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Abstract Eukaryotic genes generate multiple RNA transcript isoforms though alternative

transcription, splicing, and polyadenylation. However, the relationship between human transcript

diversity and protein production is complex as each isoform can be translated differently. We

fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we

term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed

regulatory features that control ribosome occupancy and translational output of each transcript

isoform. We extracted a panel of 5¢ and 3¢ untranslated regions that control protein production

from an unrelated gene in cells over a 100-fold range. Select 5¢ untranslated regions exert robust

translational control between cell lines, while 3¢ untranslated regions can confer cell type-specific

expression. These results expose the large dynamic range of transcript-isoform-specific

translational control, identify isoform-specific sequences that control protein output in human cells,

and demonstrate that transcript isoform diversity must be considered when relating RNA and

protein levels.

DOI: 10.7554/eLife.10921.001

Introduction
Eukaryotic genes can produce a staggering diversity of messenger RNA products. In humans, there

is a median of five annotated transcript isoforms per gene, with more than 80 annotated isoforms in

some cases (Ensembl release 75). These transcript isoforms arise from the combined action of alter-

native transcription initiation, splicing and cleavage, and polyadenylation, which are often cell type

specific (Barbosa-Morais et al., 2012; Mele et al., 2015; Merkin et al., 2012; Wang et al., 2008;

Xiong et al., 2015; Zheng and Black, 2013). As each of these transcript isoforms may in principle

harbor a unique set of translational control elements, gene-level expression, which averages out the

translational potential of each individual transcript isoform, may not be an accurate measure of pro-

tein levels. Since changes in both translation and splicing are linked to numerous human disorders, it

is critical to understand the relationship between the two (Maslon et al., 2014; Piccirillo et al.,

2014; Ruggero, 2013; Xiong et al., 2015).

Eukaryotic mRNAs are decorated with diverse sequence features that can control translation,

which can vary between transcript isoforms (de Klerk and ’tHoen, 2015; Ingolia et al., 2011;

Sterne-Weiler et al., 2013). Classic examples of translational control include upstream ORFs

(uORF)-mediated translational control of yeast GCN4 (Hinnebusch, 2005), protein binding such as

the iron regulatory protein (Gray and Hentze, 1994), and the action of micro-RNAs (Nottrott et al.,

2006; Wilczynska and Bushell, 2015) or DEAD-box proteins such as eIF4A and Ded1

(Chuang et al., 1997; Hinnebusch and Lorsch, 2012; Sen et al., 2015). Alternative 50 leader
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sequences, uORFs, and select tandem 30 untranslated region (UTR) isoforms have been demon-

strated to influence protein production (Brar et al., 2012; Hinnebusch, 2005; Ingolia et al., 2011;

Mayr and Bartel, 2009; Sandberg et al., 2008; Zhang et al., 2012). Any of these features may in

principle be different between transcript isoforms, but the prevalence and dynamic range of iso-

form-specific translational control across the human genome is currently unknown.

Previous work measuring genome-wide translation in human cells has focused largely on the rela-

tionship between gene-level mRNA abundance and protein levels, which is blind to the contribution

of transcript isoforms. Ribosome profiling is not well-suited for measuring transcript isoform-specific

translation, primarily due to the short ~30 bp length of ribosome-protected fragments (Ingo-

lia, 2014). Prior attempts to characterize isoform-specific translation have measured the effects of 50

end diversity in yeast (Arribere and Gilbert, 2013) and 30 end diversity in mouse cells (Spies et al.,

2013), or splicing differences between cytoplasmic and aggregate polysomal mRNAs (Maslon et al.,

2014; Sterne-Weiler et al., 2013). However, sequencing just the ends of transcripts cannot distin-

guish between transcript isoforms of the same gene harboring degenerate termini. In addition,

aggregating polysome fractions averages lowly- and highly-ribosome-associated messages. There-

fore, a different strategy is required to understand how the diversity of the human transcriptome

impacts translational output.

Here, we adapt a classic approach of polysome profiling coupled with global gene expression

analysis (Arava et al., 2003) to measure transcript-isoform specific translation using deep sequenc-

ing, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). By using high gradient

eLife digest To produce a protein, a gene’s DNA is first copied to make molecules of

messenger RNA (mRNA). The mRNAs pass through a molecular machine known as the ribosome,

which translates the genetic code to make a protein. Not all of an mRNA is translated to make a

protein; the “untranslated” regions play crucial roles in regulating how much of the protein is

produced.

In animals, plants and other eukaryotes, many mRNAs are made up of small pieces that are

“spliced” together. During this process, proteins are deposited on the mRNA to mark the splice

junctions, which are then cleared when the mRNA is translated. Many different mRNAs can be

produced from the same gene by splicing different combinations of RNA pieces. Each of these

mRNA “isoforms” can, in principle, contain a unique set of features that control its translation.

Hence each mRNA isoform can be translated differently so that different amounts of the

corresponding protein product are produced. However, the relationship between the variety of

isoforms and the control of translation is complex and not well understood.

To address these questions, Floor and Doudna measured the translation of over 60,000 mRNA

isoforms made from almost 14,000 human genes. The experiments show that untranslated regions

at the end of the mRNA (known as the 30 end) strongly influence translation, even if the protein

coding regions remain the same. Furthermore, the data showed that mRNAs with more splice

junctions are translated better, implying an mRNA has some sort of memory of how many junctions

it had even after the protein markers have been cleared.

Next, Floor and Doudna inserted regulatory sequences from differently translated isoforms into

an unrelated “reporter” gene. This dramatically changed the amount of protein produced from the

reporter gene, in a manner predicted by the earlier experiments. Untranslated regions at the

beginning of the mRNAs (known as the 50 end) controlled the amount of protein produced from the

reporter consistently across different types of cells from the body. On the other hand, the 30 regions

can tune the level of protein production in particular types of cells.

Floor and Doudna’s findings demonstrate that differences between mRNA isoforms of a gene

can have a big effect on the level of protein production. Changes in the types of mRNA made from

a gene are often associated with human diseases, and these findings suggest one reason why.

Additionally, the ability to engineer translation of an mRNA using the data is likely to aid the

development of mRNA-based therapies.

DOI: 10.7554/eLife.10921.002
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resolution and sequencing depth, this approach yields polysome profiles for over 60,000 individual

transcript isoforms representing almost 14,000 protein coding genes. We observe frequent intron

retention on ribosome-associated transcripts, even in high-polysome fractions, identifying a popula-

tion of retained but not nuclear-detained introns (Boutz et al., 2015). Properties of 30 untranslated

regions predominate over the 50 leader sequence as the driving force behind differential polysome

association for transcript isoforms of the same gene among the transcript features tested. We show

that regulatory sequences differentially included in transcript isoforms of the same gene are modular

and can trigger differences in the translation of reporters spanning two orders of magnitude. These

findings provide a lens through which to ascribe functional consequences to RNA-seq-generated

transcriptomes. Moreover, TrIP-seq analysis uncovers regulatory elements that can be utilized to

tune translation of synthetic messages robustly in cells.

