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Abstract: 

The effect of the oxidation of gallium nanoparticles (Ga NPs) on their plasmonic 

properties is investigated. Discrete dipole approximation has been used to study the 

wavelength of the out-of-plane localized surface plasmon resonance (LSPR) in 

hemispherical Ga NPs, deposited on silicon substrates, with oxide shell (Ga2O3) of 

different thickness. Thermal oxidation treatments, varying temperature and time, were 

carried out in order to increase experimentally the Ga2O3 shell thickness in the NPs. The 

optical, structural and chemical properties of the oxidized NPs have been studied by 

spectroscopic ellipsometry, scanning electron microscopy, grazing incidence X-ray 

diffraction and X-ray photoelectron spectroscopy. A clear redshift of the peak wavelength 

is observed, barely affecting the intensity of the plasmon resonance. A controllable 

increase of the Ga2O3 thickness as a consequence of the thermal annealing is achieved. In 

addition, simulations together with ellipsometry results have been used to determine the 

oxidation rate, whose kinetics is governed by a logarithmic dependence. These results 

support the tunable properties of the plasmon resonance wavelength in Ga NPs by thermal 

oxidation at low temperatures without significant reduction of the plasmon resonance 

intensity. 
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1. Introduction 

Plasmonics have attracted a great deal of attention in the last decades1. Its principle is 

based on the excitation of free electrons (plasmons) in metals, which enables the 

confinement of the electric field near the surface of metals. When electrons are confined 

in nanostructures, this phenomenon produces localized surface plasmon resonances 

(LSPRs) that can be used in many applications, including biosensing2,3, plasmonic 

waveguiding4,5 and optoelectronic devices with enhanced emission/absorption6,7.  

Metallic nanoparticles (NPs) are excellent systems to produce LSPRs due to their size, 

geometry and electric properties. So far, the plasmonic properties of gold (Au) and silver 

(Ag) NPs have been widely exploited3, but they are typically restricted to the infrared 

(IR) and visible regions8. In order to extend this range, other metals are required. Gallium 

nanoparticles (Ga NPs) are ideal candidates for achieving LSPR in the ultraviolet (UV) 

region thanks to its high bulk plasma energy (14 eV)9. Furthermore, varying their shape 

and size a wide spectral range from the IR to the UV can be obtained10,11. Ga NPs can be 

synthesized in a simple, fast and cost effective manner using thermal evaporation at low 

substrate temperature, which makes them compatible with many conductive and 

insulating substrates such as copper, quartz, glass, silicon (Si), plastics or sapphire and 

surfaces modified with 2D materials. Moreover, this bottom-up method is more suitable 

for large area applications than other physical techniques such as molecular beam epitaxy. 

During deposition, liquid Ga forms truncated NPs due to the relaxation of its surface 

tension energy. As a consequence of this non-spherical shape there is a significant 

separation of the in-plane and out-of-plane resonances modes10. This fact is an advantage 

to other UV plasmonic material such as magnesium (Mg) and aluminium (Al) which do 

not show this geometry by self-assembly. Ga NPs merge during the growth due to 

coalescence or coarsening processes, sometimes ascribed to the Ostwald ripening 

mechanism12. As a result, for long times, a bimodal size distribution is obtained, with 

large NPs surrounded by smaller ones. Furthermore, Ga NPs have been ordered in arrays 

to create patterns13. 

When NPs are exposed to air, a 0.5-3 nm thick passivating layer of gallium oxide 

(Ga2O3) is formed preserving the liquid Ga from the environment. This shell keeps the 
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liquid Ga in a supercooled state14. Recently, Losurdo et al. demonstrated that Ga NPs can 

also exhibit small regions with solid γ-Ga phase when deposited on sapphire15. The 

formation of the Ga2O3 shell is therefore essential for the actual plasmonic response and 

stability of Ga NPs, but little attention has been paid to it so far. 

Ga2O3 is a wide band gap semiconductor that has been mainly used as a transparent 

semiconducting oxide because of its low absorbance from the middle UV to the middle 

IR16. Its most stable crystalline phase is monoclinic β-Ga2O3, which has a low enthalpy 

of formation compared to other metal oxides (-1089.1 kJ/mol)17, and requires a very low 

O2 concentration to be formed due to the high solubility of O2 in liquid Ga18. In the case 

of liquid Ga NPs, no crystalline phase has been detected for the native oxide layer, and 

the thickness of such layer is assumed to be self-limited by the attenuation of oxygen 

diffusion19. Despite the unintentional formation of the native oxide, the NPs have 

exhibited good properties for the enhancement of Raman scattering20,21,22, for solid-liquid 

phase change memory elements23, for waveguiding5 and ellipsometric biosensing24,25. 

