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In multivalley semiconductors, the valley degree of freedom can be potentially used to store,
manipulate and read quantum information, but its control remains challenging. The valleys in
bilayer graphene can be addressed by a perpendicular magnetic field which couples by the valley
g-factor gv. However, control over gv has not been demonstrated yet. We experimentally determine
the energy spectrum of a quantum point contact realized by a suitable gate geometry in bilayer
graphene. Using finite bias spectroscopy we measure the energy scales arising from the lateral
confinement as well as the Zeeman splitting and find a spin g-factor gs ∼ 2. gv can be tuned by a
factor of 3 using vertical electric fields, gv ∼ 40 − 120. The results are quantitatively explained by
a calculation considering topological magnetic moment and its dependence on confinement and the
vertical displacement field.

INTRODUCTION

Quantum devices rely on the control of a degree of
freedom (DOF) that can often be described by a two
level system. A double quantum dot containing one elec-
tron is an ideal prototype of this concept with the dis-
advantage that charge noise limits coherence times. The
spin DOF offers larger coherence times, but spins are
notoriously difficult to manipulate. For materials with
vanishing spin-orbit interaction, such as Si and C, the g-
factor has been shown to be gs ∼ 2 close to the value for
free electrons [1–3]. For materials with large spin orbit
interactions,g-factors can get as large as gs ∼ 50 in the
case of InSb [4]. However, the tunability of the g-factor,
e.g. by gate voltages, is limited.

Charge carriers in graphene offer another DOF the val-
ley quantum number. Because of the underlying symme-
tries, the valley DOF can be described as a two-level sys-
tem in analogy to the spin DOF [5]. Here, we focus on the
experimental characterization of the energy spectrum of
a quantum point contact (QPC) in bilayer graphene. The
confinement potential, the position of the Fermi energy
as well as the nature of charge carriers are fully controlled
by gate voltages. In contrast to two-dimensional systems,
a finite bias applied across a quantum device can directly
be converted to energy scales of the quantum device since
the bias voltage will mainly drop over the confined struc-
ture which exhibits the largest resistance in the system.
We first demonstrate that we can measure the single par-
ticle level spacing in a bilayer graphene QPC. At finite
magnetic field B, spin levels split because of the Zeeman
effect. Using finite bias spectroscopy we measure a spin
g-factor gs ∼ 2 as expected. The valley DOF have a
nontrivial topology that leads to a Berry curvature and
a topological orbital magnetic moment [6]. In our ex-
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FIG. 1. (a) Device structure and (b) two-terminal conduc-
tance G as a function of VSG and VBG, VCH are grounded. (c)
G as a function of VCH at B = 0 T keeping (VBG, VSG) =
(7,−4.1), (4,−2.7)V (purple and orange dot in (b)). (d)
G(VCH) at B = 0T keeping VBG and VSG on the blue dot
in (b). (e) Transconductance as a function of VCH and Vsd

at B = 0T. (f) Extracted energy level spacings as a func-
tion of mode number characterized by its value of quantized
conductance at various (VBG, VSG ), i.e. displacement fields.

periment we measure a valley splitting which is linear in
perpendicular magnetic field. If compared to the Zeeman
splitting we obtain a valley g-factor which can be tuned
by a factor of 3, i.e. from ∼ 40 to ∼ 120, with vertical
displacement field D. Our band structure calculations
are consistent with this finding. Further reduction of the
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valley splitting occurs once the lateral confinement due
to the constriction is taken into account, in agreement
with our experiment.

DEVICE FABRICATION

The device was fabricated as described in Ref. [7]. Bi-
layer graphene is encapsulated in hexagonal boron nitride
(hBN) and an additional few layer graphite flake serves
as high quality back gate (BG)[8, 9]. The sample is im-
aged with Atomic Force Microscopy, see SI. Bubble-free
regions are chosen for the fabrication of split top gates
(SG) with a gap of 120 nm. A 35 nm thick layer of Al2O3

is deposited on the SGs. Channel gates (CGs) are fabri-
cated on top of the insulator and aligned normal to the
channel axis. Graphene is contacted by 1D contacts [10].
Figure 1a shows a sketch of the device structure. There
are three CGs which generate QPC1, QPC2 and QPC3.
Unless stated otherwise the data presented are taken on
QPC3. Transport measurements are performed at 1.8 K
with standard Lock-in techniques.

To characterize the device, we measured the two-
terminal conductance G(VBG, VSG) while keeping VCH

grounded, see Fig. 1(b). The minimum at VBG = −0.3V
corresponds to charge neutrality in the regions not cov-
ered by the SG. Along the diagonal, a conductance min-
imum, related to charge neutrality underneath the SG,
occurs. D increases in the direction of the arrow (Fig.
1(b)). G saturates at approximately 10 e2/h due to the
formation of a narrow channel containing few electric
modes. Ballistic transport in the channel is confirmed
by Fabry-Pérot resonances, shown in the SI.

