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Spatially coherent multicolored optical vector vortex beamswere created using a tunable liquid crystal q-plate and a
supercontinuum light source. The feasibility of the q-plate as a tunable spectral filter (switch) was demonstrated,
and the polarization topology of the resulting vector vortex beamwasmapped. Potential applications includemulti-
plexing for broadband high-speed optical communication, ultradense data networking, and super-resolution
microscopy. © 2013 Optical Society of America
OCIS codes: (260.6042) Singular optics; (260.5430) Polarization; (350.2460) Filters, interference; (060.4230)

Multiplexing.
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Optical vector vortex beams are optical modes with well
defined spatial polarization modulation and topological
vortex charge [1]. The q-plate [2] can naturally generate
vectorbeamsas it relieson thespace-variantbirefringence
of transparent liquidcrystals toconvert light’s spinangular
momentum (SAM) to orbital angular momentum (OAM)
[2,3]. By combining a tunable q-plate [4–6] and supercon-
tinuum light [7–10], themulticolored optical vortexmodes
can be generated and optimized for a particular wave-
length. These effects are expected to be of significance
in the area of high-speed optical telecommunication,
which would take advantage of the broadband frequency
spectra, the beam’s complex polarization topology, and
the existence of controlled integer orbital angularmomen-
tummodes. An example of such an applicationwould be a
compact hybrid system that can incorporate both wave-
length division multiplexing (WDM) as well as spatial
mode division multiplexing in the same setup, i.e., a “hy-
brid mode-wavelength division multiplexer” (HMWDM)
[11]. Such a system has not yet been demonstrated.
This Letter provides the first steps in the direction of

an HMWDM scheme that will serve as a enabler of
ultradense WDM for communication and device data net-
working (e.g., between computers, free space between
towers, etc.). In order to execute this scheme, the follow-
ing key properties will be required: (i) multicolored
spatial mode in which multiple frequency channels are
generated, (ii) spatially coherent optical mode, and mini-
mized effects due to (iii) topological charge dispersion
(e.g., Refs. [12,13]), (iv) spatial dispersion (e.g., Ref. [13]),
or (v) chromatic dispersion (e.g., Refs. [14–16]) of the
multicolored spatial mode, as well as minimized (vi) an-
gular optical interference effects in devices used to
generate the vortex (e.g., Ref. [17]).

In previous research, optical information for commu-
nication has been encoded and retrieved in frequency
channels of supercontinuum light [18–21], frequency
combs [22], polarization [23,24], and OAM modes of light
[24–27]. Optical beams that have both a vortex spatial
mode and changing polarization about the mode profile
are referred to as vector beams [1], and their transforma-
tions can be conveniently described on a higher order
Poincare sphere [28,29]. Multicolored vector beams have
been created in uniaxial crystals [30,31], geometric phase
elements [32], and liquid crystal droplets [33]. Never-
theless, in all these schemes, there does not exist a
simple way to tune between vector vortices of different
colors in the multicolored frequency spectra, which
would be required for an HMWDM scheme. A tunable
q-plate is a compact device that naturally generates vec-
tor vortex beams and is suitable to accomplish this task,
while satisfying the requirements mentioned earlier.

A tunable multicolored light source emitting spatially
coherent vector beam based on a tunable q-plate is
discussed here with the goal of realizing a compact
HMWDM. The output light from the q-plate consists of
a superposition of optical vortex spatial modes with dif-
ferent colors. The space-variant polarization of the multi-
colored optical vortex mode was mapped point by point
using Stokes polarimetry. The tunability of the q-plate us-
ing an applied electric field in conjunction with a single
mode optical (SMO) fiber was used to demonstrate a
tunable optical spectral filter/switch as a first step to real-
izing the HMWDM scheme. The q-plate is known to
generate vector beams at monochromatic wavelengths
[2,4–6,26,34], but to our knowledge, the properties of a
coherent multicolored light source have not been studied
after propagating through a q-plate. By adjusting the
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electric field across the q-plate, the transmitted optical
beam profile smoothly changes its wavelength and mode
structure.
The proposed HMWDM scheme involves using the

polarization modulation within the vortex spatial mode
to encode and retrieve information in multicolored fre-
quency spectra. The multicolored optical wave contain-
ing frequency channels was sent through a device (i.e.,
q-plate) used to generate a polarization dependent modu-
lation and vortex mode. The different states of light
polarization (e.g., horizontal, vertical, diagonal) were
mapped into discrete spatial points on the multicolored
optical vortex mode. The vortex mode can be used to
turn on and off select frequency channels. Frequency
spectral channels are generated from a supercontinuum
light source [18] (i.e., photonic crystal fiber [35]),
whereas the q-plate selects particular frequency (wave-
length) channels and spatial mode channels. This pro-
posed multiplexing scheme can be used to “switch”
between different frequency and spatial mode channels
in an optical network.
The polarization topology of the coherent multicolored