Results

TrIP-seq measures transcript isoform-specific translation in human cells
We determined the ribosomal association of transcript isoforms by sequencing transcripts cofractio-

nating with different numbers of ribosomes with sufficient depth to determine isoform abundances,

as was performed at the gene level in yeast (Arava et al., 2003). We treated HEK 293T cells with

cycloheximide to stall translation and fractionated the cytoplasm into ribosome-containing samples

including one to eight or more ribosomes (Figures 1A and Figure 1—figure supplement 1A; see

Materials and methods for details). We made RNA sequencing libraries from each fraction in biologi-

cal duplicate and obtained transcript-level abundances using the Cufflinks suite (Figure 1—source

data 1 and 2; [Trapnell et al., 2010]). Clustering of the samples recapitulates the gradient order

(Figure 1B), indicating the polysome profile was accurately fractionated. Four subgroups emerge

from this clustering: the 80S (monosome), low polysomes (two-four ribosomes), high polysomes

(five-eight+ ribosomes), and total cytoplasmic RNA. We tested the robustness of the clustering of

samples by computing the average Jaccard distance between clusters from data subjected to three

different resampling methods, which was �0.75, suggesting stable clusters (Figure 1—figure sup-

plement 1G; Materials and methods). This suggests that in cells, transcript isoforms are predomi-

nantly poorly- or highly-ribosome associated, causing low polysomes to cluster away from high

polysomes, which could be have numerous biological origins including highly abundant short ORFs.

To confirm the sequencing data, we first analyzed beta-actin (ACTB), which is known to be heavily

translated with many ribosomes on each message, and migrates with high polysomes in a gradient

(Figure 1C; (Sterne-Weiler et al., 2013; Zhang et al., 2015). However, ACTB only has one transcript

isoform, so we examined ATF4, which has one dominant isoform exhibiting low-polysome associa-

tion in TrIP-seq data and by RT-PCR (Figure 1C), consistent with it being translationally repressed in

the absence of cellular stress (Harding et al., 2000). We then analyzed eukaryotic elongation factor

1 beta 2 (EEF1B2), which has three isoforms with the same coding sequence but alternative 50 lead-

ers as a representative gene that exhibits isoform-specific ribosome association (Figure 1—figure

supplement 1B). The isoform-specific polysome profiles and RT-PCR conducted from polysome frac-

tions agree qualitatively, validating the accuracy of the isoform-level quantifications (Figure 1D).

Weaker amplification of the longer isoform (EEF1B2-003) in high polysomes may be due to PCR bias

towards smaller amplicons (Walsh et al., 1992), and replicate experiments show EEF1B2-003 pres-

ent in high polysomes (Figure 1—figure supplement 1C). We additionally validated the TrIP-seq

data using qRT-PCR from polysome fractions and find that the two measurements agree for both

EEF1B2 and SRSF5 (Figure 1—figure supplement 2). Both coding mRNAs and long noncoding

RNAs (lncRNAs) associate with ribosomes (Ingolia et al., 2014; van Heesch et al., 2014), so we

measured their polysomal abundance. Protein-coding genes and isoforms are found across the poly-

some, but noncoding and lncRNA genes are predominantly in the low polysome fractions indicating

that they are generally weakly ribosome associated or in other large macromolecular complexes

(Figure 1E and Figure 1—figure supplement 1D).

To determine whether TrIP-seq is a measure of translation as opposed to cryptic association with

large macromolecular complexes or stalled ribosomes (Darnell et al., 2011; Ishimura et al., 2014),

we compared TrIP-seq data to ribosome profiling and proteomics datasets. First, we reanalyzed a

ribosome profiling dataset from HEK 293T cells and compared the number of ribosome-protected
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Figure 1. Transcript Isoforms in Polysomes sequencing (TrIP-seq) measures transcript isoform specific translation. (A) HEK 293T cells were treated with

cycloheximide and the cytoplasmic fraction was extracted and applied to a sucrose gradient, which was further fractionated into individual polysomes

that were converted into sequencing libraries. (B) Intersample clustering recapitulates the gradient order of polysomes, indicating the sequenced

fractions are faithful to the gradient profile. (C,D) RT-PCR analysis and transcript-level quantification for ACTB and ATF4 (C) and three transcripts of

EEF1B2 (D) demonstrating concordance of sequencing and transcript-specific RT-PCR. TPM – transcripts per million. *nonspecific amplicon. (E)

Members of transcript classes with more than 100 reads in indicated fractions show that coding genes are represented across the polysome while

noncoding genes are preferentially in low polysome fractions. (F) Spearman’s correlation (RS) between gene (left) or isoform (right) read counts from

ribosome profiling or TrIP-seq. See also Figure 1—figure supplement 1 and Materials and methods for calculation of TrIP-seq polysome counts.

DOI: 10.7554/eLife.10921.003

Figure 1 continued on next page
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fragments to a weighted sum of the TrIP-seq polysome reads (Materials and methods; nribo �2)

(Sidrauski et al., 2015). We observe a strong correlation between ribosome profiling and TrIP-seq

at the gene level (RS = 0.88; Figure 1F). However, at the isoform level, the correlation decreases (RS

= 0.47), which is worse than the correlation between TrIP-seq replicates (RS = 0.90; Figure 1—figure

supplement 1E), suggesting the discrepancy is not due to variability in TrIP-seq but instead is likely

due to known issues quantifying transcript isoforms in ribosome profiling (Ingolia, 2014). We next

computed the translation efficiency (TE) of ribosome profiling and TrIP-seq data by dividing by cyto-

plasmic RNA levels. TE measured by the two methods correlated with RS = 0.24, perhaps due to var-

iability in culture conditions or in either technique. We compared the data of Sidrauski et al to an

unpublished ribosome profiling dataset in 293T cells from the Yoon-Jae Cho lab. Ribosome-pro-

tected fragments between experiments correlate with RS = 0.78, while TE has a substantially lower

correlation of RS = 0.41, suggesting biological or technical variability disproportionately affects TE.

We then compared TrIP-seq data to protein abundances from HEK 293T cells, and find that the two

datasets correlate (RS = 0.57, Figure 1—figure supplement 1F, (Geiger et al., 2012), which is bet-

ter than RNA-seq (RS = 0.45; not shown). The observations that most translational stalling in mam-

malian cells is transient and translation elongation rates are homogeneous (Ingolia et al., 2011),

TrIP-seq appears to underestimate rather than overestimate protein abundance (Figure 1—figure

supplement 1F), and TrIP-seq correlates well at the gene-level with ribosome profiling (Figure 1F)

suggest that TrIP-seq primarily measures translating ribosome association as opposed RNAs bound

to other large complexes.

Diverse human isoform-specific polysome association patterns
To extract global trends in isoform-specific translation, we hierarchically clustered transcript isoform

polysome profiles and selected eight clusters that are representative of general trends in the data

(Figure 2; Materials and methods). The depth of sequencing (Figure 1—figure supplement 3), aug-

mented by the fractionation strategy, enables detection of 62,703 transcript isoforms in the poly-

some profile (Figure 2—source data 1). Isoforms in the observed clusters exhibit diverse average

patterns across polysomes (Figure 2A,B), from clusters 1 and 2, which contain isoforms primarily in

high polysomes, to cluster 3 with isoforms in the middle, to clusters 6 and 7 where isoforms are in

low polysomes. Independent clustering of the two biological replicate TrIP-seq datasets shows that

the high- and low-polysome clusters (1, 2 and 6) appear more robust when comparing between aver-

aged and individual replicate clusterings (Figure 2—figure supplement 1A). Many clusters have sim-

ilar total polysome abundance but different distributions, indicating that to obtain accurate

measurements of isoform-specific translatability it is crucial to fractionate the polysome profile.