Most experimental studies have been focused on the modification of the LSPRs by 

adjusting the shape, size, and the substrate of these NPs26. Nevertheless, the control of the 

plasmonic properties of the Ga NPs through the thickness of the oxide shell is also an 

attractive approach, since it might be used to finely tune the intensity and wavelength of 

the resonance after the growth. Indeed, oxidation processes have been previously used for 

tuning the plasmonic resonance of Au NPs by controlling the thickness of an Al oxide 

mirror below them27. 

In this work, we have simulated the effect of the oxide shell thickness by means of 

discrete dipole approximation (DDA). Then, we performed oxidation experiments at 

different temperatures to induce the thickness variation and demonstrate that LSPR tuning 

can be achieved by this method. The stability of the NPs and the oxygen diffusion is 

investigated as well as the physical processes that govern the oxidation kinetics. 

 

2. Experimental 

Ga NPs are deposited by Joule-effect thermal evaporation using a vertical Edwards 

E306 system operating in high vacuum conditions (base pressure of 2×10-7 mbar). The 

size of the NPs depends on the total amount of Ga in the evaporation crucible. In order to 
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attain NPs with mean radius of about 60 nm, a fixed mass of 340 mg of Ga (99.9999% 

purity) was used. The evaporation process has been carried out under 50 W power, 

applied to a tungsten filament (99.90% purity). The working pressure during deposition 

was 1.5×10-5 mbar. Si (100) substrates were placed 200 mm away from the Ga source. 

The substrate holder is ice-cooled to avoid surface migration and coalescence of the 

droplets by unintentional heating.   

Thermal treatments of the NPs were performed at atmospheric pressure in a horizontal 

quartz tube connected to a gas supply line with a QuadraTherm mass flow meter. The 

temperature inside the furnace is monitored by a proportional-integral-derivative 

controller. For the oxidation, a constant flow of 80 standard cubic centimetres (sccm) of 

99.999% pure O2 was used. Two series of samples were prepared. The first set was 

produced using a fixed annealing time of 15 minutes and varying the temperature (150, 

200, 250, and 300 ºC). The second set was prepared under a fixed temperature of 300 ºC, 

but varying the time from 5 min to 1200 min. After the oxidation process, the samples 

were extracted from the tube, cooling down in ambient conditions. In addition, a reference 

β-Ga2O3 sample was prepared from 99.999% powder material and compacted under a 

compressive load to form a disk with a diameter of 7 mm and a thickness of 2 mm. It was 

then annealed in ambient air at 1200 °C for 3 h. 

The optical properties of the samples were analysed by spectroscopic ellipsometry (SE), 

using a Jobin Yvon UVISEL system equipped with a Xe lamp (1.5-4.5 eV energy range), 

a 0º modulator and a 45º analyser. The measurements are taken in external reflection 

configuration at 70º incidence angle referred to the normal of the sample surface. The 

pseudo-dielectric constants of the material were obtained from the ellipsometric 

parameters psi (ψ) and delta (∆)28. 

Scanning electron microscopy (SEM) was used to study the morphology of the Ga NPs.  

The microscope is a FEI XL30-SFEG system, operating with 10 keV electron beam and 

nominal lateral resolution of 4 nm, being the secondary electrons collected and analysed 

with an Everhart-Thornley detector. 

The crystal structure of the samples has been analysed by grazing incidence X-ray 

diffraction (GIXRD) using a X’Pert Pro Panalytical system. The incident beam is 

produced in a Cu X-ray tube, focused by a Göbel mirror and collimated in a Soller slit 

(0.04 rad). The diffracted beam passes through a 0.18º parallel plate collimator, a graphite 
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(002) monochromator, and a Soller slit (0.04 rad) before being detected with a Xe gas 

scintillator. The incident angle was fixed at 0.5º and the 2θ angle was varied from 10º up 

to 90º, with a step of 0.04º and an acquisition time of 4 s per point. 

