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Tunable metal–insulator transition in double-layer

graphene heterostructures
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Disordered conductors with resistivity above the resistance
quantum h/e2 should exhibit an insulating behaviour at
low temperatures, a universal phenomenon known as a
strong (Anderson) localization1–3. Observed in a multitude
of materials, including damaged graphene and its disordered
chemical derivatives4–10, Anderson localization has not been
seen in generic graphene, despite its resistivity near the
neutrality point reaching ≈h/e2 per carrier type4,5. It has
remained a puzzle why graphene is such an exception.
Here we report a strong localization and the corresponding
metal–insulator transition in ultra-high-quality graphene. The
transition is controlled externally, by changing the carrier
density in another graphene layer placed at a distance of
several nm and decoupled electrically. The entire behaviour is
explained by electron–hole puddles that disallow localization
in standard devices but can be screened out in double-
layer graphene. The localization that occurs with decreasing
rather than increasing disorder is a unique occurrence, and
the reported double-layer heterostructures presents a new
experimental system that invites further studies.

Resistivity values ≈h/e2 indicate that the electron mean free
path l is shorter than the Fermi wavelength λF, so that quantum
interference becomes a dominant feature in electron diffusion,
leading to Anderson localization in the absence of phase-breaking
processes at low temperatures (T ). The scope of this phenomenon
extends beyond electronic systems—into optical and acoustic
phenomena as well1–3—but not generic graphene, which remains
metallic at liquid-helium T (refs 4,5) and exhibits only a weak T
dependence that can be explained by phonons and thermally excited
carriers11. Earlier theoretical studies have suggested that Dirac
electrons can evade localization for certain types of disorder3,12–15,
with the extreme example being graphene subjected to a smooth
Coulomb potential16,17. However, for generic disorder that involves
scattering between the two graphene valleys, the localization is
expected to be unavoidable3,18,19. Experiments do not show this.

In this Letter, we describe a double-layer electronic systemmade
of two closely-spaced but electrically isolated graphene monolayers
sandwiched in boron nitride. In the following, the two layers in the
double layer graphene (DLG) heterostructure are referred to as the
studied and control layers. At low doping nC in the control layer,
the studied layer exhibits the standard behaviour with a minimum
metallic conductivity of ∼4e2/h. However, for nC > 1011 cm−2,
the resistivity ρ of the studied layer diverges near the neutrality
point (NP) at T < 70K. This divergence can be suppressed by a
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small perpendicular field B < 0.1 T, which indicates that this is
an interference effect rather than a gap opening. We attribute the
metal–insulator transition (MIT) to the recovery of an intrinsic
behaviour such that graphene exhibits Anderson localization if its
ρ reaches values of ≈h/e2 per carrier type. Normally, this intrinsic
MIT is obscured by charge inhomogeneity in the form of electron–
hole puddles20–24. Within each puddle, graphene is sufficiently
away from the NP and remains metallic. Then, resistivity of the
percolating electron–hole system with leaking p–n boundaries16,17

assumes a value of ∼h/e2 with little T dependence (conceptually
this value has little in common with the similar value required
for Anderson localization)23,24. The control layer can screen out
the fluctuating background potential and suppress electron–hole
puddles, revealing the intrinsic properties at the NP. This reconciles
the metallic behaviour normally observed in graphene with the
localization expected for large ρ and supports the idea that the
minimum conductivity that tends to assume values close to 4e2/h
is due to electron–hole puddles23,24.