Surprisingly, the poorly translated cluster 7, which has ~9,000 transcripts, contains a similar num-

ber of annotated retained intron or protein-coding isoforms (Figure 2C). We queried the gene

ontology (GO) terms associated with each cluster and found that the poorly translated clusters 6 and

7 are enriched for translation and splicing genes (Figure 2—figure supplement 1B), implicating the

alternative splicing-nonsense-mediated decay (AS-NMD) pathway (Jangi et al., 2014; Lareau et al.,

2007). However, not all retained intron transcripts are subject to NMD (Boutz et al., 2015;

Gohring et al., 2014), and we also observe retained intron transcripts in the best-translated clusters

(1 and 2), indicating at least some of the introns may be translated. In sum, clustering of isoform

Figure 1 continued

The following source data and figure supplements are available for figure 1:

Source data 1. Gene-level abundances for all Ensembl 75 annotated human genes across all sequenced polysome fractions.

DOI: 10.7554/eLife.10921.004

Source data 2. Transcript isoform abundances for all Ensembl 75 annotated human transcripts across all sequenced polysome fractions.

DOI: 10.7554/eLife.10921.005

Figure supplement 1. Extended TrIP-seq validation.

DOI: 10.7554/eLife.10921.006

Figure supplement 2. Extended validation of TrIP-seq isoform abundances across polysome fractions using qRT-PCR.

DOI: 10.7554/eLife.10921.007

Figure supplement 3. Read Tracking Across the Sequencing Analysis Pipeline.

DOI: 10.7554/eLife.10921.008
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Figure 2. Clustering of transcript distributions yields eight major clusters with diverse behavior across the

polysome profile. (A) The average relative abundance of all isoforms in each cluster across polysomes is shown.

Error is s.d. (B) Hierarchical clustering of 62,703 transcript isoform distributions across the polysome profile and

cytoplasmic fraction. Yellow: above isoform average, cyan: below isoform average. (C) Transcript type distribution

per cluster from Ensembl-annotated biotypes. Dotted lines mark the abundance of each transcript type in all

isoforms that went in to the clustering. See also Figure 1—source data 1 and 2 and Figure 2—figure

supplement 1.

DOI: 10.7554/eLife.10921.009

The following source data and figure supplement are available for figure 2:

Source data 1. Variance stabilized transcript isoform abundances (see Materials and methods) and cluster number

for all Ensembl 75 annotated human transcripts across all sequenced polysome fractions.

DOI: 10.7554/eLife.10921.010

Figure supplement 1. Further information on TrIP-seq clusters.

DOI: 10.7554/eLife.10921.011
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abundance distributions across polysomes immediately provides insight into the diverse patterns of

ribosome association by individual isoforms and transcript types in cells, and reveals intron-rich clus-

ters of transcripts associated with polysomes that escape nuclear detention.

3¢ UTRs and introns drive isoform-specific polysome association
We reasoned we could extract features regulating the translation of a gene by comparing transcript

isoforms of the same gene that are well- or poorly-translated. We selected 24 features to explore

that are involved in translational control, such as the length of the coding sequence and untranslated

regions, predicted secondary structure, and microRNA binding sites. As their average polysome pro-

files and composition are broadly similar (Figure 2), we merged clusters 1 and 2 to generate a larger

pool of high-polysome isoforms (Figure 3A), and compared these to cluster 6, representing poorly

translated isoforms in low polysomes. We then compared transcript isoforms of the same gene that

are in high- and low-polysome clusters, or gene-linked isoforms, to extract transcript features that

influence translation. The number of gene-linked isoforms per feature per set varies between 569

and 6491. We then measured the effect size and calculated statistical significance for all features

between gene-linked isoforms (Figures 3B and Figure 3—figure supplement 1A;

Materials and methods; [Cliff, 1993]).

We find that longer coding sequences and highly abundant versions of gene-linked isoforms are

biased towards high polysomes, likely because shorter coding sequences cannot accommodate as

many ribosomes (Figure 3B and Figure 3—figure supplement 1A). However, the length of the cod-

ing sequence is not the sole determinant of polysome association, since the ribosome density (mea-

sured by dividing the weighted sum of TrIP-seq polysome reads by the number of cytoplasmic

reads) is also higher in gene-linked isoforms found in high polysomes (Figure 3B). We also find that

transcripts from gene-linked isoforms with more exons also tend to be better translated, as was

observed using reporter genes (Nott et al., 2003; 2004). This is not due to overall transcript length,

as there is no significant difference between transcript length in gene-linked isoforms, reflecting a

positive influence of splicing on translation. Highly translated isoforms contain fewer rare codons on

average, but contain more stretches of rare codons, perhaps indicating a need for translational paus-

ing (Figure 3B). The observation that exons promote translatability has been shown for select genes,

and here we show that this extends across the human genome.

One of the strongest effects seen on polysome association of gene-linked isoforms comes from

the length and content of the 30 UTR (Figure 3B and Figure 3—figure supplement 1A). Specifically,

we find that gene-linked 30 UTRs in low polysomes are considerably longer than those on high poly-

somes (mean length 1551 nt versus 982 nt). There are numerous regulatory elements contained

within 30 UTRs, including microRNA binding sites, AU-rich elements, and protein-binding sites (Bar-

tel, 2009; Szostak and Gebauer, 2013). The fraction of the 30 UTR containing AU-rich elements is

increased in low polysome gene-linked isoforms, possibly due to translational repression

(Brooks and Blackshear, 2013; Moore et al., 2014). Conserved predicted binding sites for miRNAs

(Garcia et al., 2011) are also more abundant in poorly translated gene-linked isoforms, but this

could be due to a correlation between 30 UTR length and the number of miRNA binding sites. We,

therefore, filtered the miRNAs to those bound to AGO1 or AGO2 in HEK 293T cells (Ender et al.,

2008). In this HEK 293T-expressed miRNA set, the difference for both the number of conserved

miRNA binding sites and their score increases between gene-linked isoforms, suggesting that

miRNA binding may be functionally relevant in this context (Figure 3B and Figure 3—figure supple-

ment 1A). Increased AU-rich elements and miRNA binding should lead to decreased half-life for low

polysome isoforms, which is borne out in half-life comparisons (Figure 3B and Figure 3—figure sup-

plement 1A; [(Tani et al., 2012]).

Surprisingly, gene-linked isoforms in high polysomes have increased predicted structure both at

the cap and in 75-nucleotide windows in the 50 leader. There are at least three possibilities that

could explain this result. First, RNA structures can both repress or promote translation in a context

dependent manner (Xue et al., 2015), so it is possible that some isoforms are being driven to high

polysomes by recruitment of transacting factors. Second, recent studies of global RNA secondary

structure have consistently observed different structure in cells than in vitro (Rouskin et al., 2014;

Spitale et al., 2015). Lastly, HEK 293T cells may translate messages with inhibitory 50 leaders more

efficiently than other cell types. In contrast, we find no significant dependence for the length of the
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Figure 3. Effect of transcript features on polysome association. (A) Meta-transcript distributions for two high polysome clusters (1 and 2) and one low

polysome cluster (6). Clusters 1 and 2 were pooled for the analysis in (B). (B) The distance between distributions for 24 different transcript features

evaluated for transcripts strongly or weakly associated with polysomes. Distance is the nonparametric effect size, measured as the dimensionless

quantity Cliff’s d (see Materials and methods) and error bars are bootstrapped 95% confidence intervals. All differences except 50 UTR and transcript

length are significant at the p = 0.001 level based on two-tailed Mann-Whitney U-tests (Figure 3—figure supplement 1A). See Materials and methods

for a description of all features and how they were tabulated. UTR – untranslated region; CDS – coding sequence. (C) Enrichment of either cognate

(ATG start codon) or non-cognate (non-ATG) uORFs in high polysome versus low polysome clusters. Density is uORFs per 100 isoforms. See also

Figure 3—figure supplement 1.