X-ray photoelectron spectroscopy (XPS) has been used to characterize the chemical 

composition of Ga NPs deposited on Si wafer substrates. XPS spectra were acquired in 

an UHV chamber with a base pressure of 10-10 mbar equipped, a hemispherical electron 

energy analyser (SPECS Phoibos 150 spectrometer) and a 2-D delay-line detector, using 

a monochromatic Al-Kα (1486.74 eV) X-ray source. High resolution spectra were 

recorded at normal emission using an energy step of 0.025 eV and a pass-energy of 20 

eV, which provide an overall instrumental peak broadening of 0.45 eV. The absolute 

binding energies of the photoelectron spectra were determined by referencing to the Si 

2p3/2 transition at 99.0 eV.  In order to compensate for the built up charge on the reference 

sample of Ga2O3, a flood gun (FG 15/40, SPECS) has been applied with low energy 

electrons of 2 eV and 2.12 µA. The spectra were analysed with the program CasaXPS29 

using a Shirley method for background subtraction. 

In order to analyse the role of the oxide shell on the plasmonic properties of the Ga 

NPs, we evaluated the light-particle interaction with the DDA code DDSCAT 7.230. Core-

shell hemispheres were created by a target generation tool program executed by Matlab31. 

These targets were discretized into arrays of N polarizable points with polarizabilities αi 

deployed on a cubic lattice at positions ri. The points acquire dipole moments in response 

to the local electric field, which results from the incident electric field and the electric 

fields produced by the rest of dipoles. Thus, each dipole has a polarization iP given by: 

( )i i iP E r   
(1) 

where ( )iE r  is the electric field at ir due to the sum of the incident wave and the 

contribution of each of the other N-1 dipoles. The accuracy highly depends on the number 

of dipoles but very large values of N can make the DDA computationally prohibitive. 

Thus, a certain compromise is needed. Calculations of the absorption (Qabs), scattering 

(Qscat) and extinction (Qext) efficiency were carried out using a dipole lattice spacing of 2 

nm to ensure a number of dipoles higher than 100000, achieving a good description of 

the target geometry by this method. 
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The error tolerance for convergence of the calculations was set to 10-5 at each 

wavelength32. The wavevector (


k ) of the incident light was maintained parallel to the 

substrate (p polarization) in order to excite the out-of plane-mode of the NPs. The radius 

of the NP was maintained constant at 60 nm since this value is close to the average size 

obtained in the experiments. A Si substrate of 140×140×40 nm3 was added below the Ga 

hemisphere. The input dielectric properties of liquid Ga and β-Ga2O3 were obtained from 

the literature33,34. The dielectric constants for Si were obtained from direct SE 

measurements of the (100) Si substrate used in the experiments. 

 

3. Results and discussion 

3.1 Discrete Dipole Approximation simulations 

Prior to the experiment, calculations of the optical efficiencies were carried out for a 

hemisphere of liquid Ga on a Si substrate with a Ga2O3 shell of different thickness as 

described in the experimental part. If we assumed that there is no evaporation of Ga 

during the annealing treatment, the total amount of atomic Ga must be conserved in the 

structure and the different atomic densities of Ga and Ga2O3 must be considered. 

The mean atomic density of liquid Ga35 is 5.2·1022 cm-3 while the atomic density of Ga 

in the oxide has been calculated to be 3.8·1022 cm-3 from the volume and the number of 

atoms in a unit cell of β-Ga2O3
36. The ratio between both densities is 1.37 which means 

that the transformation of liquid Ga to Ga2O3 would lead to a small increase of the total 

volume. The simulated structures have a liquid Ga core whose radius ranges from 60 nm 

down to 30 nm. On the other hand, the oxide shell increases from 0 to 30 nm keeping the 

total hemisphere radius constant at 60 nm. The expected volume increase due to the 

different atomic densities of Ga and Ga2O3 would lead to a radius increment of less than 

10% in the worst case scenario. Therefore, for the sake of clarity, we neglected this 

difference in the atomic density between both materials in the simulations and maintain 

the hemisphere radius constant at 60 nm. 

