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Abstract  –  We demonstrate tunable perfect anomalous reflection with metasurfaces 
incorporating lumped elements. The tunable capacitance of each element provides continuous 
control over the local surface reactance, allowing for controlling the evanescent field 
distribution and efficiently tilting the reflected wavefront away from the specular direction. The 
performance of the metasurface is evaluated for both TE and TM polarization and for reflection 
to the first and second diffraction order.  

 
I. INTRODUCTION 

Metasurfaces are ultrathin periodic structures with subwavelength unit cells made of purposefully designed 
materials and geometries that control the overall electromagnetic (EM) properties and hence their response to 
impinging fields [1,2]. Precise control over the constituent meta-atoms has enabled the realization of structures 
with unique and often unnatural properties and has opened the path for exciting applications such as wavefront 
shaping. One of the most prominent examples is anomalous reflection, where the reflected wave front is steered 
away from the specular direction. This can be achieved by controlling the local phase imparted by the 
subwavelength inclusions on the incident field. For example, imposing a linear phase gradient tilts the wavefront 
according to the generalized Snell’s law [3]. However, this approach results in parasitic reflections to undesired 
directions. Recently, it has been shown with a patch array metasurface that through a strong nonlocal response 
parasitic reflections can be suppressed and perfect anomalous reflection can be achieved [4].  

Here we target tunable perfect anomalous reflection by incorporating in the unit cell a tunable lumped element 
providing variable capacitance. We require continuous control of C [5], allowing for complete control over the 
reactive response of every meta-atom and thus even greater flexibility compared to metasurfaces with two 
reflection phase states [6]. In order to achieve high reflection efficiency, we start from the prescription of a linear 
phase profile and subsequently use optimization to fine tune the design. We demonstrate perfect anomalous 
reflection to the first or second diffraction order and study both TE and TM polarizations. Controlling, in 
addition, the resistance of the lumped element we can achieve with the same unit cell design perfect absorption 
for arbitrary incidence angle, operating frequency and both polarizations.  
 

II. TUNABLE ANOMALOUS REFLECTION WITH CONTINUOUSLY CONTROLLED RC LOADS 

The metasurface unit cell under study is depicted in Fig. 1(a). It consists of two copper patches interconnected 
with a tunable RC element, lying on a metal-backed dielectric substrate. The geometric and material parameters 
are given in the caption of Fig. 1. In order to achieve perfect anomalous reflection, we construct a supercell of N 
unit cells (the total extent is D=Ndx) with varying capacitances C1, C2, … CN [Fig. 1(b)] while setting R=0.01 Ω 
for all unit cells to minimize the absorption. For normal incidence and 3D λ< , four diffraction orders (±1, ±2) 
besides the specular become propagating; one port is assigned to each diffraction order for measuring the 
corresponding power and the naming convention is shown in Fig. 1(b). The reflection angle for a given 
diffraction order, m , is given by 0 (sin sin ) (2 / )r ik m Dθ θ π− =  according to momentum conservation. By 
imposing a linear phase profile along the supercell 0( ) (2 / )x m D xϕ ϕ π= +  (or ( )yϕ  for steering in the yz plane) 
we can promote a single diffraction order over the remaining leakage channels. In order to specify the required 
capacitances, we need a “look-up table” relating the reflection phase with the capacitance. We construct it by 
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illuminating the uniform metasurface with a normally-incident plane wave at an operating frequency of 5 GHz 
[Fig. 1(c)]. To be realistic we have limited the achievable series capacitances in the range [1, 5] pF. Even under 
this restriction, we access a large reflection phase span of 300 degrees while the reflection amplitude remains 
very close to unity (inset).  
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Fig. 1. (a) Metasurface unit cell: Pair of square copper patches on a metal-backed dielectric substrate (εr=2.2, tanδ=910-4) 
interconnected with a tunable RC element. The dimensions are dx=dy/2=9.12 mm, w=8.12 mm, g=1 mm, and t=1.016 mm. 
The metallization thickness is 17.5 µm. (b) Supercell for anomalous reflection: Port naming convention and correspondence 
with reflected diffraction orders for normal incidence. (c) Look-up table: Reflection phase for a uniform metasurface as a 
function of the capacitance of the tunable lumped element. The operating frequency is 5 GHz and the incident wave impinges 
at normal incidence. The corresponding reflection amplitude is included in the inset. 
 