DOI: 10.7554/eLife.10921.012

The following figure supplement is available for figure 3:

Figure 3 continued on next page
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50 leader region on polysome association based on this comparison (Figures 3B and Figure 3—fig-

ure supplement 1A). However, isoforms containing 50 leaders over 1000 nucleotides long are poorly

ribosome-associated relative to shorter 50 leaders (Figure 3—figure supplement 1B) and cluster 7,

which is associated with few ribosomes, contains longer 50 leaders (Figure 3—figure supplement

1C). It is likely that more subtle features of the 50 leader also influence translatability, as in the exam-

ples in Figure 1D.

Upstream open reading frames (uORFs) can positively or negatively influence translation

(Brar et al., 2012; Calvo et al., 2009; Ferreira et al., 2013; Hinnebusch, 2005). We, therefore,

counted the number of experimentally determined uORFs (Wan and Qian, 2014) in each cluster and

observe surprisingly complex behavior. Cognate uORFs (those starting with ATG) promote or

repress translation, while noncognate uORFs generally promote translation (Arribere and Gilbert,

2013; Brar et al., 2012). Along these lines, we find that cluster 1 (high polysomes) is enriched for

cognate and noncognate uORFs while cluster 6 (low polysomes) is enriched for cognate uORFs.

However, cluster 2 (high polysomes) is enriched for only noncognate uORFs, indicative of the com-

plex and idiosyncratic behavior of uORFs. Taken together, we find predominant influences for the 30

UTR and the number of introns in determining polysome occupancy of gene-linked transcript iso-

forms in human cells, while a diversity of other features can influence translatability to a lesser

extent.

Predicting translation changes during preimplantation human
development
RNA-seq characterizes the isoform diversity of a sample, but not the functional consequences of this

diversity. We reasoned that TrIP-seq data could be used to predict which isoform changes are likely

to lead to translation changes in other systems. We chose a human embryonic dataset containing

124 individual cells from seven preimplantation developmental stages and reprocessed these data

to directly compare to TrIP-seq data (Materials and methods; [Yan et al., 2013]). We mapped tran-

scripts expressed during each developmental stage onto the TrIP-seq clusters, to attempt to gain

insight into global translational properties in human embryos (Figure 4A). In embryos, our analysis

predicts a shift towards the extremes of translation, with an increase in the percent of transcript iso-

forms that are both highly (e.g. clusters 1 and 2) and lowly (e.g. cluster 6) translated isoforms in HEK

293T cells (Figure 4A). Localized translation is widespread in development, and it is possible that

the observed increase in poorly translated isoforms reflects a greater need for translational control

(Besse and Ephrussi, 2008; Jung et al., 2014). It is also possible that translation in early embryos is

differentially regulated than in HEK 293T cells, which is now testable by applying TrIP-seq to other

cell types, yielding cell type-specific translational control programs.

We then collected genes with isoforms that change between early and late embryonic stages.

Clustering of abundances for 45,895 isoforms across embryogenesis yielded seven clusters with vary-

ing profiles, which we then analyzed by comparing transcripts of the same gene located in different

embryonic clusters as before (Figure 4—figure supplement 1A). These isoforms were filtered by

those that move between low- and high-polysome clusters in the TrIP-seq data, yielding 366 isoform

pairs belonging to 270 genes that are developmentally regulated and exhibit differential translation

in HEK 293T cells. For example, the CSDE1 gene expresses one isoform in oocytes, early develop-

ment and in human ES cells, which is poorly translated (CSDE1-002), but a second appears following

fertilization that is well-translated (CSDE1-007; Figure 4B,C). As global zygotic transcription begins

in the two-cell stage (Vassena et al., 2011; Yan et al., 2013), it is possible that the alternative

CSDE1 isoform is supplied by the spermatid (Fischer et al., 2012; Soumillon et al., 2013) or that it

may be precociously transcribed. We also present three other genes (EIF4A2, RNF170, and

TBC1D15) that show stage-specific expression in the embryo data and differential polysome associa-

tion in HEK 293T cells (Figure 4—figure supplement 2). Therefore, widespread changes at the

Figure 3 continued

Figure supplement 1. Further details of high versus low polysome associated transcript isoform comparisons.

DOI: 10.7554/eLife.10921.013
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Figure 4. Predicted isoform-specific translational control changes during human embryogenesis. (A) For each

embryonic stage, transcripts are mapped onto all eight TrIP-seq clusters, as in Figure 2. The percentage of

transcripts mapping to each cluster per stage is then calculated, and compared to the percentage for TrIP-seq

data. hESC – human embryonic stem cell; p0, p10 – passage zero or passage ten. Error is s.d. between single cells

at each embryonic stage or between TrIP-seq biological replicates. (B) Expression levels for two transcripts of

CSDE1 across embryonic development and polysome fractions demonstrating a switch in translational status. Error

is S.D. TPM – transcripts per million. (C) Diagram of two transcript isoforms of CSDE1. Regions different between

the two isoforms are in yellow and select shared intronic regions have been shortened for clarity. See also

Figure 4—figure supplement 1.

DOI: 10.7554/eLife.10921.014

The following figure supplements are available for figure 4:

Figure supplement 1. Clustering of human preimplantation embryo data

DOI: 10.7554/eLife.10921.015

Figure supplement 2. Additional examples of transcript isoforms that exhibit differential expression in human

embryos and differential translation in TrIP-seq data.

DOI: 10.7554/eLife.10921.016
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transcriptome level during human embryogenesis may produce concomitant changes in protein pro-

duction, which can now be predicted using TrIP-seq data.

Tunable translation by isoform-specific regulatory elements
Engineering the translation of a transcript without altering its coding sequence is desirable when

introducing exogenous mRNA to cells or patients. We hypothesized that the regulatory features we

discovered by comparing highly to lowly translated isoforms (Figure 3B) should be transferrable to

an arbitrary reporter. Nine different 50 leaders and eight different 30 UTRs derived from gene-linked

isoforms (Figure 3) were appended onto Renilla luciferase with a synthetic poly-A60 tail, which were

individually in vitro transcribed, capped, and 20-O-methylated (Figure 5—figure supplement 1A

and Materials and methods). We elected to transcribe RNA both because plasmid-encoded tran-

scripts can be heterogeneous and to mimic a scenario where one is delivering RNA to affect cell

activity or for therapeutic intervention (Kormann et al., 2011; Warren et al., 2010).

All tested 50 leader sequences modulate protein production by the luciferase reporter in concor-

dance with the observed polysome association by TrIP-seq, when transfected into HEK 293T cells

(Figure 5A,B). The three 50 leaders from EEF1B2 alter luciferase production in a stepwise manner by

roughly a factor of 20. The TrIP-seq profiles from NAE1 are the most distinct among those tested,

and the two luciferase constructs differ in output by two orders of magnitude. Surprisingly, the two

50 leaders from RICTOR differ by only nine nucleotides, yet still exhibit differential protein produc-

tion, possibly due to altered local RNA secondary structure near the 50 cap (Figure 5—figure sup-

plement 1B). Both 50 leaders from SRSF5 contain two uORFs, but they are close (SRSF5-002) or far

(SRSF5-005) from the start codon (Figure 5—figure supplement 1A), suggesting reinitiation follow-

ing uORF translation may be impacting luciferase production (Grant et al., 1994; Hinne-

busch, 2005). Not only do these data provide strong evidence that TrIP-seq data can be used to

predictably tune the output of heterologous mRNAs using isoform-specific untranslated regions, it

additionally validates that the polysome profiles observed are connected to translational output.