Regarding the simulations results, the analysis was focused on the Qext since it takes into 

account both scattering and absorption optical efficiencies and, considering that the 

ellipsometric system extracts the results from the reflected beam which suffers scattering 
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and absorption losses upon the reflection on the sample surface, the simulated Qext seems 

closer to the results obtained from SE. Later on, this argument is used later to compare 

the simulations with the SE measurements. The Qext is defined as the ratio between the 

nanoparticle cross-section and its geometrical cross-section. Figure 1(a) shows Qext as a 

function of the Ga2O3 shell thickness. As a reference, a pure Ga2O3 hemisphere on Si have 

also been simulated. The peak resonance is located around 270 nm (4.6 eV) for an 

unoxidized Ga NP and shifts to higher wavelengths when Ga2O3 thickness increases. This 

result is in agreement with previous works also based on the dipolar approximation 

theory33. The shift is a result of two combined factors: On one hand, the increase of the 

oxide shell produces a redshift due to the large difference between Ga and Ga2O3 

dielectric constants37. On the other hand, the reduction of the Ga core shifts the resonance 

to shorter wavelengths. The overall redshift demonstrates that the effect of the oxide layer 

dominates the spectral behaviour of the resonance.  

In order to verify the suitability of the simulated system we have performed test to 

analyse the effect of the substrate length, width and thickness, as well as the dipolar 

spacing. No shift higher than 1 nm is observed in the main peak at 270 nm due to any of 

these factors (graphs not shown). Minor changes were also detected in the shape and 

intensity of the peak around 400 nm but they do not affect the interpretation of our results 

since they are based on the shift of the resonance wavelength. Additionally, the role of 

the coupling and multiple scattering was studied as a function of the interparticle distance 

(5, 10 and 20 nm) for the unoxidized Ga NP close to another one of 20 and 60 nm radius. 

Again, no significant effects were detected in the wavelength of the peak (shifts lower 

than 2 nm), but mainly in the shape and intensity, which allows us neglecting the multiple 

scattering.  
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“Figure 1. (a) Simulated Qext of a core-shell hemispherical Ga NP on Si for different Ga2O3 shells 

thickness. A hemispherical Ga2O3 NP has also been simulated as a reference (b) Correlation 

between the Ga2O3 thickness and the maximum extinction wavelength and the corresponding fit. 

(c) Local electric field distribution for a core-shell NP with 2, 10 and 20 nm thick oxide shell. The 

wavelength in which the electric field has been evaluated is indicated in the figure and 

corresponds with the maximum Qext.” 

In addition to the red shift, the intensity of the maximum Qext also decreases with the 

increasing oxide thickness. As expected, the progressive inclusion of Ga2O3 reduces the 

plasmon resonance, which is hardly seen for thicknesses above 30 nm. The band around 

600 nm also decreases, what suggests that it is due to high-order terms produced by phase 

retardation and substrate interactions33.  

In Figure 1(b), the oxide shell thickness is plotted versus the wavelength of the 

maximum plasmon resonance. The relationship between both parameters is fit with a 
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polynomial function. The fitting function is used later on to estimate the Ga2O3 thickness 

from the experimental wavelength shift obtained after annealing.  

The simulations show that the plasmon wavelength can be significantly shifted even 

for small Ga2O3 thicknesses, e.g., the plasmon wavelength shifts 40 nm for 10 nm oxide 

shell. This shift is in the same order of magnitude than that obtained for Al NPs 

surrounded by Al2O3 layer38. For a Ag NP surrounded by a Ag2O layer, for the same 

volume ratio between metal and oxide, a shift of about 25 nm is found39. What it is most 

remarkable is the effect in the plasmon intensity. While in our case only 5% of the 

plasmon intensity is reduced, in the Ag case it decreases by 40%. The explanation lies in 

the dielectric constants of the respective oxide. The extinction coefficient (k) of Ag2O
40 

is higher than that of Ga2O3, thus a higher attenuation of the resonance is expected due to 

dissipation of the evanescent waves of plasmons within the oxide shell. In comparison 

with other UV plasmonic materials such as Mg and Al, Ga has the strongest oxide 

sensitivity in terms of plasmon shifting41. Given these advantages, oxidation processes 

could offer a good strategy for tuning the plasmon resonance. 

On the other hand, the effect of the oxidation in the near-field regime is studied. We 

have calculated the enhancement in the electric field in the vicinities of the hemisphere 

NP for three different thickness, 2, 10 and 20 nm thick (Figure 1(c)). The illuminating 

beam is a monochromatic linearly polarized plane wave with polarization (


E ) and 

propagation (


k ) direction indicated in the figure. The wavelength used for evaluating the 

near field is chosen to be that where the Qext is maximum, as indicated in the figure. The 

two lobules correspond to the electric dipolar resonance of the out-of-plane mode. 

Furthermore, it can be observed how the electric field is also enhanced in the metal-oxide 

interface aside from the air-oxide interface. Concerning the value of the enhancement in 

the legend, it is important to point it out that the hemisphere diameter strongly influences 

the maximum electric field enhancement. For Ga hemisphere NP this maximum is found 

for 80 nm of diameter19. Although, in comparison with other UV materials such as Mg 

and Al, Ga has the poorer plasmonic performance, its enhancement properties are less 

affected by its increasing oxide shell42.  

 

3.2 Effect of the thermal treatment 
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In order to corroborate the results obtained in the simulations, we performed thermal 

treatments to modify the oxide layer thickness of Ga NPs. The experiments, described in 

the experimental section, were carried out at different temperatures during 15 min. Figure 

2(a) shows a typical SEM image of an as-deposited sample, which exhibits a bimodal 

distribution. The size histogram (Figure 2(e)) can be fit with two Gaussian functions 

centred at 25 and 276 nm, giving a mean radius of 60 nm. 

These NPs do not evidence morphological changes at 150 ºC, as shown in Figure 2(b). 

However, when temperature increases a local plastic deformation is produced on the 

surface of the NPs (Figure 2(c) and (d)). If temperature increases up to 450 ºC (not 

shown), the Ga2O3 shell breaks, allowing some liquid Ga to leave the core. The 

breakdown is most likely due to the different pressures between inside and outside of the 

NPs. 
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“Figure 2. SEM images of Ga NPs for different thermal treatments at 15 min. (a) As-deposited, 

(b) 150 ºC, (c) 250 ºC, and (d) 300 ºC. (e) Histogram of the size distribution for the as-deposited 

sample.” 

For tracking the extinction ascribed to the LSPR, we have measured the imaginary part 

of the pseudodielectric constant by SE measurements at a fixed angle of 70º, plotted in 

Figure 3. This incidence angle was chosen as it corresponds to the Brewster angle of the 

Si substrate. In this condition, the difference between the parallel and perpendicular 

reflection coefficients is maximized and the response of the system can be analysed more 

accurately43. The out-of-plane resonant mode is clearly visible for all the temperatures 

analysed. The in-plane mode lies in the infrared region, which is out of the spectral range 

of our experimental setup. The LSPR experiences a redshift as the annealing temperature 

increases (Figure 3(a)) as demonstrated in the previous simulations. For the sake of 

clarity, the shift has been plotted versus temperature in Figure 3(b). The progressive 

redshift is ascribed to the increasing oxide shell caused by oxygen diffusion. The obtained 

redshift from RT to 150 ºC is similar to that obtained by Wu et al. when Ga NPs are 

exposed to air after deposition, which is assumed to correspond to 0.5 to 2 nm oxide 

shell10. In our work, the oxide formation is studied at ambient pressure for temperatures 

lower than 300 oC. At these conditions the oxygen diffusion is fostered by the different 

expansion coefficient of liquid Ga and Ga2O3. Indeed, that difference leads to the oxide 

shell breakdown at temperatures beyond 300 oC. Since there is a two order of magnitude 

difference in the thermal expansion coefficient between liquid Ga and Ga2O3
44. 

According to the formula ΔV/V0=α·ΔT, a volume increase of 3.3% is expected for liquid 

Ga, with the expansion coefficient (α) equal to 1.2·10-4 ºC-1. In contrast, the change in the 

Ga2O3 shell is negligible (0.2%). This effect should increase the pressure inside the NP, 

promoting the oxygen diffusion and enlarging the Ga2O3 shell thickness. When the NP is 

cooled down to RT, the remaining liquid Ga relaxes reducing the pressure within the core. 

The pressure relief provokes the contraction of the oxide shell, which collapses inward. 

Thus, Figure 2(c) and 2(d) show clear evidences of the plastic deformation of the shell at 

room temperature. 
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“Figure 3. (a) Imaginary part of the pseudodielectric constant obtained by SE measurements of 

samples oxidized at different temperatures compared to an unoxidized one kept at room 

temperature (RT) conditions. A sample oxidized at 300 ºC but cooled down slowly within the 

furnace is also included (300ºC-RT) (b) Peak plasmon wavelength corresponding to the maximum 

extinction as a function of the temperature.” 