In order to pinch off the channel VBG and VSG are kept
along the diagonal line. Then we sweep VCH, which con-
trols the number of occupied modes in the channel. Fig.
1(c) (orange/purple curve taken at SG/BG combination
indicated by the respective dot) show the conductance of
the QPC after subtracting a series resistance originating
from the Ohmic contacts (see SI). For all presented data,
a suitable series resistance is subtracted. The larger VBG,
the higher VCH required to pinch off the channel (see SI).
As VBG and VSG are increased, D in the barriers and in
the channel increases (from purple to blue to orange dot
in Fig. 1(b)). In general, we observe conductance quan-
tization at values n× 4e2/h. The number 4 accounts for
spin and valley degeneracies [7, 11]. For small VBG or D,
(purple curve in Fig.1c), the first plateau is observed at
4e2/h. For larger VBG or D (orange curve), the lowest
plateau is smeared out while the higher ones occur at the
expected values.

In order to extract the relevant energy scales of the sys-
tem we perform finite bias spectroscopy measurements.
Fig.1(d,e) show G and the transconductance dG/dVSG as
a function of DC source-drain bias voltage Vsd and VCH.
Dark areas correspond to low values of the transconduc-
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FIG. 2. (a)(b) Schematic for the lifting of degeneracies in
parallel/perpendicular B of the subbands in the QPC. For
B‖ the valleys do not split. In B⊥ the valley splitting exceeds
the spin splitting by far. (c) dG/dVCH(VCH, B‖) of QPC2
at (VBG, VSG) = (7,−4)V. (d) dG/dVCH(VCH, B⊥) of QPC3
at (VBG, VSG) = (4.5,−2.93)V. The number indicates the
quantized conductance in units of e2/h.

tance, i.e. zero slope, where G itself displays plateaus, see
Fig. 1(d). As the bias exceeds the level spacing, G is no
longer quantized. Similar features are known from QPCs
in AlGaAs-GaAs and have been discussed in [12]. The
height of the diamond-like features corresponds to the
energy spacing between the levels. Fig. 1(f) shows the
energy spacings as a function of mode number for various
VBG along the line in Fig.1(b), i.e. various D. For larger
G, more modes occupy the 1D channel. A deeper channel
corresponds to steeper walls in the confinement potential
and therefore to larger energy level spacings. For QPCs
in AlGaAs-GaAs heterostructures the opposite behavior
is observed. In this case, the 1D channel is depopulated
by laterally squeezing it with split-gate voltages, making
the channel narrower and giving rise to larger level spac-
ings for smaller mode number. The data in Fig. 1(f)
also shows that level spacings for a given mode number
increase for smaller VBG, i.e. smaller D. One needs to
consider that the same number of occupied modes for a
decreased back gate voltage corresponds to a decreased
VSG and VCH. This, in general, corresponds to less steep
walls and a narrower potential, i.e. larger confinement
energies. This argument holds preferentially for a small
number of occupied modes and becomes obsolete for a
large numbers.
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MAGNETIC FIELD DEPENDENCE

Next, we discuss how the four-fold degenerate states
split in a magnetic field. Zeeman splitting of spin states
[6, 11, 13] occurs for any magnetic field orientation. Val-
ley splitting, on the other hand, is an orbital effect [6],
and will therefore only occur for B⊥. In analogy to the
gs-factor characterizing spin splitting gsµBB, we intro-
duce the valley g-factor gv for states that split linearly
in B⊥. The schematic in Fig. 2(a) indicates how valley
degenerate states (dark and light blue) Zeeman split. In
Fig. 2(b) the valley splitting in B⊥ far exceeds the spin
splitting.

We first show transconductance data as a function of
in-plane magnetic field B‖ in Fig. 2(c). To identify the
origin of the splitting, we show the B‖ dependence in
QPC2 for (VBG, VSG) = (7 V,−4 V). The splitting can
be resolved for B‖ > 2 T. At B‖ = 8 T, additional
gaps, i.e. plateaus in the conductance, are clearly ob-
served in Fig. 2(c). The splittings are linear in B‖ and
compatible with gs ∼ 2, as expected for graphene. Fig.
2(d) shows the perpendicular magnetic field dependence
up to 1.2 T at (VBG, VSG) = (4.5 V,−2.93 V) for QPC3.
At B = 0, the plateaus of the conductance occur at
a sequence of G = 4, 8, 12, 16, 20, 24 and 28e2/h corre-
sponding to the black regions where dG/dVCH = 0. For
B⊥ > 0.3 T the mode splitting can be resolved. As a re-
sult, additional plateaus are observed with a sequence
G = 6, 8, 10, 12, 14...e2/h around B⊥ = 0.5 T, as dis-
cussed in Ref. [11]. By further increasing B⊥ the split
levels merge with neighboring ones to form 4-fold degen-
erate energy levels again. This occurs at B⊥ = 1 T. The
sequence becomes G = 6, 10, 14, 18...e2/h. Overall the
pattern bends towards positive VCH owing to the com-
petition between electrostatic and magnetic confinement
[14]. When comparing to Fig. 2(c) it becomes clear that
Zeeman-related splittings are too small to be observable
below 1 T. