and (5) are evaluated in block
“rounding control 1” in Fig. 4 and multiplexed with (1) and
(2) (selection by EOP) in the 2-bit MUXC signal. The shifting
condition is determined by

SH1L = (S10 · S1−1) ∨ (S00 · S0−1 · MUXC(1) · MUXC(0))

Combining overflow and left-shifting, mutually exclu-
sive conditions, the select bit MUXR is

SHRL = OVF ∨ SH1L

MUXR = (SHRL · MUXC(1)) ∨ (SHRL · MUXC(0))

In Fig. 4 the rounding control is split in two blocks because
the OVF and SH1L signals are available at a later time.

3.3 The Common Path

The double-path adder is completed by functional units
which are common to both the the CLOSE and FAR paths.
Beside the exponent handling (selection and update) and
the sign computation, we need extra hardware to check for
subnormals at the input and in the result. These are the
functional units.

weight 2−i 20 21 22 23 24 25 26 27 . . .

m = 24 L G R T
︷ ︸︸ ︷

S . . . • • • • • • • • . . .
RW . . . ◦ ◦ ◦ ◦ •

m = 21 L G R T
︷ ︸︸ ︷

S . . . • • • • • • • • . . .
RW . . . ◦ • ◦ ◦ ◦

Fig. 6. Rounding in variable position for m = 24 and m = 21. RW holds
the position of the rounding bit, marked as •.

• A unit to detect if the exponent of the operands (EX

and EY) is zero and set the integer bit in MX/Y

accordingly.
• A unit to check is the sum MZ is a subnormal and

in case it is, sets MZ = 0 and EZ = 0. The unit also
checks for ±∞ and sets MZ , EZ , and SZ accordingly.

4 TFP ADDER

We now consider how to augment the binary32 FP adder of
Section 3 to support TFP for significant ranges from m=24
(binary32) to m=4. The precision of the significand m can be
changed on a cycle basis by setting m in a control register.

The TFP adder can also be used to convert a standard
format (binary32, binary16) to TFP, or vice-versa, by setting
the output precision m and adding “0” to the number to be
converted.

The main challenge to implement the adder in TFP is
that the rounding must be done in a variable position. This
is different from the case of the fused multiply-add where
the operands are pre-shifted, depending of the exponent,
and the rounding is done in a fixed position [8].

4.1 FAR Path

One way to round in a variable position is to shift both
operands by 24-m bits and perform the rounding in fixed
position in the least-significant bits of the result. However,
the significand of the smallest number in the FAR path
needs to be further shifted for alignment. The two shift-right
operations can be combined by right-shifting the significand
of the smallest number by (24-m)+D position. However,
while m is known at the beginning of the operation, D

(exponent difference) computation is in the critical path, and
adding D+m to form the control of the shifter increases the
delay of the critical path in the first stage of the adder.

One alternative way is to use a reference bit-vector to
hold the rounding position. We refer to this bit-vector as
“Rounding Word”, or RW. The RW is a bit-vector in which
all bits are zero except the one in the rounding position. A
simple decoder is used to generate RW depending on m.

Fig. 6 shows two example scenarios for m=24 (binary32)
and m=21. In the figure, we assume the result S be nor-
malized and the rounding position (bit of weight 2−24 for
m=24) is marked by “•” in RW.

The RW is used to extract one bit from S by a simple
AND-OR network. Fig. 7.a illustrates how the extraction of
bit G is done for a 4-bit example. Clearly, for a full RW
extraction, 22 bits for m ∈ [4, 24], 22 AND gates and a tree
of OR gates are required.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

5

0 1 0 0RW:

L G R TS:

G

0 10 0RW:

Fx 0 0LL*

L* L C 0

C

a) b)

Fig. 7. AND-OR networks (4-bit examples): a) to extract bit G. b) to
append bit C after bit L.

weight 2−i

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 . . .

L G R
X: 1. • • • • • • • • • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

Y: 0. 0 0 0 0 1 • • • • • • • • • • 0 0 0 0 0 0 0 0 0 . . .
MASK 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 . . .