The studied devices were fabricated by sandwiching two
graphene monolayers with thin hexagonal-BN crystals. In a
multistep procedure, described in the Supplementary Information,
a graphene monolayer was transferred onto a 20–30 nm thick BN
crystal that was first prepared on top of an oxidized Si wafer.
Then, the graphene was covered with another BN crystal (spacer),
which was followed by transfer of the second graphene layer. Both
layers were shaped into multiterminal devices aligned above each
other and having separate electrical contacts (Fig. 1a). Individual
steps were similar to those described in refs 25,26 but the whole
fabrication process involved three dry transfers and alignments,
four nonconsecutive rounds of electron-beam lithography, three
rounds of plasma etching and two separate metal depositions.
The resulting DLG heterostructures are schematically shown in
Fig. 1a (for images, see Supplementary Information). We made
several such devices with channel widths of 1–2 µm. They exhibited
µ of 30 –120 × 103 cm2 V−1 s−1 and little chemical doping. The
bottom layer encapsulated in BN always had higher µ and changed
little after exposure to air26 whereas the quality of the top layer
gradually decayed. For this particular study, we employed three
multiterminal devices with sufficiently thick BN spacers to avoid
any detectable tunnel current between graphene layers (<0.1 nA).
The spacers had thicknesses d ≈ 4, 12 and 16 nm. All the devices
exhibited a similar MIT behaviour, although the insulating state
was much more pronounced for devices with smaller d and higher
µ, as described below.
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Figure 1 | Electron transport in graphene–BN heterostructures.

a, Schematic view of our heterostructure devices and measurement

geometry. b,c, ρ as a function of n in the studied graphene layer for

different doping nC of the control layer at two temperatures. The device has

a 4 nm BN spacer.

With reference to Fig. 1a, we employed the following scheme
of measurements. A voltage Vt was applied between the graphene
layers, and this electrically doped both of them with carriers of the
opposite sign. The bottom layer could also be gated by a voltage Vb

applied to the Si wafer. Because of the lowdensity of states, graphene
can provide only a partial screening and, therefore, Vb induced
carriers in the top layer as well. This influence was weaker than on
the bottom layer and depended on n in the latter. By measuring the
Hall resistivity ρxy we could determine n in each of the layers (Sup-
plementary Information). We usually fixed Vt to define a nearly
constant n in the top layer and swept Vb to vary n in the bottom
layer. Normally, we studied the higher-µ bottom layer and used
the top layer as control. In this configuration, the insulating state
reached higher ρ. If the studied and control layers were swapped,
the behaviour remained qualitatively the same (Supplementary
Information) but lowerµ resulted in lowerρ of the insulating state.

Our main result is illustrated by Fig. 1, which shows two sets
of standard curves ρ(n) for the studied layer at different nC. At
70 K, the control layer has little effect on the studied layer, and
all the curves in Fig. 1b look no different from those observed
in the standard devices4 or for graphene on BN (GBN; ref. 25).
However, at low T and for high doping of the control layer
(nC > 1011 cm−2), graphene exhibits a radically different behaviour
(Fig. 1c). In this regime, ρ at theNP acquires a strongT dependence
and easily overshoots the threshold value of h/e2. To elucidate
this observation, Fig. 2 shows further examples of ρ(n,T ) for
high and low doping of the control layer. In the case of large nC
(Fig. 2a), ρ exhibits an insulating T dependence. In contrast, zero
nC results in a much weaker T dependence that can be explained
by thermally excited carriers (Fig. 2b). Outside a relatively narrow
interval |n| ≤ 1010 cm−2 and above 70K, the behaviour of graphene
was practically independent of nC.

The T dependence of the maximum resistivity at the NP, ρNP,
is shown in more detail in the inset of Fig. 2b for zero and high
doping of the control layer. The insulating state ismore pronounced
for d = 4 nm but remains clear also for the 12 nm device (note the
logarithmic scale). For d = 4 nm and below 4K, ρNP could reach
into the M� range (Supplementary Information), an increase by
2–3 orders of magnitude with respect to the standard behaviour.
The high-ρ regime is found to be difficult to probe because of a
strong nonlinearity caused by a crosstalk between the measurement
current and Vt, the effect specific to DLG devices with small d
(see Supplementary Information). To assure the linear response in
this regime, we had to measure I–V curves at every gate voltage
and, to avoid these difficulties, we limited our studies mostly to
T > 4K and ρNP < 100 k�.
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Figure 2 | Resistivity of the studied layer at different T for high and low

doping of the control layer. a,b, Correspond to nC ≈ 3× 1011 cm−2 and zero

nC, respectively. Here, we have chosen to plot data for d≈ 12 nm. For our

thinnest spacer (≈4nm), ρNP becomes very large at low T (inset) and

continuous curves ρ(n) are difficult to measure because of crosstalk

nonlinearities (Supplementary Information). The inset shows the T

dependence of ρNP for the device in the main figure at both nC (open and

filled circles) and for the 4 nm device at nC ≈ 5× 1011 cm−2 (squares). The

dashed line indicates the threshold value for Anderson localization,

ρ = h/4e2.