We additionally selected eight 30 UTRs from four sets of gene-linked isoforms to test their ability

to control translation, and find good agreement with the TrIP-seq polysome abundance for two out

of four 30 UTR pairs (Figure 5C,D). In all cases, replacing the 30 UTRs leads to decreased protein pro-

duction compared to the short 30 UTR in the control RNA. The paired 30 UTRs of NAB1 and RICTOR

each differ by two kilobases, and a factor of 35 and 44 in luciferase output, respectively, indicating

that 30 UTRs can strongly modulate protein production (Mayr and Bartel, 2009; Sandberg et al.,

2008). However, the two other paired 30 UTRs, despite also differing by two kilobases each, are not

distinguishable at the protein production level in cells. The two tested CCNE2 isoforms differ in

both the 50 and 30 UTRs, so it is possible that the isoform-level translational control is occurring via

the 50 UTR, and there is a small but not significant difference between the two NDC1 30 UTRs, sug-

gesting regulation of this 30 UTR may be subtle. We also find a positive relationship between the

average number of ribosomes on each transcript isoform in TrIP-seq and the luciferase fold change

(Figure 5E). In sum, we show that elements found to control translation at the isoform level using

TrIP-seq can be grafted on to heterologous coding sequences to control translation over a range of

two orders of magnitude in human cells.

Translational control of reporters by the 5¢ leader is robust between
cell types
As different cell types contain different macromolecules, they may also translate messages with the

same regulatory features differently. We, therefore, tested the panel of gene-specific untranslated

regions fused with luciferase (Figure 5) in four additional cell lines: A549 (lung carcinoma), K-562

(chronic myelogenous leukemia), MCF-7 (breast adenocarcinoma), and Hep G2 (hepatocellular carci-

noma). We additionally tested HEK 293T cells at a shorter timepoint of 2 hr, to explore the role of

RNA stability in the observed luciferase output.

Remarkably, the luciferase production from all tested 50 leader reporters was qualitatively similar

in all six conditions (Figure 6A). However, the difference between the two RICTOR 50 leader sequen-

ces is decreased. In contrast, the 30 UTR reporters show considerably more variability (Figure 6B).

Calculation of the coefficient of variation of all reporters across all six conditions highlights the

greater variability found in 30 UTR reporters (Figure 6—figure supplement 1A). We additionally
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Figure 5. Regulatory UTR sequences are sufficient to control translation of a heterologous reporter. HEK 293T

cells were transfected with indicated RNAs and Renilla luciferase units are plotted. (A–D) Renilla light units

normalized to control UTR mRNA (A,C) and corresponding traces from TrIP-seq data (B,D) for 50 leaders (A,B) or 30

UTRs (C,D) exhibit differential protein production over two log-units in cells. Inset graphs show comparisons

between mock-transfected cells and the lowest output mRNAs. Error bars are S.E.M. from at least four biological

and three technical replicates (twelve total; A) or three biological and three technical replicates (nine total; B). (B,

D) Error is S.D. Rluc – Renilla luciferase units; UTR – untranslated region. (E) Luciferase fold change versus the

average number of ribosomes on each transcript, computed by averaging the plots in B and D. See also

Figure 5—figure supplement 1.

DOI: 10.7554/eLife.10921.017

The following figure supplement is available for figure 5:

Figure supplement 1. Diagrams of isoforms differentially represented in gigh versus low polysomes.

DOI: 10.7554/eLife.10921.018
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compared HEK 293T cells at 2-hr and 8-hr post-transfection to ascertain differences in RNA stability.

Most 50 leader reporters are similar between these two timepoints (Figure 6A), but 30 UTR reporters

show larger changes. Specifically, NAB1-001 and RICTOR-001 generate much more luciferase at the

2-hr timepoint, suggesting the long UTRs of these genes may promote RNA degradation leading to

decreased protein at eighteen hours.

Thus, translational control by the 50 leader sequence is robust to changes in macromolecular com-

position across the cell lines tested, perhaps because the abundance of most translation initiation

factors is high (Kulak et al., 2014), which will buffer against small changes in their expression level.

However, factors interacting with 30 UTRs, specifically miRNAs, can vary considerably between cell

types, and this variability may be the cause of the diverse behavior of the 30 UTR reporters across

cell lines. Therefore, at least for the panel tested here, transcript 50 leaders confer robust control of

Figure 6. Translational control by transcript 5¢ leader sequences is robust across cell types. (A,B) Five cell lines in

six conditions were transfected with Renilla luciferase fused to the UTR indicated and luciferase units normalized

to control UTR mRNA. Both 50 leaders (A) and 30 UTRs (B) were tested. Error is S.E.M. between three technical and

three biological replicates (nine total) per condition. See also Figure 6—figure supplement 1.

DOI: 10.7554/eLife.10921.019

The following figure supplement is available for figure 6:

Figure supplement 1. Changes in protein production conferred by 5¢ UTRs are more robust across cell lines than

those conferred by 3¢ UTRs.

DOI: 10.7554/eLife.10921.020

Floor and Doudna. eLife 2016;5:e10921. DOI: 10.7554/eLife.10921 13 of 25

Research article Computational and systems biology Genes and chromosomes

http://dx.doi.org/10.7554/eLife.10921.019
http://dx.doi.org/10.7554/eLife.10921.020
http://dx.doi.org/10.7554/eLife.10921


protein production across cell types, while transcript 30 UTRs may be better suited to tune the pro-

duction of a protein to a particular cell type.

Discussion
In this work, we showed that the dynamic range of transcript-isoform-specific translational control

spans at least two orders of magnitude in human cells (Figure 5), indicating that it is crucial to take

isoform-level effects into account when assessing translation in organisms with extensive alternative

transcript processing (Figure 7A). Globally, we find that alternative 30 UTRs broadly influence transla-

tion, with longer isoforms of the same gene associated with lower protein production (Figure 3B).

We further show that regulatory regions are sufficient to control the translation of unrelated coding

sequences, enabling predictable tuning of translational output of arbitrary genes (Figures 5 and

Figure 7. Transcript processing has widespread effects on protein production. (A) The mapping between gene

and protein is complex, and RNA processing has a strong influence on the translatability of individual transcript

isoforms and therefore protein production. (B) Regulatory elements can be discovered by comparing transcript

isoforms that are differentially translated, and subsequently fused to heterologous genes to control protein output

in cells. ORF – open reading frame.

DOI: 10.7554/eLife.10921.021
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6B). We demonstrate that translational control conferred by a panel of 50 leaders is more robust

across cell types than 30 UTRs, suggesting predictable control of protein production. Future work

focused on measuring isoform-specific translation in different cell types will yield cell type-specific

regulatory sequences, which could then be used to engineer cell type-specific translation of mRNA,

as in derivation of pluripotent stem cells (Warren et al., 2010), or mRNA therapeutics

(Kormann et al., 2011).