In order to check the influence of the temperature decreasing ramp on the plastic 

deformation, a sample annealed at 300 ºC was cooled down within the furnace at a cooling 

rate below 1 ºC/min in order to reduce the thermal stress caused by a fast cooling. This 

sample shows the same red-shift (“Figure 3(a)) as well as a higher attenuation of the 

plasmon resonance, likely due to the extra time exposed to intermediate temperatures 

until the furnace reaches RT. The most important characteristic of this sample, however, 
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is that most of the NPs do not show the local deformation in SEM characterization (image 

not shown). This proves that the local deformation is linked to the cooling rate, which 

plays an important role in the process. In our set-up, a cooling rate below 1 ºC/min 

guarantees the elastic recovery of the Ga2O3 shell, whereas a fast quenching at RT 

produces the plastic deformation. 

XRD analysis was performed in order to investigate the crystallinity of the structures. 

Figure 4(a) shows the diffractogram of the as-deposited sample. The main feature of the 

graph is the two broad bands centred in ~35º and ~45º. These bands arise from the short 

range order of liquid Ga, as Yakema et al. reported14. Interestingly, this double band 

matches the δ-phase lines of solid Ga. Furthermore, liquid Ga has been discovered to be 

formed of dimeric molecules of Ga2
35, 45 with a metal-covalent bond that could explain 

the origin of the ordering found in XRD.  Moreover, layering of Ga atoms has been also 

demonstrated in a non-wetting substrate such as diamond46. 
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“Figure 4. (a) GIXRD measurements of as-deposited sample along with diffraction lines for δ-

solid Ga (b) Comparison of the GIXRD patterns between as-deposited and 300 ºC oxidized 

sample. Data from Si substrate is also shown as reference.” 

Figure 4(b) shows the comparison between the XRD patterns of the as-deposited 

sample with the sample oxidized at 300 ºC and quenched rapidly to RT. In the XRD 

measurements, there are no significant differences between the sample cooled down 

rapidly to RT and the sample cooled down slowly at 1 ºC/min rate. The absence of sharp 

peaks reflects the amorphous character of the oxide layer in the thickness range under 

study. However, the band intensity associated to the liquid Ga attenuates with the 

increasing temperature, which points out the transformation of liquid Ga into Ga2O3 inside 

the NP. This result, together with the SE redshift and the DDA simulations, indicate the 

increasing thickness of the oxide shell. 

Another important factor in this oxidation process is the annealing time. A set of 

samples was produced by oxidation at different times, from 5 min up to 1200 min. The 

temperature was fixed to 300 ºC, since this is the highest limit prior to the breakdown of 

the NPs. Figure 5(a) shows the pseudodielectric function for such set obtained by SE. The 

plasmon resonance red-shifts when time is increased, being the results plotted in Figure 

5(b). A clear saturation is observed for the wavelength of the LSPR, while the intensity 

decreases with time. This shift is interpreted, again, as an increasing Ga2O3 shell; the 

behaviour shown in Figure 5(b) is representative for bulk or thin film systems that are 

oxidized by diffusion47. Moreover, the growth of the oxide depends on other parameters 

such as temperature, pressure, electric field, diffusion coefficients, oxygen activity, etc.48 
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“Figure 5. (a) Imaginary part of pseudodielectric constant obtained by SE measurements of 

samples oxidized at different times. (b) Peak plasmon wavelength corresponding to the maximum 

extinction as a function of the annealing time.” 

In order to confirm the increase of the Ga2O3 layer in more detail, ex-situ XPS 

measurements were performed after the annealing. In the survey scan (not shown) Ga 2p, 

3s, 3p, and 3d, electronic levels can be observed. For a chemical analysis, the 3d level 

was selected because of its low binding energy value that corresponds to a higher 

sampling depth.  

Figure 6 (a) and (b) show XPS spectra of the samples for both the temperature and time 

series, respectively. The two main Ga-3d peaks, with binding energies (BE) centered at 

18.7 eV and 21.3 eV are distinguishable in both series. These peaks correspond to 

emission from Ga atoms in different chemical environments, metallic and oxide, 
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respectively, in good agreement with the literature49,50. Thanks to the fine energy step 

used (0.025 eV) it is possible to resolve the 3d doublet of the metallic Ga.  