supercontinuum light vector vortex beam was mapped
using Stokes polarimetry. A photonic crystal (PC) fiber
was used to generate the supercontinuum (SC) light
from which multicolored coherent light was obtained.
A pulsed laser beam with a center wavelength of 800 nm,
measured pulse duration of about 130 fs, repetition rate
of 76 MHz, and average power (peak power) of 310 mW
(31 kW), was sent into the PC fiber. A diffraction grating
was placed after the PC fiber and a slit was placed after-
ward to collect a single color from the first diffraction
order, or all the colors from the zeroth diffraction order.
The diffraction order was coupled into a SMO fiber to
obtain a clean TEM00 Gaussian optical mode. This emerg-
ing light goes through a linear polarizer, then a q-plate of
q � 1 to generate a vector vortex with no net OAM, i.e.,
there is both l � 2 and l � −2 to give a net OAM of zero.
Afterward, the light goes through a linear polarizer to
measure the beam’s Stokes parameters. The resulting
vector vortex was imaged onto a charge-coupled device
(CCD) camera. The experimental setup is presented in
Fig. 1(a). The electric field through the q-plate is tuned
by changing the input voltage until all the vortices in
the spectra are degenerate and form a single vortex of
multiple colors, i.e., there is an approximate dark vortex
core in the middle of the beam as seen in Fig. 2(d).
The Stokes parameter maps of the optical beam profile

were obtained using a standard method described in
Ref. [34]. That is, two linear polarizers were used to mea-
sure the Stokes parameters, and 4 measurements were
taken with the polarizer after the q-plate oriented at
0°, 45°, 90°, and 135° with respect to the polarizer
before the q-plate. Stokes parameters were defined
as: S0 � I0 � I90, S1 � I0 − I90, and S2 � I45 − I135. From
the measured Stokes parameters [36], the polarization at
each point on a single color vector vortex mode was
mapped; the results are presented in Figs. 2(a)–2(c).
The Stokes parameters were measured for the following
single colors: red (617� 2 nm), yellow (585� 1 nm),
and green (540� 3 nm). The same Stokes polarimetry
was done for the multicolored vector vortex generated
from the zeroth diffraction order of the diffraction

grating. The results are shown in Fig. 2(d), with the
corresponding wavelength spectra presented in Fig. 2(e).
The spectral profile is preserved as the beam goes
through the SMO fiber.

The feasibility of the q-plate as a tunable optical filter
(switch) is now discussed. The experimental setup is as
follows: multicolored supercontinuum light is generated
using a PC fiber and made to be linearly polarized as de-
scribed in the first scheme. The beam is then sent
through a q-plate of q � 1 and the light coupled into a
SMO fiber, with a cutoff wavelength at 416 nm. An objec-
tive lens with a numerical aperture of NA � 0.4 is used to
couple light through free space into the SMO fiber with
NA � 0.12. The resulting beam is imaged onto a CCD
camera. The experimental setup is presented in Fig. 1(b).

As the external voltage applied to the q-plate is tuned
from 2.50 to 2.00 V in steps of 0.25 V, the q-plate is “res-
onant” for particular wavelengths and detuned from
other wavelengths. The wavelengths that are “resonant”
with the q-plate implies that all beam power will be in
the vortex mode (i.e., a higher order mode), while the
wavelengths that are detuned (not “resonant”) from

Fig. 1. Experimental setup for (a) mapping vector vortex
polarization topology and (b) implementing the optical spectral
filter/switch. TiS, titanium–sapphire laser; OI, optical isolator;
PCF, photonic crystal fiber; DG, diffraction grating; Sl, slit;
SMOF, single mode optical fiber; LP, linear polarizer; QP,
q-plate; CCD, charge coupled device camera; OOSA, ocean
optics spectrum analyzer; M, mirror.

Fig. 2. Experimental intensity (upper) and polarization map
(lower) of vector vortex: (a) 617� 2 nm (red), (b) 585� 1 nm
(yellow), (c) 540� 3 nm (green), which were extracted from
(d) the multicolored vortex. (e) Spectra of multicolored
vortex-(d) showing wavelength (frequency) spectra from the
PC fiber.
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the q-plate implies a fraction of power in the beam will be
in the lowest order mode (i.e., TEM00 Gaussian mode). At
different q-plate voltages, the coupling efficiency of light
going into the SMO fiber will change since the SMO fiber
supports only TEM00 Gaussian modes for operating
wavelengths. As a result, the light coming out of the SMO
fiber changes color from orange to yellow to green in in-
cremental steps for respective voltages of 2.50, 2.25, and
2.00 V, as presented in Figs. 3(b)–3(d). The SMO fiber is
effectively acting as a discriminator for the various color
channels in multicolored mode, and could be incorpo-
rated in the transmission or receiving end in the HMWDM
scheme. The purity of colors in the spatially coherent op-
tical intensity profile coming out of the SMO fiber is quan-
tified in a barchart containing an RGB (Red, Green, Blue)
color analysis [37]; and also presented in Figs. 3(b)–3(d).
This demonstrates the feasibility of the device as a tun-
able spectral filter (or optical switch) using the SAM to
OAM conversion of light by the q-plate in conjunction
with a SMO fiber. The scheme can therefore serve as an
optical switch to tune between different frequency chan-
nels in the proposed HMWDM scheme described earlier,
and it should be possible to implement in free space.
In conclusion, optical vector vortex beams have been

created using a multicolored supercontinuum laser light
source and an electrically tunable q-plate. Together with
a single mode fiber, this effect can be used as a wave-
length selective optical filter, or “optical switch,” to move
between different frequency channels in a communica-
tion network, especially in the proposed HMWDM
scheme. The scheme is not limited to optical communi-
cations, but can be applied in the development of cost
effective stimulated emission depletion (STED) fluores-
cence microscopy systems [38–40] with sub-diffraction
resolution, such that tunning is achieved between differ-
ent colors of the optical vortices by simply changing the
electric field going through the q-plate.
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Emerging Technologies program of the European
Commission, Grant No. 255914, PHORBITECH.
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