AND 0 0 0 0 0 0 0 0 0 0 0 0 0 • • • 0 0 0 0 0 0 0 0 0 . . .

Fig. 8. Example of sticky bit calculation for m = 11 and D=5.

By shifting (hard-wired) RW, we can also extract the L∗,
L, and R bits by using the AND-OR network of Fig. 7.a.

The sticky bit (T) calculation is trickier. Suppose that
m=11 and Y (significand with the smallest exponent) has
to be shifted 5 positions to the right for alignment. The
example is sketched in Fig. 8. The first two rows display
X and the shifted Y significands, respectively. To extract
the bits necessary for the sticky bit computation (bits of
weight 2−13, 2−14, 2−15 in the figure), we can use a 24-bit
vector with m-MSBs set to “1” and the remaining bits set to
zero. This bit-vector, called MASK, is generated by another
decoder depending on m. By shifting MASK to the right
by m+2 positions3 we obtain the pattern displayed in the
third row of Fig. 8. As a final step, by applying the AND-OR

network of Fig. 7.a to Y and MASK we obtain the sticky bit T.
The bottom row in Fig. 8 displays the bits used to compute
T (input to the OR tree).

The sticky bit calculation requires an additional shifter
and a 48-bit AND-OR network. However, since MASK de-
pends only on the precision m, the shifting as no impact on
the latency and little impact on the power dissipation if m
is not changed frequently.

Fig. 9 shows where this second shifter is placed in the
augmented FAR path to support TFP. The AND-OR network
is labeled “extract bit” in the figure. The extraction of bits
L∗, L, G, and R is done by combining the AND-OR networks
for X and Y and followed by the computation of the L∗, L,
G, R bits of the result (block “extract LGR” in Fig. 9).

So far, we have described how to obtain the relevant
bits for the rounding. Next, we describe how to perform the
actual rounding for the FAR path.

The architecture is similar to the one of Fig. 4 with a few
modifications. The round up bit (in CPA1) and ADD1 bit
must be placed in a variable position. This is done in two
steps (refer to Fig. 9):

1) Both X and Y are masked (logic AND) with MASK
to preserve only the m-MSBs:

FX = XAND MASK , FY = Y AND MASK

3. The two extra positions are necessary to exclude the G and R bits.

: : :
OR

: : :
AND

: : :
AND

S1S0

bit invert

SWAP

Mx My

EOP

10 MUX

signD

shift−1
L or R

MUXR

OVF SH1L

26 (MSBs)

shift−rightD

5

48

24

T

T EOP

rounding
control 1

control 2

rounding

OVF SH1L M
U

X
C

2

shift−right
5

48

m

48

MASK

extract bit

MASK

EOP

extract
LGR

*L LGR

CPA0 CPA1

4

26 26

26

24

X

Y

24

24

24 24FyFx

26

26

26

C

append bit

C

24

>>2

Y MASK

(shifted)

RW

S (FAR)

3

2

1

RWRW

Fig. 9. Architecture of the TFP adder FAR path. Dashed boxes highlight
augmentations with respect to Fig. 4.

This operation removes G, R and trailing bits in Y

and has no effect on X , unless the significand has
higher precision (conversion from longer formats).

2) The round up bit (U=1) and ADD1 (renamed C) are
appended after the L bit of FX and FY , as shown in
Fig. 10.

Bit C, or ADD1, is computed in block “rounding control 1”
in a different way from Section 3. The objective is to inject a
carry in position L in CPA1:

C = EOP ∨ EOP(G ∨RT)

For addition (EOP=0), C is always set to “1”. For subtraction
(EOP=1), C can become the LSBs when the result needs to
be left-shifted. To append the round up bit (U) in the correct
position we simply OR the bits of FY to RW (rounding
word). To append C, we need first to mark RW with the
value carried by C (AND gates), then, the resulting bit-
vector is ORed with the bits of FY . The two level network to
append C is sketched in Fig. 7.b (for 4 bits), and the actual
26-bit network is labeled as “append bit” in Fig. 9.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

6

CPA0 CPA1

L L
FX : . . . • • • C 0 . . . • • • C 0
FY : . . . • • • 0 0 . . . • • • 1 0
S0: . . . • • • C 0 S1: . . . • • • • 0

Fig. 10. Position where bits U and C are appendend to FX and FY .