As temperature or time increases, the signal from the metallic Ga decreases as a 

consequence of the oxidation. The 3d doublet progressively disappears with the 

increasing temperature (Figure 6(a)), revealing the increasing thickness of the oxide shell 

and in agreement with the data obtained by XRD and SE. This behaviour also occurs in 

the time series, where the metallic 3d doublet is completely vanished. A quantitative 

analysis of the ratio between the metallic Ga and the oxide peaks area has been carried 

out and it is shown in the inset of Figure 6(b). A dash-line has been plotted as a guide to 

the eye. The Ga metallic doublet has been fit with two Gaussian-Lorentzian mixed 

functions centred at 18.4 ± 0.1 and 18.9 ± 0.1 eV, that match the ratio between both 

intensities51,52. The sum of these two areas has been divided by the area coming from the 

rest of contributions due to oxidized peaks. The trend in Figure 6 (b) resembles that of 

the Figure 5 (b), indicating the same physical origin, i.e., the increasing thickness of the 

oxide shell. The possibility of Ga diffusion through Si has been dismissed because of the 

low temperatures and the low diffusivities53. 
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“Figure 6. (a) XPS spectra of the 3d level of Ga for samples oxidized at different temperatures 

for 15 min and (b) samples oxidized for different times at 300 ºC. The data for the as-deposited 

sample and a bulk Ga2O3 reference sample are also included. The inset corresponds to the 

quantitative analysis of the ratio between the metallic Ga and the oxide peaks area.” 

The sample oxidized at 300 ºC during 1200 min does not show any signal from metallic 

Ga due to the probing depth of the technique for this 3d level that is limited to 8-10 nm50. 

However, this sample still shows a clear plasmon resonance in Figure 5 (a). This fact is 

very important because it allows us estimating the thickness of the oxide shell. The lack 

of the metallic Ga signal means that there are no electrons coming from metallic Ga 

because the Ga2O3 thickness is at least equal to the escape depth of the electrons at this 

binding energy. Nearly all electrons (>95%) come from a depth that is three times the 

distance of the inelastic mean free path, equal to ≈3 nm for the kinetic energy of the Ga 

3d level. Consequently, the thickness of the oxide shell in this sample is at least 9 nm.  

The analysis of the high binding energy 2p level (not shown) has a similar behaviour 

than the 3d level; the signal from metallic Ga disappear when time and temperature 
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increase. However, the sample oxidized at 300 ºC during 30 min does not show any 

metallic Ga signal because of the higher surface sensitivity of this level. Indeed, according 

to the energy of the electrons emitted from the Ga 2p level, the associated probing depth 

is 4 nm approximately. Then, the oxide thickness for 30 min of oxidation should be higher 

than 4 nm. 

We have clearly established that the LSPR of Ga NPs can be tuned by thermal 

treatments thanks to the oxygen diffusion and the formation of a thicker Ga2O3 shell. 

Now, we can model the mechanism that govern this process. For that, we assume the 

polynomial law presented in Figure 1 (b), which accounts for the plasmon shift expected 

from the oxide growth. Thus, we have substituted the shift found in the SE measurements 

for oxidations at different times with the oxide thickness in nm obtained from that law. 

Since the simulation limitations make difficult to match the maxima of the experimental 

and the simulated spectra, we used the shift instead for monitoring the oxide growth. This 

approach has been also used in Ag2O films, where the surface plasmon resonance was 

studied using the optical reflectivity54. In our case, we use this dependence to estimate the 

experimental oxide thickness from the SE data for both the temperature and time series. 

Although the peak wavelength does not shift equally for the different NP sizes, the error 

that, according to our DDA simulations, one assumes in the oxide thickness determination 

is about 20% for NPs with radius between 30 and 60 nm. We believe that this error is 

reasonable to justify the use of the shift although a more accurately analysis would require 

higher size uniformity in the NP array. 

The obtained results are shown in Figure 7 (a) and (b) for both the temperature and the 

time series, respectively. For the temperature series, the estimated thickness increases 

following a non-linear function. Since the time was kept constant in this series, the 

thickness will follow the same function as the reaction rate constant with temperature. 

This function follows an Arrhenius-like behaviour, which is indicated in Figure 7(a) as a 

guide to the eye. Clearly, this trend suggests that the process is thermally activated. 

Thereupon, an inset with the Arrenhius plot is shown in Fig. 7 (a). The activation energy 

from the fitting is equal to183.7 meV. This low value is likely due to the high diffusivity 

of the oxygen ions in Ga2O3
18. 

For the time series, the Ga2O3 thickness is plotted as a function of time in Figure 7(b) 

at an oxidation temperature of 300 ºC. The quantitative XPS analysis displayed in the 
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inset of Figure 6(b) follows a similar behaviour, and the value of the Ga2O3 thickness 

fully agrees with the estimation provided by XPS results.  

