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Tunable giant magnetoresistance in a single-
molecule junction
Kai Yang1,5, Hui Chen1,5, Thomas Pope 2,5, Yibin Hu3,5, Liwei Liu1, Dongfei Wang 1, Lei Tao1, Wende Xiao 1,

Xiangmin Fei1, Yu-Yang Zhang 1, Hong-Gang Luo4, Shixuan Du1, Tao Xiang1, Werner A. Hofer1,2 &

Hong-Jun Gao 1

Controlling electronic transport through a single-molecule junction is crucial for molecular

electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be

used to this end since the magnetic properties of the magnetic ion centers fundamentally

impact the transport through the molecules. Here we demonstrate that the electron pathway

in a single-molecule device can be selected between two molecular orbitals by varying a

magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique

tunability of the electron pathways is due to the magnetic reorientation of the transition metal

center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron

pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy

changes of these spin-reorientations are remarkably low and less than one millielectronvolt.

The large tunable anisotropic magnetoresistance could be used to control electronic trans-

port in molecular spintronics.
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S
ingle molecular magnets in contact with metal electrodes
are exciting playgrounds to study spin-dependent transport
through a single molecule1–5, to examine fundamental

magnetic interactions6 and quantum many-body phenomena3,4,
and they are essential building blocks for spintronics devices1,7,8.
The molecular spin states can be controlled mechanically3, elec-
trically4, or by magnetic field4,9,10, providing a useful handle to
tune the flow of current. For example, using a magnetic field,
spin-dependent transport phenomena can be tuned at the single-
molecule level, such as the negative differential resistance9 or the
highly correlated Kondo effect10.

Here, we measured the transport through a single iron
phthalocyanine (FePc) molecule using a scanning tunneling
microscope (STM), which provides an ideal experimental plat-
form to study the single-molecule transport in an atomically well-
defined environment5,9,11–13. Our single-molecule device consists
of an FePc molecule attached to a Au(111) surface and an STM
tip (Fig. 1). The two metal electrodes (Au and tip) serve as the
source and drain. Normally, an electrostatic gate is used to shift
the chemical potential of the molecular level12,14. In our experi-
ment, we use an external magnetic field as a handle to control
the spin states and the conductance of the single-molecule
junction.

The FePc molecule belongs to a class of planar
metal–phthalocyanine molecules, which have an indispensable role
in spintronic applications due to the wide range of tunability of the
spin-bearing centers1,15–20. The interaction of the magnetic mole-
cules with a metal substrate can lead to a collective quantum
behavior, such as the Kondo effect in which the spin moment is
screened by the coherent spin–flip process of the conduction elec-
trons, giving rise to a Kondo resonance at the Fermi level (EF)10,21.
The line shape of Kondo resonance in the conductance spectra
is sensitive to the local electronic and magnetic environment,
such as conformational changes22, inter-molecular interaction11,
charge donation23, axial coordination24,25, and filling of d-
orbitals16,23,26.

We use the line shape and spatial distribution of the Kondo
resonance of FePc as indicators to monitor the electron pathway

in the tip–FePc–Au junction and demonstrate that the electrons
travel through the FePc by two possible d orbitals: dz2 and dπ (dπ
represents dxz or dyz), and that the single-electron passage
through the FePc can be controlled by the external magnetic field
(Fig. 1). Density functional theory (DFT) calculations reveal that
this unique tunability originates from the reorientation of the
magnetic moment on the Fe atom.

Results
Topographic image of FePc. After adsorption on Au(111), the
FePc molecule appears in STM images as a cross with a central
protrusion (Fig. 2a). The FePc molecule under study adsorbs at
the bridge site of Au(111) (Supplementary Fig. 1). Our DFT
calculation shows that the total spin magnetic moment of Fe is
2.05 μB and, in the ground state, it orients close to the plane of the
molecule (easy-plane magnetic anisotropy).

Temperature and magnetic-field dependence of dI/dV spectra.
To resolve the molecular spin states, we measured differential
conductance (dI/dV) spectra at the Fe center of the molecule. At
zero magnetic field, the dI/dV spectrum exhibits a sharp dip
around EF (Fig. 2a). The dip intensity decreases rapidly with
increasing temperature and disappears completely above 8 K
(Fig. 2b). The sharp dip at EF is attributed to the Kondo effect
since the dip conductance decreases logarithmically with
decreasing temperature (Supplementary Fig. 2a), which is a
characteristic feature of the Kondo effect27.