5

10 MUX

L O D

S

SHAMT

RND

24 24

24

left−shift

25

CPA

: : :
AND

U=LG

extract
LG

RW

S

RW

2424

4

S (CLOSE)

24

Fig. 11. Additions in the second stage of the CLOSE path in TFP-add.

4.2 CLOSE Path

As for the CLOSE path, the modifications are limited to the
extraction of bits L and G, and appending the round up bit
in the second stage of the CLOSE path. The result needs to be
rounded up if LG=U=1, and U is ANDed with RW to form
a bit-vector with a “1” in the rounding position, or a all-zero
bit-vector. The rounding in the CLOSE path is illustrated in
Fig. 11 (blocks “extract LG” and “AND”).

4.3 Rounding in Variable Position: Summary

Table 1 summarizes how the rounding is done once the right
bits L, G, R, and T are extracted (Fig. 6).

FAR path CLOSE path
EOP=0 EOP=1 leading 0’s

OVF G(R∨T∨L)=1 SHRL G∨LGRT=1
no round LG=1

OVF L(L∗∨G∨R∨T)=1 SHRL G(R∨T)∨RT=1

TABLE 1
Round-up conditions for TFP-adder.

4.4 The Common Path

The TFP adder is completed by the exponent and sign
handling blocks. The top-level view of the TFP adder is
shown in Fig. 12. A decoder provides the rounding word
(RW) and the mask (MASK) to implement the TFP operation
to the CLOSE and FAR paths. The figure does not include the
sign computation and the units to determine the integer bit
of MX and MY .

The exponent is set to the one of the number with
the largest exponent and later adjusted depending on the
necessary normalization of the result. The unit “condition
detect” (“cond. det.”) in Fig. 12, determines if the result is
a subnormal or plus/minus infinity. In this cases, MZ is
flushed to zero and the exponent EZ is set accordingly.

Subnormals are flushed to zero. If any of the inputs is
a subnormal, its significand is flushed to zero while the
exponent difference is computed. If the result of the addition
is a subnormal, MZ and EZ are flushed by the multiplexers
at the bottom of Fig. 12.

masked 2:1 mux

23

0 1

RW

MASK

decoder

exp. diff.

0 1
mux signD

D

Mx My

1 0

F A RC L O S E

Mz

2424

CLS

24 24

24

exp. update

mux0 1
mux

000...000000...000

OVF SH1L

SHAMT

Ex Ey m

8 8 5

8

Ez

cond.
det.

SUBN SUBN

INFTY

2424

Fig. 12. Top-level view of the TFP adder (except sign computation).

binary32 TFP difference
max. delay [ps] 950 980 < 1 FO4
AREA(1) 6,200 8,200 +32%
Total power(2) 9.45 10.76 +14%

(1)[NAND2 equiv.], (2)[mW] at 1 GHz

TABLE 2
Post-synthesis comparison between binary32 and TFP adders (RTNE).

5 HARDWARE IMPLEMENTATION

For the implementation of the TFP adder we opted for a 45
nm CMOS library of standard cells by using commercial
synthesis and place-and-route tools (Synopsys). The FO4
delay4 for this low power library is 64 ps and the area of
the NAND-2 gate is 1.06 µm2.

We set as the target clock period a delay of 15 FO4 which
is reasonable for a pipelined FP-unit. Since 15 FO4 ≃ 1.0 ns,
the target throughput is 1 GFLOPS for a single adder.

The architecture of the TFP adder (TFP-add) of Fig. 12,
supporting the IEEE 754 roundTiesToEven (RTNE) rounding
mode, is pipelined in two stages, with pipeline registers
placed as indicated in Fig. 9, Fig. 11 and Fig. 12 by the blue
horizontal lines.