A. Incidence in xz plane – TE polarization 
We first focus on incidence in the xz plane and TE polarization (E=Eyy), as shown in Fig. 1 (a). We consider a 
supercell consisting of N=8 unit cells stacked along the x-axis (D=72.96 mm~1.2λ0); for normal incidence we get 

1m = ±  diffraction orders in the ±55.3o directions. The supercell is effectively described by a three-port network 
according to Fig. 1 (b). Using the look-up table of Fig. 1 (c), we specify the capacitance of the lumped load for 
each of the eight unit cells. Subsequently, we extract the S-parameters corresponding to the amplitude of the 
reflected waves in each of the three ports. Incident power is indeed reflected to the desired diffraction order (port 
3), but there is some unwanted radiation in port 2 ( 1m = − ) as well. We thus use optimization to further approach 
perfect anomalous reflection. Specifically, we seek the capacitances that maximize S31 (>-0.4 dB) while at the 
same time minimizing both S21 and S11 (<-20 dB). The values before and after optimization are: 
 

C (pF) C1 C2 C3 C4 C5 C6 C7 C8 

Initial 1.0000 1.3362 1.5045 1.6326 1.7709 1.9822 2.6006 5.0000 
Optimized 1.0790 1.4078 1.5700 1.7000 1.7001 1.9947 3.8000 5.0000 

 
The optimized supercell suppresses radiation towards port 2 and leads to an efficiency of 98% (defined through 
|S31|2/sum(|Sx1|2), x=1…3) in steering a normally impinging wave towards the +55.3o direction, i.e., port 3 in 
Fig. 1(b). The full set of S-parameter amplitudes before and after optimization are: 
 

 
0.0781 0.2355 0.9245 0.0980 0.0944 0.9470

| | 0.2355 0.7961 0.3147 0.0944 0.8679 0.1565

0.9245 0.3147 0.0128 0.9470 0.1565 0.1204

optimization
S

   
   = ⎯⎯⎯⎯⎯⎯→   
      

, (1) 

 
Although the optimization goal was set for normal incidence (S31>-0.4 dB), we also get improved performance 
for incidence from ports 2 and 3. This is also verified by the field plots in Fig. 2, which shows the scattered 
wavefronts for excitation from all three ports.  

The same methodology can be applied for promoting beam deflection to higher diffraction orders. For 
instance, an N=17 supercell (D=155 mm~2.6λ0) can be used for steering a normally impinging wave towards 
±22.8o (first order, ports 3 and 2) as well as ±50.7o (second order, ports 5 and 4). In the latter case, we start from 
capacitances that correspond to a linear phase profile spanning a 0-4π range (instead of 0-2π range for first-order 
anomalous reflection) along the supercell. After optimization we achieve a 96% efficiency in steering a normally 
impinging plane wave to the +50.7o direction (port 5): |Sx1|=[0.0917, 0.0836, 0.0806, 0.0990, 0.9425], x=1…5. 
 
B. Incidence in yz plane – TM polarization 
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We next examine incidence in the yz plane and TM polarization (H=Hxx) [Fig. 1(a)]. We consider the case of 
N=5 unit cells stacked along the y-axis (D=91.2 mm~1.5λ0) giving rise to 1±  diffraction orders towards ±41.1o

. 
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Fig. 2. Anomalous reflection for TE polarization with a metasurface of N=8 unit cells along the x-axis. The capacitances 
are optimized. Real part of the scattered electric field for (a) normal incidence (anomalous reflection from port 1 to port 3), 
(b) incidence from 55.32o (reciprocal to (a)), and (c) incidence from port 2 giving retro-reflected anomalous reflection. 
 
The S-parameter amplitudes before and after optimization are 
 

 
0.1637 0.3475 0.8892 0.0414 0.0532 0.9638

| | 0.3475 0.7934 0.4121 0.0532 0.9279 0.0963

0.8892 0.4121 0.0185 0.9638 0.0963 0.0519

optimization
S

   
   = ⎯⎯⎯⎯⎯⎯→   
      

, (2) 

 
The corresponding capacitances are [1.0399, 1.4561, 1.6681, 1.9494, 4.1861] pF and [1.0016, 1.6745, 1.5373, 
2.1722, 3.5616] pF, respectively. The efficiencies for excitation from all three ports are exceptionally high: 
99.5%, 98.6%, and 98.7%, highlighting the robustness of the proposed design for the TM polarization as well. 
 

IV. DISCUSSION AND CONCLUSION 

We have numerically demonstrated tunable perfect anomalous reflection in metasurfaces that incorporate 
lumped loads for continuous control over the meta-atoms. Starting from the prescription of a linear phase 
gradient and subsequently using optimization, we have achieved high efficiencies for anomalous reflection 
towards the first and second diffraction order for both TE and TM polarizations. The same unit cell design can be 
used for achieving tunable perfect absorption for impinging waves of different polarizations, incidence angles 
and frequencies by controlling the capacitance and resistance of the lumped elements (in contrast to anomalous 
reflection, perfect absorption can be realized using a uniform configuration of all the unit cells). For example, at 
5 GHz for TE polarization and normal incidence the required values are C=1.6965 pF and R=3.4406 Ω, 
respectively. In all cases considered here the required RC values are realistic and can be supplied by voltage-
controlled varactor and varistor elements. The tuning mechanism can be easily realized with software, thus 
paving the way for software-driven intelligent metasurfaces supporting reconfigurable functionalities [5]. 
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