Several observations indicate that TrIP-seq is a faithful measure of translation in cells. First, TrIP-

seq and ribosome profiling are highly correlated at the gene level (Figure 1F) and both ribosome

profiling and TrIP-seq correlate with mass spectrometric measurements of protein abundance

([Ingolia et al., 2009], Figure 1—figure supplement 1F). Second, protein-coding genes are

enriched in high ribosomal fractions (Figure 1E), while lncRNAs are found primarily in the low ribo-

somal fractions (Figure 1E and Figure 1—figure supplement 1D). Third, a systematic investigation

of translational stalling in mouse embryonic stem cells found this phenomenon to primarily be tran-

sient and not lead to ribosome accumulation on transcripts (Ingolia et al., 2011), although in specific

circumstances it can be more widespread (Darnell et al., 2011; Ishimura et al., 2014; Richter and

Coller, 2015). Fourth, known highly- and lowly-translated transcript isoforms are enriched in high-

and low-polysome fractions in TrIP-seq data (Figure 1C). Fifth, reads derived from stalled polysomes

would artificially inflate the apparent translatability, however, TrIP-seq primarily underestimates

rather than overestimates protein abundance (Figure 1—figure supplement 1F). Sixth, cryptic

’pseudo-polysomes’ induced by miRNA complexes would preferentially enhance polysome associa-

tion for long 30 UTR transcript isoforms (Maroney et al., 2006; Nottrott et al., 2006; Olsen and

Ambros, 1999; Thermann and Hentze, 2007), which is the opposite of what is observed

(Figure 3B). Lastly, transcript isoform changes found to lead to differential ribosome association

using TrIP-seq are sufficient to modulate the protein output from a reporter RNA in a manner pre-

dicted by the TrIP-seq data (Figure 5), indicating that transcript-specific ribosome association is a

correlate of protein output. Therefore, we conclude that TrIP-seq is a measure of transcript-specific

translation.

What are the mechanistic foundations of the observed transcript-specific translation? Each of the

different untranslated regions tested by reporter assays operate using different mechanisms. For

example, the three EEF1B2 transcript isoforms all share the same uORF, but alternative splicing

changes the distance between the uORF and the start codon, which can influence the efficiency of

downstream initiation (Grant et al., 1994; Hinnebusch, 2005). Globally, we found a large difference

between the 30 UTR lengths of poorly- versus well-translated isoforms by querying the prevalence of

features likely to influence translation (Figures 3 and 5). There are at least three possibilities for how

30 UTRs could influence translation. First, miRNA-mediated regulation targets the 30 UTR (Mayr and

Bartel, 2009; Sandberg et al., 2008). Second, numerous RNA binding proteins target the 30 UTR

through AU-rich elements or other specific binding sites and are known to influence translation,

mRNA decay and even protein localization (Berkovits and Mayr, 2015; Szostak and Gebauer,

2013; Zhao et al., 2014). Lastly, it is possible that increasing the length of the 30 UTR influences the

impact of the mRNA closed loop on translation initiation or reinitiation (Amrani et al., 2008;

Costello et al., 2015). Targeted work on specific 30 UTR isoform sets could test the different possi-

bilities for 30 UTR-mediated translational control. We additionally demonstrated isoform-specific

translational control for select 50 leaders (Figures 1 and 5) as was shown genome-wide in yeast,

where 50 leaders are short enough to directly sequence (Arribere and Gilbert, 2013), and find that

globally uORFs can both up- and down-regulate translation (Figure 3). However, we find a surpris-

ingly minor global dependence of other 50 leader features tested on translation. The mechanisms of

translational control of transcript isoforms therefore follow some general trends but are likely highly

idiosyncratic; these data empower investigations into the mechanisms underlying transcript-specific

translational control for thousands of human genes.

We predicted the consequences of transcript isoforms observed during human embryonic devel-

opment on protein production (Figure 4). We show that even small changes to transcripts can dra-

matically affect protein production (Figure 5), so changes at the isoform level (Figure 4) can

considerably affect protein abundances even if the gene-level RNA expression remains similar. The

application of TrIP-seq to different cell types should yield cell type-specific translation enhancer and

repressor elements, contributing to the understanding of cell type-specific translational control, and

augmenting our ability to precisely engineer translation in complex systems. If simpler sample
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preparation is desired, it is likely sufficient to sequence the cytoplasmic and monosome fractions, as

well as pooled two-four ribosome and five-eight+ ribosome fractions, as these cluster together

(Figure 1B). Accumulation of TrIP-seq data in additional cell types may enable building a holistic

model of translational control with isoform resolution in human cells.

We showed that the translation of an arbitrary gene, Renilla luciferase, can be controlled in a

manner predicted by TrIP-seq data over two orders of magnitude (Figure 5) and in different cell

types (Figure 6). These data can thus be used to select regulatory regions to control translation,

without redesign of the coding sequence of the message (Figure 7B). It may prove superior to use

30 UTRs to design cell type specific translation, as the repertoire of miRNAs and RNA-binding pro-

teins that may affect translation through the 30 UTR vary between cell types (Figure 6B). Indeed, in

Caenorhabditis elegans, 30 UTRs are sufficient to specify germline-specific expression of the attached

ORF (Merritt et al., 2008). Even without engineering of unnatural mRNAs, it may be possible to use

antisense oligonucleotides to direct splicing of poorly- or well-translated isoforms to adjust protein

expression in situ (Kole et al., 2012), for example to downregulate the oncogenic NAE1 gene

[Figure 5A, Xie et al., 2014]), which is currently being targeted by small molecules (Luo et al.,

2012; Wu and Yu, 2015). We anticipate the ability to tune the translational output of mRNA will

facilitate research and therapeutic uses of designed and endogenous mRNA molecules.

Materials and methods

Sucrose gradient fractionation of polysome profiles
Two independently passaged, biological replicate 15 cm dishes of HEK 293T cells obtained from the

University of California, Berkeley cell culture facility were grown to ~70% confluency in DMEM +

10% FBS. The cell line was authenticated by DDC Medical (Fairfield, OH) and were verified to be

free of mycoplasma contamination. Cells were actively growing when harvested. The media was

aspirated and replaced by PBS + 100 mg/ml cycloheximide and incubated at 37˚C for 10 min. We

chose cycloheximide because it induces rapid protein synthesis arrest (Han et al., 2014), has been

successfully used in ribosome profiling of HEK 293T cells (Sidrauski et al., 2015), and 100 mg/ml is

~100 times higher than the concentration required to inhibit protein synthesis in reticulocytes

(Godchaux et al., 1967). Each dish was then placed on ice, media aspirated, and replaced by ice

cold PBS + 100 mg/ml cycloheximide. Cells were scraped, pelleted at 16,000� g for 30 s, and re-sus-

pended in three pellet-volumes ice cold hypotonic lysis buffer (10 mM HEPES pH 7.9, 1.5 mM

MgCl2, 10 mM KCl, 0.5 mM DTT, 1% Triton X-100 and 100 mg/ml cycloheximide) (Folco et al.,

2012). After 10 min, cells were lysed on ice by ten strokes through a 26-gauge needle and nuclei

were pelleted at 1,500� g for 5 min. Lysate from ~15 million cells (one dish) was layered on top of

triplicate 10–50% (w/v) sucrose gradients (20 mM HEPES:KOH pH 7.6, 100 mM KCl, 5 mM MgCl2, 1

mM DTT and 100 mg/ml cycloheximide) made using a Biocomp Instruments (Canada) gradient mas-

ter. Gradients were centrifuged for 2 hr at 36,000 RPM in a SW-41 rotor, punctured, and manually

peak fractionated using real-time A260 monitoring with a Brandel (Gaithersburg, MD) gradient frac-

tionator and ISCO (Lincoln, NE) UA-6 detector.