The influence of the adjacent layer immediately invites one
to consider interlayer Coulomb interactions. Indeed, the relevant
energy scale is e2/εd ∼ 50meV, that is, the interactions may be a
significant factor (ε ≈ 5 is BN’s dielectric constant). For example,
one can imagine that the interactions open an excitonic-like gap
at the Dirac point. We have ruled out this possibility by magnetic
field measurements. In the gapped case, B is expected to enhance
the confinement and, hence, the binding energy. In contrast,
our devices exhibit a pronounced negative magnetoresistance in
non-quantizingB (Fig. 3). The insulating behaviour is suppressed in
characteristic B∗ ≈ 10mT (Fig. 3), well below the onset of Landau
quantization. Figure 3 also shows that the MIT is again confined
to |n| ≤ 1×1010 cm−2.

Another interesting observation is that the insulating state has
always developed atρ >h/4e2 (Figs 1–3). This is seenmost clearly in
the inset of Fig. 2, where the curves depart fromeach other above the
dashed line marking h/4e2. In the insulating state, ρNP is found to
follow a power-law dependence 1/T ν , where ν varied from sample
to sample, reaching a value close to two in the device with d ≈4 nm.
The characteristic T at which the insulating state started to develop
can be attributed to the fact that above 70K the concentration of
excited carriers at the NP exceeded ≈1010 cm−2, beyond which no
MIT could be observed even at low T .

The suppression of the MIT by non-quantizing B is a clear indi-
cation that localization plays an important role, such that B breaks
down the time-reversal symmetry and destroys the interference
pattern that developed due to self-intersecting trajectories1–3. The
strong localization scenario is also consistent with the onset of the
insulating state at ρNP ≈ h/4e2, which corresponds to the resistivity
quantumper carrier type.However, localization in graphene cannot
possibly be explained without intervalley scattering3,18,19. A tempt-
ing line of argument would be to invoke charge fluctuations in the
control layer to explain its influence on the studied layer. However,
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Figure 3 | Resistivity of the studied layer in the insulating regime at

various B. d= 12 nm; nC ≈ 3× 1011 cm−2. At low T, ρ(n) exhibits

pronounced ‘mesoscopic’ fluctuations (for example, the left shoulder in this

figure) which develop further with decreasing T and are probably due to

macroscopic charge inhomogeneity. Inset—detailed B dependence of ρNP

for the case shown in the main figure.

this contradicts the fact that µ can increase notably at high nC, that
is, graphene exhibits higher quality rather than extra scattering if
the control layer is strongly doped (Supplementary Information).
Moreover, the Coulomb interaction between the layers is generally
expected to become less efficient with decreasing T and increasing
nC (ref. 27), which is exactly opposite to what we observe. Finally,
an interlayer scattering mechanism can be ruled out by the fact that
any interaction potential created by carriers in the control layer
and acting on the studied layer varies at distances of ∼ d ≫ a (a
is the lattice constant), whereas the fast components needed for
intervalley scattering depend exponentially on a/d (ref. 28).

To explain the MIT, we assume a small amount of intervalley
scatterers already present in our devices. They could be either
some of the defects that limit µ (for example, strong adsorbates)29

or, alternatively, the intervalley scattering can arise because of
the atomic-scale potential created by BN. In both cases, this can
break down the symmetry between the carbon sublattices and act
as a source of intervalley scattering. Because the insulating state
is observed only for |n| ≤ 1010 cm−2 and the process responsible
for Anderson localization should provide a mean free path of
about λF = (4π/n)1/2, we can estimate the intervalley scattering
length liv as ∼0.1 µm.