Figure 2c shows the evolution of the dI/dV spectra at different
magnetic field. The sharp Kondo dip at EF becomes shallower but
its width remains almost unchanged with increasing magnetic
field for B < 4 T. At B= 4 T the Kondo dip is completely
suppressed. When the magnetic field is above 4 T, a peak emerges
at EF and becomes more pronounced and broader with increasing
magnetic field.

Spatial distribution of the Kondo resonance. The dip-to-peak
transition of the Kondo resonance indicates the change of the
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Fig. 1 A tunable single-molecule device in the STM junction. a and b Schematics of the electron transport process through an FePc molecule adsorbed on a

Au(111) surface at different magnetic fields. The Au substrate and STM tip are the two terminals of the single-molecule device. The magnetic field can be

viewed as a gate to control the molecular spin states. The arrays of green lines indicate the magnetic field lines. During the electron transport through the

FePc, the tunneling electron has two possible passages corresponding to two molecular orbitals (dz2 or dxz/dyz). At weak magnetic field as in a, the spin

direction of Fe is in plane and currents flow by the dxz/dyz orbital. At strong magnetic field as in b, Fe spin is aligned to the magnetic field and electrons

tunnel preferentially through the dz2 orbital
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molecular spin states with magnetic field. To gain a better
understanding of the spin states, we studied the spatial distribu-
tion of the Kondo resonance over the FePc molecule by per-
forming spectroscopic mapping near EF under varying magnetic
fields (Fig. 3 and Supplementary Fig. 3). At zero or low fields, the
Kondo resonance shows a non-circular spatial distribution
(Fig. 3a). This distribution is not due to drifting during mea-
surement, as confirmed by dI/dV spectra taken along different
axes over the FePc molecule (Fig. 3b, c). It shows that the Kondo
resonance (dip) decays slower along one axis of the feature
(Fig. 3c) than the other (Fig. 3b). In comparison, at high magnetic
fields (above 4 T), the Kondo resonance (peak) is more localized
on the molecular center, with a radial symmetry (Fig. 3d–f). At
intermediate field strengths of 3–6 T, the Kondo resonance is
largely invisible (Supplementary Fig. 3c, d).

The spatial distribution of the Kondo resonance is determined
by the electron orbital responsible for the resonance, that is, the
local distribution of electron charge of the responsible orbital11,28.
The two different spatial distributions (non-circular or circular)
suggest two distinct Kondo screening channels originating from
two d orbitals at different magnetic fields. The change of spatial
distributions of Kondo resonance can be understood by
considering the different spatial symmetries of the dπ and dz2
orbitals (Fig. 1). The hybridization of dπ orbital with the
neighboring atoms inside the FePc molecule results in a more
extended Kondo resonance distribution at low field; while the dz2
orbital, due to its different symmetry, hybridizes less with the
molecular orbitals, giving rise to the more localized spatial
distribution of Kondo resonance at high magnetic field.

The change of orbital characteristics results from the
reorientation of the Fe magnetic moment induced by the applied
magnetic field. This reorientation changes the orbital character
through spin–orbit interaction29. The applied magnetic field flips
the magnetic moment of Fe from the in-plane to the out-of-plane
direction when the Zeeman energy is larger than the magnetic
anisotropy energy. Thus, due to the spin–orbit interaction, the
reorientation of the magnetic moment changes the mixing of

different d orbital character in the ground states. A level crossing
within the low-energy spin multiplet with quenched orbital
angular momentum cannot explain the change of the spatial
distribution of the Kondo resonance with increasing magnetic
field, since this scenario would only result in a tiny change of the
orbital composition in the wave function.

Reorientation of the Fe magnetic moment. To confirm this, we
performed noncollinear DFT calculations for both the in-plane
configuration (Fe magnetic moment in the plane of the mole-
cule), and the out-of-plane configuration (Fe magnetic moment
aligned to the magnetic field, perpendicular to the molecular
plane). Our DFT calculations show that at zero magnetic field
the Fe magnetic moment is in the plane of the molecule. The
reorientation of the magnetic moment at strong field is possible
because the Zeeman energy due to the external magnetic field
(~4 T) is comparable with the in-plane magnetic anisotropy of
the Fe spin (~1 meV from DFT calculations). Similar energy
scale of this magnetic anisotropy energy was obtained by
other simulations30. Figure 4a, b show the calculated band-
decomposed partial density of states (PDOS) of the d orbitals
for both magnetic configurations. By comparing spatial dis-
tribution of the molecular orbitals closest to EF (Fig. 4c, d) with
the experimental spatial distribution of the Kondo resonance,
we find that the non-circular depression at low field is due to
the dπ orbital (Fig. 4c), while the circular protrusion at high
field is due to the dz2 orbital (Fig. 4d). We also find that the
relative population of the two orbitals changes as the magnetic
moment orientates onto the direction of the magnetic field. The
re-hybridization of the molecular orbitals of the magnetic
ground state thus gives rise to the change of spatial distribution
of the zero-bias conductance (Kondo resonance) over the FePc
molecule as shown in Fig. 3. Note that the reorientation of the
magnetic moment doesn’t mean that the Zeeman energy
induces direct orbital transitions, since only the low-energy
density distribution of the d orbitals near EF changes.
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Fig. 2 dI/dV spectra under variation of temperature and magnetic field. a dI/dV spectra taken on the Fe center at 0.4 K and zero magnetic field, showing a