The most general models describing the oxidation of metals with time are linear, 

parabolic, cubic and logarithm well described in the general theory explained by Cabrera 

and Mott (CM)55. The linear model describes well ultralight metals, such as potassium 

and sodium, that forms porous and non-protective oxides. The parabolic (also known as 

Tammann-Pilling-Bedworth law)56 and cubic models are most commonly observed in 

heavy metals such as iron, copper and nickel at high temperature regimes57. This model 

is based on the diffusion of ions through the oxide. On the other hand, the logarithm model 

only occurs at relatively low temperatures. It was discovered by Evans58  and properly 

explained by Uhlig59 some years later. This law also governs low temperature oxidation 

of heavy metals such as iron45, zinc60 and titanium61. It is based on the formation of a 

space charge layer due to the equalizing of the Fermi levels of the metal and the 

semiconducting oxide at the junction. 
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“Figure 7. Estimated Ga2O3 thickness obtained from the application of DDA fit to SE data for 

the (a) temperature and (b) time series. A guide to the eye has been plotted in (a). The inset 

corresponds to the Arrenhius plot. Parabolic, cubic and logarithmic equations have been fitted to 

the data points in (b). (c) Sketch of the oxidation mechanism for the logarithmic model.” 

We have carried out fittings of our results with the parabolic, cubic and logarithmic 

models (Figure 7(b)). The logarithm model (solid line) shows the best agreement with the 

experimental data. The two stages presented in the Figure 7(b) corresponds with the 

formation of two kinds of space charge according to Uhlig’ model. In the first stage, 

where oxidation rate is very fast, the space charge consists of electrons trapped at the 

available imperfection or impurity sites in the oxide. In the second stage, the space charge 

has a decreasing fraction of the available sites exhibiting charge as the oxide thickens. 

We have exemplarily sketched the mechanism in Figure 7(c). The start point is a metallic 

Ga full of electrons (black circles) below a native oxide with imperfection or defects 

(white circles). In the first stage electrons from Ga moves through vacancies of the oxide 

until they reach the oxide-air interface and ionize oxygen atoms (red circles). These ions 

diffuse through the oxide until the reach the oxide-metal interface and react with the Ga 

atoms of the metal. In the second stage, although, the mechanism does not change, the 

rate falls with time. 

It is worth mentioning that the logarithmic model was developed for thin films and bulk 

materials and not for nanomaterials. In those cases, size effects are obviously expected. 

Although, there are some experimental studies of oxidation of NPs, nowadays there is not 

a general theory to extrapolate the oxidations kinetics that takes place in bulk materials 

to their nanosize counterparts. The main cause is the lack of constants and parameters that 

could intensely change with the diameter of the NPs such as: activation energies, diffusion 

constants, lattice parameters, work functions etc. 

Nevertheless, the basic arguments used to explain the logarithmic growth of the oxide 

layer in a thin film seems valid for a nanostructure.  They can be explained with the CM 

theory that include the logarithmic model62. Up to our knowledge, there is no conclusive 

studies about the oxidation kinetics of Ga thin films within the framework of the CM 

theory. We hypothesize that a nanoparticle may have more resistance to oxidation than a 

thin film due to the reduction of defects but further investigations would be necessary to 

compare both scenarios. 
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According to our data, the model that best matches the oxide thickness growth as a 

function of the oxidation time is the logarithmic model. This law allows us to accurately 

control the maximum plasmon resonance wavelength in some dozens of nm. 

 

4. Conclusions 

We have studied the effect of the variation of the Ga2O3 shell thickness on the 

plasmonic properties of the Ga NPs via DDA simulations. The maximum plasmon 

resonance wavelength redshifts several nm with a small decrease in the intensity of the 

Qext. Experiments have been carried out to confirm those results by means of thermal 

treatments varying both the temperature and the annealing time. SE has been used to 

determine the wavelength of the LSPR of the out-of-plane mode. The increase of the 

Ga2O3 thickness has been demonstrated by XPS measurements. Both methods show that 

the metallic core of the Ga NPs reduces with the increasing temperature and time. We 

have estimated the thickness of the Ga2O3 after the oxidation processes by using the 

simulations and the experimental data. Furthermore, we have investigated the 

mechanisms involved in the oxidation rate with time, which follows a logarithmic model. 

This study opens the possibility of tuning the LSPR of Ga NPs in the UV range by 

oxidation processes at low temperatures without affecting the near and far-field 

plasmonic response significantly. 
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