Furthermore, B∗ ∼ 10mT yields a spatial scale (φ0/B
∗)1/2 ≈

0.5 µm, which corresponds to a flux quantum φ0 = h/e enclosed
by diffusive trajectories. This scale is significantly larger than the
mean free path l ≤ 0.1 µm estimated for the relevant interval of
n ≤ 1010 cm−2 and, therefore, this justifies the use of diffusive
transport concepts. Fitting the magnetoresistance curves, such as in
Fig. 3, by the weak localization formulas19,30 (although mentioning
that those are applicable to small rather than large changes in ρ)
yields two other spatial scales. One corresponds to the onset of
magnetoresistance (∼1mT) and yields the phase-breaking length
of a few µm at liquid-helium T , which is typical for graphene30,31.
The other scale (≈0.1 µm) is given by B ≈ 0.1 T, where the
magnetoresistance saturates, before changing its sign from negative

to positive. The latter scale could be due to the onset of intervalley
scattering18,19,31, which agrees well with the value liv determined
from the above analysis of the MIT.

The proposed scenario for the MIT can be considered routine
for any high-ρ metallic system at low T , including the previously
studied damaged graphene, which contains a large amount of
short-range, intervalley scatterers7–10. Quality graphene has been the
only known exception until now. Therefore, the question should
be turned around and it should be asked why there is no MIT in
the standard graphene devices or DLG at low nC and why the MIT
becomes pronounced only in our ultra-high-quality graphene. The
latter seemingly contradicts the very notion of Anderson localiza-
tion. The puzzle has a straightforward resolution if we attribute this
behaviour to the presence of electron–hole puddles4,23,24.

In graphene on SiO2, the puddles contain carriers in typical
n ∼ 1011 cm−2 (ref. 20). In GBN, puddles are larger and
shallower21,22 but, within each puddle, n is still high enough
(>1010 cm−2) to move the system away from the MIT. The
resistivity of such an inhomogeneous system is then determined
by inter-puddle ballistic transport with ρ ∼ h/4e2 (refs 23,24). The
recovery of the MIT can be expected if n within the electron–hole
puddles decreases below the localization threshold (≈1010 cm−2 in
our case). Accordingly, we attribute the influence of the control
layer to the fact that at high nC it screens out the background
potential, making puddles shallower, as our numerical modelling
shows (see Supplementary Information). Experimentally, this is
also the case, as seen from Hall measurements where the transition
region in ρxy (between electron- and hole-regimes) narrows at
high nC (Supplementary Information). Further work is required
to understand the underlying physics in detail and, especially, the
mechanismof intervalley scattering and a possible role of the atomic
washboard created by BN.
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Tunable metal-insulator transition in double-layer graphene heterostructures 

L. A. Ponomarenko et al. 

#1 Sample fabrication

The studied devices (see Fig. S1) were fabricated by using the following multistep procedure. First, 

relatively thick (20-30 nm) crystals of hexagonal BN (hBN) were cleaved on top of an oxidized Si 

wafer (SiO2 had thickness of either ≈90 or ≈300 nm), and graphene were prepared by cleavage on 

another substrate covered with PMMA. Then, the chosen graphene crystal was transferred on top of 

the chosen hBN crystal. To this end, we used alignment procedures similar to those described in ref. 

[S1,S2]. Electron-beam lithography and oxygen plasma etching were employed to define a 10-terminal 

Hall bar (Fig. S1). The second, thinner hBN crystal (thickness d) was carefully aligned to encapsulate 

the Hall bar but leave the contact regions open for a later deposition of metal contacts. After this, the 

second graphene crystal was prepared and transferred on top of the encapsulated graphene device. This 

second layer was also patterned into another Hall bar device that was carefully aligned with the bottom 

graphene structure (with a typical accuracy of ~10 nm). Finally, Au/Ti contacts we fabricated by using 

e-beam lithography and evaporation. After each transfer step, the devices were annealed at 300°C in 

an argon-hydrogen mixture to remove polymer residues and other contaminants. Figure S1 shows an 

optical image of a completed DLG device with d ≈12nm.