Kondo dip superimposed on a broad feature near EF (setpoint: I= 0.2 nA, Vb=−0.1 V). Inset: STM image of an FePc on Au(111) (3.2 nm × 3.2 nm, I= 10

pA, Vb=−0.2 V). b Evolution of the dI/dV spectra of FePc at increasing temperatures in the absence of magnetic field (setpoint: I= 0.3 nA, Vb=−60

mV). Successive spectra are offset for clarity. The dip at EF vanishes above 8 K, making two broad resonances visible. The broad two-peak feature was

originally attributed to a Kondo feature in ref. 15. However, in this work we note the similarity between the spectra and the density of states for the

underlying gold bulk (Supplementary Fig. 7), suggesting that this is in fact the source of the broader feature. c Evolution of the dI/dV spectra of FePc with

increasing magnetic field at 0.4 K (setpoint: I= 0.3 nA, Vb=−60mV), showing a dip-to-peak transition. a.u., arbitrary units
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The re-hybridization in the ground state of FePc can also be
directly visualized in the change of the line shapes of the
Kondo resonance, in addition to its spatial distribution. The
dip-to-peak transition of the Kondo resonance with external
magnetic field (Fig. 2c) can be understood by considering the
different spatial symmetries of the d orbitals. The line shapes of
the Kondo resonance are determined by the Fano interference
during the electron tunneling process31. Electrons originating
from the tip either tunnel through the discrete Kondo
resonance or the continuum states of the conduction electrons.
The Fano asymmetry factor q is proportional to the ratio of the
probabilities of the two paths. Since different d orbitals couple
differently to the tip due to their alignments and shapes, this
will result in different Fano interference with the tunneling
into the Au state as the magnetic field increases. At high
magnetic field, the magnetic ground state is mainly contributed
by the dz2 orbital (Fig. 4d), which couples more to the tip states
due to its favorable spatial distribution (Fig. 1b). Hence at high
field the Kondo resonance appears as a peak (large q-factor).
Similarly, the weaker coupling between the dπ and the tip states
results in the Kondo dip at low magnetic fields (Fig. 1a).

We fit the Kondo resonances at different magnetic field with a
Fano function (Supplementary Fig. 4)21. The fitting shows that
the Fano asymmetry factor q drops suddenly from positive to
negative values across the transition magnetic field (4 T),
corresponding to the dip-to-peak spectral transition. The line
width of the Kondo resonance increases with magnetic field above
6 T due to Zeeman splitting27,32. This sudden change in the
spectral feature—going from a configuration in which it is
unaffected by Zeeman splitting into a configuration in which
Zeeman splitting is measured—supports the argument that the

magnetic moment is reoriented. In the in-plane configuration, the
magnetic moment is nearly perpendicular to the magnetic field
and thus the product is small. At high field, the reorientation
allows for a much larger product and, so, noticeable Zeeman
splitting (Supplementary Fig. 5).

Tunneling anisotropic magnetoresistance (TAMR) of FePc.
The magnetic reorientation of the Fe center by varying
the magnetic field also leads to the TAMR effect. The TAMR
effect describes the dependence of the magnetoresistance on
the magnetization orientation, and has been found in metal
film33,34, single adatoms29,35, and molecular tunneling junc-
tions36–39. In addition, the TAMR effect with non-magnetic
electrodes has been shown in mechanical break junctions40,41.
Here, the magnetic FePc molecule is attached directly to a gold
metal electrode in our tunnel junction and there is no addi-
tional magnetic layer.