For comparison purposes, we also implemented the
baseline binary32 double-path adder (B32-add), supporting
RTNE, of Fig. 2, Fig. 3 and Fig. 4.

A post-place-and-route comparison of the implemented
units is reported in Table 2. Both units meet the timing
constraint of TC = 1.0 ns.

For both units, the delay of the critical path is considered
the same, since the difference of a few pico-seconds is less
than 1 FO4 delay. Table 3 reports the timing paths in the
four parts (two stages and the CLOSE and FAR paths) of
the TFP-add. All timing paths are close to 1 ns because the
synthesizer uses the available slack to minimize the area
and the power dissipation. The critical path originates in
the second stage of the FAR path.

The area overhead for the TFP-add is about 32% and it
is mostly due to the parts labeled 1 – 4 (zones) in Fig. 9
and Fig. 11. The area and power dissipation overheads are

4. A 1 FO4 delay is the delay of an inverter of minimum size with a
load of four minimum sized inverters.

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

7

CLOSE (Fig. 11) COMMON FAR (Fig. 9)

stage 1

exp. diff.ւ ց
shift mux SWAP
CA adder shift-right
bit invert bit invert

extract LGR

974 ps 963 ps

stage 2

OR array
LOD CPA1
(SHAMT) → exp. update ← (SH1L)

mux EZ

976 ps 980 ps

TABLE 3
Timing paths in TFP-add (critical path in boldface).

AREA(1) % Power(2) %
Zone 1 480 7.7 51 0.5
Zone 2 340 5.5 216 2.3
Zone 3 390 6.3 687 7.3
Zone 4 360 5.8 143 1.5
decoder 112 1.8 1 0.0
regs. RW+MASK 288 4.6 2 0.0
MUX MZ 80 1.3 98 1.0
Sum 2050 33.1 1200 12.7

(1)[NAND2 equiv.], (2)[µW] at 1 GHz

TABLE 4
Overheads in TFP-add with respect to the binary32 adder.

detailed in Table 4. In addition to the four zones 1 – 4 ,
extra area is due to the decoder, the pipeline registers to
hold RW and MASK and the extra gates to mask the result
MZ in the mux of Fig. 12. The area overhead in Table 4 (33%)
is partly compensated by other blocks in the TFP-add (32%
overhead in Table 2.

The power dissipation is estimated by running post-
layout simulations (Synopsys VCS) on random generated
binary32 operands for the TFP-add and the B32-add. The
overhead for the power dissipation, also in Table 4, is limited
to about 13% in the four zones. The smaller overhead with
respect to the area is due to the reduced switching activity in
the decoder and in the barrel shifter, shifting the same bit-
vector MASK of the same amount if the precision m does
not change. In the registers holding RW and MASK, the
power dissipation is limited to the leakage power because
the registers are clock-gated unless m is changed.

To evaluate the trends for power dissipation when the
precision m is scaled, we created traces from the TFP sim-
ulator for matrix multiplication which is the most common
operation in machine learning algorithms.

Matrix multiplication consists of dot-products, i.e., mul-
tiplications followed by additions. We assume a 10 × 10
square matrix size with elements of 24-bit dynamic range.
The FP numbers are represented by exponent e = 8 and
variable significand precision: m = {24, 20, 16, 14, 11, 8, 6}.
We consider four cases:

1) TFP multiplication followed by B32-add.
2) TFP multiplication followed by TFP-add.
3) binary32 multiplication followed by B32-add.
4) binary32 multiplication followed by TFP-add.

The average power dissipation in the TFP-add and B32-
add are reported in Table 5 and the trends shown in Fig. 13.

Since the TFP-add is obtained by adding functional
blocks to the B32-add, clearly, additions of the same

CASE 1 CASE 2 CASE 3 CASE 4
m TFP-B32 TFP-TFP ratio B32-B32 B32-TFP ratio
24 8.89 10.11 1.14 8.90 10.12 1.14
20 8.47 9.29 1.10 8.91 9.75 1.09
16 7.85 8.22 1.05 8.90 9.24 1.04
14 7.48 7.59 1.01 8.89 8.89 1.00
11 6.87 6.71 0.98 8.56 8.21 0.96
8 6.15 5.73 0.93 7.67 6.96 0.91
6 5.70 5.08 0.89 6.84 5.99 0.88

Pave [mW] measured at 1 GHz.