Sequencing library construction and deep sequencing
RNA was extracted from pooled technical triplicate sucrose gradient fractions by ethanol precipita-

tion followed by acid phenol:chloroform extraction. Direct phenol:chloroform extraction was pre-

cluded by phase inversion in high sucrose fractions. RNA was then DNase treated, acid phenol:

chloroform extracted, and ethanol precipitated. Cytoplasmic RNA was TRIzol extracted (Life Tech-

nologies, Grand Island, NY) and ethanol precipitated. Total RNA integrity was verified using a BioA-

nalyzer (Agilent, Santa Clara, CA). Ribosomal RNA was then depleted using Ribo-Zero (Illumina, San

Diego, CA) and biological duplicate sequencing libraries were generated using the TruSeq RNA

Sample Prep v2 kit (Illumina) without the poly-A selection steps. An equal mass (100 ng) of rRNA-

depleted RNA was used as input to each individual library preparation. Libraries were verified using

a BioAnalyzer and quantified using a Qubit (Life Technologies) prior to pooling for sequencing.

Library insert sizes were typically ~150 ± ~25 bp. Pooled libraries were 75-bp paired-end sequenced

on an Illumina HiSeq 2500 and runs of the same library in different lanes or flowcells were merged.
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Sequencing data processing and transcriptome alignment
Adapters were trimmed using Cutadapt v1.5 (Martin, 2011) followed by subtractive alignments

against the repeatmasker (RMSK) database (retrieved from UCSC on 2/11/2015) and abundant

sequences from the Illumina iGenomes project (e.g. ribosomal RNA and the mitochondrial chromo-

some) using Bowtie2 v2.2.4 (Langmead and Salzberg, 2012). Unaligned reads were then aligned to

the Ensembl release 75 transcriptome using Tophat v2.0.13 with parameters "-r 5 –mate-std-dev 50

-g 100 –report-secondary-alignments" (Trapnell et al., 2009). Mapping percentages for each pipe-

line stage are presented in Figure 1—figure supplement 3. Transcript isoform level abundances

were calculated using Cuffquant v2.2.1 (Roberts et al., 2011; Trapnell et al., 2010), normalized

between samples with Cuffnorm v2.2.1, and transcripts per million (TPM) (Wagner et al., 2012) val-

ues were calculated according to:

TPMi ¼RPKMi

106X
g2all genes

RPKMg

Biological duplicate datasets were processed independently. Quantified abundances are in Fig-

ure 1—source data 1 and Figure 1—source data 2. TrIP-seq plots are available for all Ensembl

GRCh37 isoforms at http://meru.qb3.berkeley.edu/tripseq.

Hierarchical clustering of isoform distributions across the polysome
profile
Cuffnorm counts for each replicate were subjected to a variance stabilizing transformation (VST)

using the DESeq2 R package to correct for heteroscedasticity (Love et al., 2014); the VST

approaches log2 for large counts but compresses low counts to suppress Poisson noise. Variance sta-

bilized counts were averaged between replicates, filtered such that the mean across all nine samples

was greater than one (roughly translating to 100 reads), and then mean subtracted to generate rela-

tive expression values. Inter-row distance was computed using Spearman’s rank correlation, and

hierarchical clustering was performed using the fastcluster R package (Müllner, 2013) with Ward’s

agglomeration method. The resulting dendrogram was split at increasing heights into subtrees until

clusters contained similar overall trends, generating the large clusters presented in Figure 2.

The samples were clustered similarly except with Euclidean distance and complete agglomeration.

The R packages magrittr, dendextend Galili, 2015, and ggplot2 Wickham, 2009 were used to gen-

erate figures shown and are available through CRAN. Transcript isoforms in each cluster are in Fig-

ure 2—source data 1.

Clustering of TrIP-seq samples
The intersample clustering in Figure 1B was performed by hierarchically clustering the VST-trans-

formed isoform-level counts as above between samples. The statistical significance of the resulting

clustering was analyzed by measuring the Jaccard distance between clusterings of these data after

subjecting the data to subsampling by bootstrap, jittering (adding random noise to each point), or

replacing random points by noise using the R package fpc. The mean Jaccard distances of 100 such

subsamplings as well as the average are presented in Figure Figure 1—figure supplement 1G S1G;

a Jaccard distance �.75 is considered a stable cluster by the R package fpc.

Cloning of untranslated regions and in vitro transcription
Isoform-specific 50 and 30 untranslated regions were amplified from anchored oligo-dT primed cDNA

libraries from HEK 293T cells and Gibson cloned (Gibson et al., 2009) into a vector based on pUC57

containing Renilla luciferase and a synthetic polyA60 tail (pA60; Fukaya and Tomari, 2011). Gibson

cloning was performed such that untranslated regions were precisely cloned next to the ATG but

contained two guanosines as the 50-most nucleotides for T7 transcription for 50 leaders, or the stop

codon used by the isoform, and the six nucleotides CTGCAG at the 30 end of the 30 UTR immedi-

ately preceding the polyA60 tail for 30 UTRs. The differences between cloned isoforms are shown in

Figure 5—figure supplement 1, which was generated using IGV (Thorvaldsdottir et al., 2013). The

entirety of all untranslated regions was verified using dideoxy sequencing. Transcription templates

were generated by PCR using Phusion polymerase (NEB, Ipswich, MA), size verified by gel electro-

phoresis, and gel purified. Transcription was performed using T7 polymerase with 1 mg template in a

Floor and Doudna. eLife 2016;5:e10921. DOI: 10.7554/eLife.10921 17 of 25

Research article Computational and systems biology Genes and chromosomes

http://meru.qb3.berkeley.edu/tripseq
http://dx.doi.org/10.7554/eLife.10921


buffer containing 7.5 mM each NTP, 1 mg pyrophosphatase (Roche, Pleasanton, CA), 30 mM DTT,

35 mM MgCl2, 2 mM spermidine, 0.01% Triton X-100 and 30 mM Tris pH 8.1 for four hours at 37˚C
followed by DNase treatment with RQ1 RNase-free DNase (Promega, Madison, WI) for 30 min. Tran-

scription products were purified by ethanol precipitation and a Zymo (Irvine, CA) Clean & Concentra-

tor column, followed by simultaneous capping using Vaccinia capping enzyme (NEB) and 20-O-

methylation (NEB). Capped products were purified using a Zymo Clean & Concentrator column, fol-

lowed by size verification on glyoxylated samples (Ambion, Foster City, CA) using an agarose gel,

and full-length 30 UTR-containing RNAs were gel purified from an agarose gel (Zymo).

Transfections and luciferase assays
The concentration of RNAs containing 50 untranslated regions was determined using A260, which was

normalized by the intensity of the full-length product on an agarose gel, and then by the molar ratio

of the construct to empty pA60. Molar-adjusted amounts of each RNA relative to 100–200 ng of

pA60 were transfected into three technical triplicate wells of ~50% confluent cells in a 96-well plate

using the TransIT-mRNA reagent (Mirus, Madison, WI). The concentration of RNAs containing 30

UTRs was determined using a Qubit RNA HS assay (Life Technologies), normalized for the molar

ratio of the construct to empty pA60, and molar-adjusted amounts of RNA relative to 7 ng of pA60

were transfected using TransIT-mRNA. A reduced amount of the 30 UTR RNAs was used due to

decreased yield of the longest 30 UTRs. HEK 293T cells were grown in DMEM + 10% FBS, Hep G2

cells were grown in EMEM + 10% FBS, MCF7 cells were grown in DMEM:F12 + 10% FBS, A549 cells

were grown in F12-K media + 10% FBS, and K-562 cells were grown in RPMI media + 10% FBS. Cells

were harvested after ~18 hr (Figure 5) or 2 hr (Figure 6) and Renilla luminescence was measured

(Promega).