Figure S1. Double-layer graphene heterostructures. We use false colors to identify different layers in 

the heterostructure. The bottom graphene mesa is shown in false orange and lies on top of an opaque 

BN crystal (cyan to white is its natural color). A 12 nm hBN crystal resides on top of the graphene 

layer (transparent blue is its natural color but we added a thin black contour to identify the BN 

crystal’s position). The top graphene layer is shown in false green. It is etched into the multiterminal 

Hall bar aligned with the bottom mesa. The width of the Hall bar is ≈2μm.  

The exact thickness of the BN spacer was found retrospectively by using atomic force microscopy and 

capacitance measurements [S3]. Both techniques yielded the same value of d, which indicates the 

absence of any residue between the graphene layers (an extra monolayer of contamination would be 

detectable by this approach). Let us also stress the excellent insulating quality of hexagonal BN [S4], 

which allows a dielectric layer with d ≤4nm without any noticeable leakage current for gate voltages 

up to several V applied between the graphene layers [S2]. Such a separation between two-dimensional 

electronic systems is difficult if not impossible to achieve for GaAlAs heterostructures [S5].   
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#2 Relation between gate voltages and induced carrier density 

In field-effect devices with a thick dielectric layer (e.g., using graphene on SiO2), one can generally 
assume a linear relation n ∝Vg between the induced carrier concentration n and gate voltage Vg. 
However, in our DLG heterostructures with an ultra-thin BN spacer the dependence becomes 
nonlinear due to quantum capacitance (QC) [S3]. Its contribution becomes particularly important in 
high-μ devices, in which one can approach close to the NP so that the density of states in graphene 
tends to zero [S3]. In our case of a double layer system, one needs to take into account that QC 
contributions come from both graphene layers, and this makes the relation between carrier densities in 
the control and studied layers (nC and nS, respectively) and applied voltages Vt and Vb particularly 
complicated and deserving a separate study.  
 
To simplify our analysis in this work, we employed a constant capacitance approximation. To this end, 
we fixed Vt that induced charge carriers in the control layer, and determined nC by using Hall 
measurements. Then, we swept Vb to change nS in the studied layer (in the main text and below, we 
use notation n instead of nS, unless this causes confusion). To convert Vb into nS, we again measured 
the Hall effect away from the NP, typically at |nS| ≈1 to 5×1011cm-2. The inferred coefficient was used 
to translate Vb into nS. The coefficient changed with varying nC in the control layer. The latter was 
taken into account when the experimental curves were re-plotted in terms of n in the figures presented 
in this work.   
 
The “linear approximation” assumes that QCs do not change significantly within the studied interval 
of n for a given nC. As explained above, this is a simplification for a complex dependence of nC and nS 
as a function of Vt and Vb which is unique for every device [S3]. The approximation leads to deviations 
from the actual values of carrier concentrations in the two layers. We have found that deviations are 
relatively minor (typically, <20% for our range of studied n) and become significant only in the 
proximity of the NP where graphene’s QC is minimal. In this regime, charge inhomogeneity is also 
significant (e-h puddles) which leads to a leveling-off of the decrease in QC. Furthermore, near the 
NP, we cannot determine n from Hall measurements because of charge inhomogeneity [S3], which 
makes it difficult if not impossible to improve further on the used linear approximation.  
 
Despite some drawbacks, our approach is more meaningful than just quoting applied voltages that 
strongly vary for various devices, measurement configurations, etc. The linear approximation has no 
impact on any of the reported results, and all the curves remain qualitatively the same. However, if 
detailed analysis is needed, one has to keep in mind that the carrier densities n plotted in the main text 
are in fact scaled gate voltages, and there is some nonlinearity along the x-axis, which increases near 
the NP. When a better approximation is required (for example, to find μ; see below), we measured the 
Hall effect for every value of Vb to find n away from the NP.  
 