TABLE 5
Average power dissipation for matrix multiplication for cases 1–4.

 5

 6

 7

 8

 9

 10

 6 8 10 12 14 16 18 20 22 24

TFP-mul

B32-mul

m

TFP-add

B32-add

P
ave

TFP-TFP

B32-TFP

TFP-B32

B32-B32

Fig. 13. Trends of average power dissipation in adders for matrix multi-
plication.

operands result in higher power dissipation for the TFP
unit, as shown in Table 2. However, the TFP-add produces
results of arbitrary precision m correctly rounded, while the
B32-add produces binary32 results. As m is scaled, the extra
bits in the binary32 representation of intermediate results
produced by the B32-add cause the computation to consume
extra power. The trend is more evident when the addends
are produced by the binary32 multiplier (values � in Fig. 13).
For precisions below m=11, the TFP-add is more power
efficient than the B32-add for matrix multiplication.

6 TFP AND DEEP LEARNING

Neural Networks (NNs) typically contain a very large num-
ber of parameters (weights wi) and are usually trained
iteratively over vast amounts of data. After training, the
optimal weights are determined and the NN is ready to
classify new input data (inference).

Fig. 14 shows the architecture for the two-hidden-layers
NN used as example to illustrate the properties of TFP. The
NN is used to interpolate a function y = f(x) approximat-
ing the distribution of some sample points in the XY-plane.
More detail on the example is given in [10].

We apply TFP to the operations in the NN of Fig. 14 for
both training and inference, and we evaluate the trade off
precision vs. error and power dissipation. Differently from
[10], both the TFP multiplier (TFP-mul) and the TFP-add im-
plement round-to-the-nearest unbiased rounding (RTNE).

Table 6 reports the trade off for training the NN with
a “cosine-like” distribution for several TFP precisions. The
table lists the approximation relative errors (ǫave, ǫmax) of
the interpolated function with respect to the training points,

0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2019.2906907, IEEE
Transactions on Computers

8

x

2p
2

2p
3

2p
4

p1

2

p1

3

p1

4

y

2p
1

p1

1

0

j

1

j,i

2

j
W

W

W

input layer hidden layer 1 hidden layer 2 output layer

Fig. 14. Neural network with two hidden layers (depth=2).

m e ǫave ǫmax Padd Pmul Ptot ratio
24 8 0.12 0.29 8.18 15.90 24.08 1.00
20 8 0.12 0.29 7.83 14.04 21.86 0.91
16 8 0.12 0.27 7.34 11.86 19.20 0.80
14 8 0.18 0.44 7.03 11.00 18.03 0.75
11 5 0.11 0.26 6.58 9.97 16.55 0.69
9 5 0.25 0.57 6.27 8.74 15.01 0.62
7 5 0.25 0.58 5.98 8.03 14.01 0.58
5 5 0.25 0.58 5.59 6.97 12.55 0.52

Pave [mW] at 1 GHz.

TABLE 6
Relative errors and average power dissipation for TFP training.

the average power dissipation (for addition, multiplication
and total), and the ratio to the binary32 total dissipated
power of the scaled precision runs.

The ratios in Table 6 show that the power dissipation
drops linearly as m is scaled to about 50% for m=5, e=5.
Therefore, finely tuning the precision, as in TFP, may signif-
icantly improve the performance of the training with respect
to standard-precision formats.

Moreover, TFP can be advantageous also in the inference
that usually requires lower precision than the training. A
NN with two hidden layers has three different weights’
levels: w0

j , w1

ji, and w2

j (Fig. 14). In TFP, the precision can
be adjusted depending on the level.