The TAMR can be defined as TAMR(M)= (dI(0)/dV–dI(M)/
dV)/(dI(0)/dV), where dI(M)/dV denotes the differential
conductance of FePc at the magnetic reorientation with an
out-of-plane component M39. Increasing the magnetic field
corresponds to a change of the magnetization angle from 0° to
90°. We show the TAMR of FePc as a function of bias voltage in
Fig. 4e. In the Kondo resonance region (between ±5 mV), the
TAMR can be enhanced up to 93%, much larger than the
TAMR values reported in other molecular-based TAMR
devices36–39. At intermediate magnetic field (Fig. 4f), the
TAMR effect (with respect to the in-plane magnetization at
zero field) increases monotonically with the magnetic field near
zero bias.
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Fig. 3 Spatial distribution of the Kondo resonance at different magnetic fields. a dI/dV mapping taken around the Fermi energy at 0 T (setpoint: I= 0.3 nA,

Vb=−40mV. Image size: 2.2 nm × 2.2 nm). b and c dI/dV spectra taken along different directions on the FePc molecule (as indicated by the arrows). The

spectra start from the Fe center and end at about 6 Å away. The black dashed line roughly indicates the position where the Kondo resonance is too weak to

see in the dI/dV spectra. Inset: STM image (2.2 nm × 2.2 nm) of the FePc. d–f, same as a–c except taken at B= 9 T. The Kondo resonance (peak) displays a

nearly circular spatial distribution in d
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Discussion
To demonstrate the generality of tuning the tunneling pathway
with magnetic fields, we also studied the Kondo effect of an Fe-
porphyrin derivative on Au(111). The Kondo resonance there
shows similar dip-to-peak transitions with magnetic fields (Sup-
plementary Fig. 6d). We expect the behavior of the magnetic
moment to be replicated in the Fe-porphyrin derivative. The dI/
dV mapping of the Kondo resonance exhibits a similar transition
from an extended distribution to a more concentrated distribu-
tion (Supplementary Fig. 6e–h).

We can treat the electron tunneling through the FePc molecule
as single-electron transport. The time lag from one electron to the
next through the molecule is in the range of nanoseconds (cor-
responding to a tunneling current of nanoamperes), but other
processes at the atomic scale occur at a much faster time scale.
The fastest processes, electronic relaxations, typically occur within
femtoseconds. The dynamics of the atomic cores, manifested by
phonons and vibrations, are within the picosecond range, with
relaxation times such that they typically do not exceed a few
hundred picoseconds. The transport phenomena in the STM
junction are thus too slow for vibrations or electronic relaxations
to influence electron transport.

In conclusion, we have demonstrated that the pathway of single
electrons through the orbitals of a magnetic molecule can be
tuned at a very low energy by varying the external magnetic field.
This unique tunability originates from the reorientation of the
magnetic moment on the metal center, which alters the electron
distribution in the d orbitals. While at zero field the electron
density scattered through the Kondo resonance will be exclusively
at the dπ orbital, it will pass through the dz2 orbital at high field,
and a varying part of the density will pass through both orbitals in
the intermediate regime. Note that a local control of the spin
reorientation could in principle be achieved by using the mag-
netic field from a spin-polarized STM tip42. Our work shows that
the multi-orbital nature and the spin–orbit coupling can be
employed to control the single-electron process in a single-
molecule device at sub-meV energies.

Methods
Experiment. The atomically flat Au(111) surface was prepared by repeated cycles
of sputtering with argon ions and annealing at 800 K. Commercial FePc molecules
(Sigma-Aldrich, 97% purity) were sublimated from a Knudsen-type evaporator
after thermal purification, while the Au(111) substrate was held at room tem-
perature. STM images were acquired in the constant-current mode and all given
voltages are referred to the sample. dI/dV spectra were measured using a lock-in
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technique with a sinusoidal modulation (0.09 mV rms–0.3 mV rms) at a frequency
of 973 Hz. The electrochemically etched tungsten tips were calibrated against the
Au(111) surface state before spectroscopic measurements to ensure no tip-related
features on the recorded dI/dV spectra.

Ab-initio calculations. All non-collinear spin-polarized DFT calculations were
performed with the Vienna ab-initio Simulation Package (VASP)43–46 and the
projector augmented wave (PAW) method47,48. The exchange-correlation potential
was described by the Perdew–Burke–Ernzerhof functional49 extended to incor-
porate a Van der Waals correction50. We perform a geometry minimization on the
system, until the residual forces were smaller than 0.02 eV Ang−1. To improve the
description of band structure and magnetic properties of the adsorbed FePc
molecule, a Hubbard-like+U correction is adopted51,52. The Hubbard-like on-site
Coulomb and exchange parameters for the Fe 3d orbitals are, respectively, chosen
to be U= 2 eV and J= 1 eV. These values have been used in previous studies on
the same system53–55. In calculating the density of states, we employed Gaussian
smearing with a width of 5 meV.

Data availability
The data that support the findings of this study are available from the corresponding

authors upon reasonable request.
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