 
#3 Crosstalk between measurement current and effective gate voltage 

In DLG devices with nm-thin spacers, special care should be taken to avoid the influence of 
measurement current I on the induced carrier densities. Even for seemingly small currents I ~1nA, a 
voltage drop along the graphene device can reach into the mV range in the low-T insulating regime 
with high ρ (in the MOhm range). With reference to Fig. 1a, this voltage drop translates into an 
additional gate voltage ΔVt that varies along the device. Unlike for the standard graphene devices with 
a thick dielectric, in our devices the effect of such an extra Vt is not negligible because of small d. For 
example, if d ≈4 nm, 1mV of Vt translates into ~5x109 cm-2, which is enough to shift the system away 
from the insulating state. For example, this can lead to an artifact of the resistance peak split into two. 
The crosstalk makes measurements in the insulating regime particularly difficult (Fig. S2).  
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To avoid artifacts in determining ρNP(T) (insert in Fig. 2) we measured I-V curves at the NP at each T 

(see Fig. S2). Then, ρNP was defined from the linear part at I ⇒0. Because the range of the linear 
response shrinks with increasing ρNP, the crosstalk was probably responsible for some rounding of the 
curves at low T, which is seen in the inset of Fig. 2b. This is why we avoided the regime of low T and 
very high ρNP. 

 
 
FIGURE S2. I-V characteristics in the insulating state for a device with d =4 nm. The nonlinearity in 
this state is mostly due to the crosstalk between the driving current and gate voltage. This was 
confirmed by studying changes in ρ(n) with increasing I in different parts of the multiterminal devices, 
which caused different shifts of the NP as a local value of gate voltage varied by a few mV. (b) – 
Differential resistance for the curves in (a).  
  
 
#4 Suppression of electron-hole puddles by doping of a nearby graphene layer  

The suppression of e-h puddles in the studied graphene layer, when the control layer is set in a highly 
doped state, is an important notion that we used to explain the MIT transition. Although the idea is 
rather intuitive, we could confirm the suppression directly in an experiment. To this end, we monitored 
charge inhomogeneity in our DLG devices. The extent of the region with e-h puddles is often 
characterized by the width of the ρ(Vg) peak [S6]. Our curves indeed become noticeably narrower at 
high doping of the control layer. However, to elucidate the broadening in more detail, it is useful to 
employ Hall measurements (Fig. S3). If graphene has only one type of charge carriers, its Hall 
resistivity follows the dependence ρxy =1/neB for both electrons and holes. The transition regime in 
which electrons and holes coexist (that is, e-h puddles coexist) corresponds to the region around the 
NP where ρxy as a function of electric doping changes its sign and reaches a maximum value, before 
following the 1/n dependence (Fig. S3). The width of this region is a good measure of charge 
inhomogeneity. The maximum value of ρxy is another way to judge the extent of e-h puddles’ region. 
For graphene on hBN, the region of the coexistence of electrons and holes usually extends to 
several×1010 cm-2 [S7] but this value corresponds to the disappearance of the deepest puddles. An 
onset of the MIT should probably be expected at lower n because of the required percolation.  
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FIGURE S3. Typical changes in Hall resistivity of the studied layer with doping of the control layer. If 
the control layer is in its undoped state, the studied layer exhibits the behavior shown by the blue 
curve. Other examples of such curves and their analysis can be found in ref. [S7]. In the strongly 
doped regime (nC ≈1012 cm-2), the Hall curves become markedly sharper and the transition narrower 
(typically, by a factor of 2), which translates into twice shallower puddles. The data are for d =12 nm. 
 
 

 
 
FIGURE S4. Simulated e-h puddles in the studied graphene layer for nC = 0 and 5×1011cm-2 (top and 
bottom panels, respectively).  
 