In the next experiment, we estimate the performance of
several combinations of the precision m={24, 16, 8} (e=8)
for the classification of points within a given distance from
the interpolated curve/function (more detail is given in
[10]). Due to the approximation error (value of weights),
out of 1,000 randomly distributed points in the XY-plane, 55
result miss-classified (about 5%). Table 7 reports the quan-
tization error of the reduced precision weights as NMC

quant:
number of miss-classified points due to quantization. In
the table, the first three columns indicate the precision
in the levels of the NN and the last columns the corre-
sponding power dissipation. The best trade off is probably
for (m0,m1,m2)=(16,8,8) with NMC

quant=4 points and power
savings of about 30%. Instead, the largest power reduction
(40%, ratio= 0.61) is reached for (m0,m1,m2)=(16,8,8) with
NMC

quant=11 points.

7 CONCLUSIONS

In [7], we presented the Tunable Floating-Point representa-
tion to reduce precision and dynamic range of FP numbers
for applications tolerating some error. In [7], we also pre-
sented architectures to implement TFP multiplication.

m0 m1 m2 NMC
quant Padd Pmul Ptot ratio

24 24 24 - 8.43 16.82 25.25 1.00
16 16 16 6 7.44 12.86 20.30 0.80
16 16 8 6 6.76 11.79 18.55 0.73
16 8 16 6 6.92 12.40 19.32 0.77
16 8 8 4 6.33 11.35 17.68 0.70
8 16 16 9 7.23 11.00 18.23 0.72
8 16 8 14 6.55 9.76 16.32 0.65
8 8 16 9 6.65 10.46 17.11 0.68
8 8 8 11 6.11 9.33 15.44 0.61

Pave [mW] at 1 GHz.

TABLE 7
Classification errors (quantization) and average power dissipation for

inference in TFP.

The main contribution of this work is the design of a TFP
adder based on the double-path architecture. The greatest
challenge in the design of the TFP adder is to provide
unbiased rounding to-the-nearest in a variable position with
a limited overhead in delay, area and power dissipation. The
adopted hardware solutions guarantee no timing overhead
with respect to a binary32 adder, and a reasonable overhead
in power dissipation, reduced when the precision is scaled.

The main advantage of TFP is the capability to tailor
the necessary precision in different parts of an algorithm to
obtain a higher power efficiency. Moreover, TFP precision
can be adjusted on a cycle basis giving great flexibility to
programmers, and, at the same time, alleviating program-
mers from inserting scaling operations in the code necessary
for fixed-point formats.

Future work may address both increasing the flexibility
of TFP units by making programmable the rounding mode
(i.e., by disabling blocks not needed), and increasing the area
utilization by splitting the data-paths in two TFP units when
the precision m < 12.

REFERENCES

[1] NVIDIA Inc. “NVIDIA Tesla V100 GPU Architecture”. [Online].
Available: http://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[2] E. Nurvitadhi et al., “Can FPGAs Beat GPUs in Accelerating Next-
Generation Deep Neural Networks?” in Proc. of ACM FPGA’17,
Feb. 2017.

[3] B. Catanzaro, “Computer Arithmetic in Deep Learn-
ing,” in Keynote Talk at the 23rd IEEE Symposium
in Computer Arithmetic, July 2016. [Online]. Available:
http://arith23.gforge.inria.fr/slides/Catanzaro.pdf

[4] IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society
Std. 754, 2008.

[5] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” in ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 1–12.

[6] V. Popescu et al., “Flexpoint: Predictive Numerics for Deep Learn-
ing,” in 25th IEEE Symposium on Computer Arithmetic, Jun. 2018.

[7] A. Nannarelli, “Tunable Floating-Point for Energy Efficient Accel-
erators,” in 25th IEEE Symposium on Computer Arithmetic, Jun. 2018,
pp. 29–36.

[8] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[9] J. D. Bruguera and T. Lang, “Using the reverse-carry approach
for double datapath floating-point addition,” in Proc. of 15th IEEE
Symposium on Computer Arithmetic, 2001, pp. 203–210.

[10] M. Franceschi, A. Nannarelli, and M. Valle, “Tunable Floating-
Point for Artificial Neural Networks,” in 25th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Dec. 2018,
pp. 289–292.