Tabulation of isoform features
The Ensembl release 75 annotation set from the Illumina iGenomes project was first decomposed

into 50 leader, start codon, CDS, 30 UTR, and whole-transcript regions. Length, GC-content, and

number of exons were computed directly. Cytoplasmic expression and the median expression from

the 80S through the eight+ ribosome fraction were extracted from TrIP-seq data. Transcript halflife

data were derived from HeLa cell measurements (Tani et al., 2012). The structure was computed

using RNALfold from the ViennaRNA package (Lorenz et al., 2011) in a 75-nt window. Codon usage

statistics were downloaded from http://www.kazusa.or.jp/codon/ on 11/20/2014 and the minimum

codon frequency is the average of codon usage across a five-codon window. The fraction of AU-ele-

ments is calculated as the percentage of the 30 UTR that is of repeating A or U nucleotides for more

than 5nt in a row. TargetScan 6.2 scores (Garcia et al., 2011) were downloaded from http://targets-

can.org and parsed for the properties indicated, and an identical comparison was performed after

filtering the miRNA list by those expressed in HEK 293T cells (Ender et al., 2008). All feature tabula-

tion was performed using custom Python programs, which are available through GitHub at https://

github.com/stephenfloor/tripseq-analysis.

Effect size measurement between isoform feature distributions
Isoforms belonging to the same gene present in different clusters were compiled, yielding gene-

linked isoforms. For example, if the gene A has isoform 001 in cluster one and isoforms 002 and 003

in cluster two, features of isoform 001 are added to the cluster one set and features of 002 and 003

are added to the cluster two set and 001–002 as well as 001–003 would be gene-linked isoforms.

Features in each set were then compared for statistical significance using the Mann-Whitney U test

and visualized as empirical cumulative distribution functions (Figure 3—figure supplement 1A). The

effect size was then computed between distributions using Cliff’s d, which is a nonparametric,

dimensionless measure of the distance between distributions (Cliff, 1993). Cliff’s d is a measure of

the number of times that a point xi in one distribution is greater than all points xj in the second distri-

bution, or

d¼
#ðxi >xjÞ�#ðxi <xjÞ

mn

where # denotes the number of times, the two distributions are of sizes n and m, and xi and xj are

items of the two sets. Cliff’s d is also related to the Mann-Whitney U statistic, by
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d¼
2U

mn
� 1

Cliff’s d and the boostrap confidence intervals shown in Figure 3 were computed using the R

package orddom, which is available through CRAN.

Ribosome profiling comparison and TrIP-seq polysome count calculation
Ribosome profiling was performed in HEK 293T cells (Sidrauski et al., 2015). These data were

downloaded from the NCBI (GEO: GSE65778) and reprocessed by subtractive Bowtie 2 alignment

to rRNA and RMSK sequences, and then mapped onto the human transcriptome using Tophat, as

for the TrIP-seq data. Aligned reads were quantified at the gene and isoform level using Cuffquant

onto the Ensembl release 75 transcriptome and normalized with Cuffnorm as above, to facilitate

direct comparison to the TrIP-seq data. The number of reads derived from polysomes for TrIP-seq

data was computed as the sum of read counts for fractions containing two to eight+ ribosomes mul-

tiplied by the number of ribosomes in each fraction:

TrIP� seq polysome counts¼
X7

i¼1

i niþ 24n8

where ni is the number of reads in the ith polysome fraction averaged for both biological replicates.

The factor of 24 is applied to the last fraction based on a ceiling of ~40 ribosomes per transcript

which then leads to an average of 24 ribosomes in the eighth peak (40 + 8 / 2 = 24). The number of

ribosomes in the final peak is not directly measured by the sucrose gradients used Figure 1—figure

supplement 1A).

Reprocessing of embryo sequencing data
RNA sequencing datasets of human preimplantation embryos (Yan et al., 2013) were downloaded

from the NCBI (GEO: GSE36552). Reads were converted to FASTQ using fastq-dump (NCBI) and

then processed as for TrIP-seq data by adapter trimming with Cutadapt, subtractive alignment to

the RMSK and abundant sequences, and transcriptome alignment with Tophat to Ensembl release

75. Transcript abundances were calculated using Cuffquant and normalized with Cuffnorm. Data

from individual cells were processed independently and averaged for each stage to generate the

data shown in Figure 4 and Figure 4—figure supplement 1. The data were reprocessed for consis-

tency to facilitate direct abundance comparisons.

RT-PCR
Cytoplasmic lysate was fractionated using a sucrose gradient as for the RNA-seq libraries and RNA

was extracted from each fraction. Libraries of cDNA were then synthesized from these fractions

using random primers (Applied Biosystems) from an equal amount of RNA as measured using a

Qubit (Life Technologies; RNA HS assay). Template RNA was removed using RNase H treatment

(NEB) and cDNAs were purified over an oligo cleanup column (Zymo). PCR was then performed for

25 (ACTB) or 30 (EEF1B2, ATF4) cycles with gene-specific primers (below) using Taq Titanium (Clon-

tech) using an equal amount of cDNA input into each PCR, as measured using a Qubit (ssDNA

assay). Reactions were then run on a 1% agarose gel and stained with SYBR-Gold (Life Technolo-

gies). Gels are representative of three biological replicates.

Primers used for RT-PCR are:

ACTB-forward AGAGCTACGAGCTGCCTGAC

ACTB-reverse AGCACTGTGTTGGCGTACAG

EEF1B2-forward TTCCCGTCATCTTCGGGAGCCGT

EEF1B2-reverse CTTTTCAGGTCTCCGAAACCCATGG

ATF4-forward GGCTCTGCAGCGGCAACCCC

ATF4-reverse CGACTGGTCGAAGGGGGACA

Quantitative RT-PCR
RNA was extracted from polysome fractions as for TrIP-seq. qRT-PCR was performed using the

SuperScript III Platinum SYBR Green One-Step kit (Life Technologies) with 1ng input RNA in a 20 ul
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reaction volume. CT values were converted to fold changes over the cytoplasmic abundance and

plotted.

Primers used for qRT-PCR are:

EEF1B2-001-fwd AGCCGTGGAGCTCTCGGATA

EEF1B2-001-rev AGCTCTTGTCCGCCAGGTAA

EEF1B2-003-fwd TCCAAACGCAACGAAAGGTCC

EEF1B2-003-rev CGCCGGACCGAAGGTTAAAG

EEF1B2-201-fwd AGCCGTGGAGCGTGGG

EEF1B2-201-rev TCGGCTGTATCCGAGAGCTG

SRSF5-002-fwd GACCCCGTCCGGTAGGAAGTACTAGCC

SRSF5-002-rev CAATATCTCTTATCCGTCCATATCCC

SRSF5-005-fwd GGTGAGTGGCTCACTTTGAGGGCAAG

SRSF5-005-rev CGAATCAACTGCGCTCATTAGACGC

Gene Ontology analysis
The DAVID server was used to calculate gene ontology (GO) terms for biological processes (BP)

associated with the individual clusters (Jiao et al., 2012). Transcripts associated with each cluster

were input into DAVID and GO BP terms with a Benjamini-corrected p-value of <0.05 were

tabulated.

Accession numbers
Raw sequencing reads for all samples are available through the NCBI via the GEO Accession ID

GSE69352.
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