In addition, we have modeled the suppression of e-h puddles in our geometry numerically, as shown in 
Figure S4. In these calculations, two graphene layers were assumed to be separated by d =4 nm and 
immersed in a dielectric media with ε ≈5. To mimic puddles, we have randomly distributed charged 
impurities in a concentration of 1010 cm-2 at a distance of 20 nm from the studied graphene layer, 
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which corresponds to a typical thickness of our BN substrates (see #1). The simulations were done by 
using the relativistic Thomas-Fermi model for graphene [S8]. Figure S4a shows the density 
fluctuations within a 1×1 μm2 area of the studied layer in the absence of charge carriers in the control 
layer (zero nC). One can see regions with large positive and negative densities (e-h puddles). The 

density variance δn in this case is found to be ≈8×109 cm-2, where δn
2 = ∫ rdnS

22 )(1 r and S is the area. 

For the strongly doped control layer (Fig. S4b), charge fluctuations in the studied layer become 
markedly weaker (δn ≈1×109 cm-2).  
 
The above simulations further support the idea that screening by the control layer is sufficient to 
suppress e-h puddles. Also, let us note that a metallic plate placed at distance d can wipe out only 
puddles with a typical size larger than d [S9]. Therefore, it was important that the control layer was 
placed as close as possible to the studied graphene layer, and this can explain why the MIT becomes 
less pronounced for the devices with large d. If a normal metal film is used instead of graphene, this 
should also suppress the puddles and allow the insulating state near the NP. The advantage of using 
graphene is that we can tune nC and prove directly that the observed MIT is due to the conducting 
layer rather than changes in fabrication procedures and device’s quality.  
 

#5 Reciprocity between top and bottom layers 

Although we have normally studied the bottom layer that was encapsulated in BN and showed high μ, 
the MIT could also be realized, if we swapped the studied and control layers. Fig. S5 shows an 
example of the MIT in the lower-μ top layer as a function of doping of the bottom layer. The transition 
is much less pronounced but, clearly, ρNP becomes larger with increasing |nC|. This behavior is in 
agreement with our model for the MIT, that is, lower μ translates into deeper puddles that are harder to 
suppress by external screening.  

 
FIGURE S5. Resistivity of the low-μ top layer as a function of gate voltage Vt for different nC in the 
bottom layer. nC was varied by changing Vb in steps of 2V between -15 and +17 V (curves of different 
color). The device has the 4 nm spacer.  
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#6 Influence of external screening on charge carrier mobility 

The scattering mechanisms that limit charge carrier mobility in graphene remain debated and probably 
vary for different devices and substrates. Due to the possibility to partially screen out the Coulomb 
scattering potential in our DLG heterostructures, we can prove that there is more than one type of 
scatterers, at least, in our devices. For high-μ graphene (usually, the bottom layer), we find that μ 
significantly increases if a high density is induced in the top layer (upper panel in Fig. S6). This yields 
a significant role of Coulomb scattering in such graphene on hBN. On the other hand, for lower-μ 
graphene (usually, the top layer), we find little effect of nC on μ, which suggests a non-Coulomb 
scattering mechanism.  
 

 
 
FIGURE S6. Changes in carrier mobility in the studied layer with doping of the control layer. High-μ 
layer is clearly sensitive to nC, and its mobility increases from ~50,000 to 100,000 cm2/Vs (top panel). 
No such changes were observed for low-μ graphene (μ~10,000 cm2/Vs; low panel). In this case, we 
have chosen to present the data for the lowest μ observed in our DLG devices, which is similar to 
values for graphene on SiO2. After several exposures to air and consecutive annealing, quality of 
graphene in the top layer gradually decayed from original μ ≥30,000 cm2/Vs. The bottom layer was 
much more stable. Also, note that due to changes in quantum capacitance, the usual way of 
determining μ from the electric field effect (as σ =neμ) become unreliable and leads to significant 
errors in DLG devices (because n is no longer a linear function of gate voltage). Therefore, for better 
accuracy, we have determined n from Hall measurements in small B, which yields the Hall mobility 
instead of the field-effect one. 
 
The fact that the MIT in our devices is accompanied by a pronounced increase in μ (therefore, in the 
mean free path l) clearly distinguishes our observation from the conventional MIT. To the best of our 
knowledge, Anderson localization has never been reported with decreasing disorder. Such behavior is 
counterintuitive but consistent with the proposed model for the MIT.  
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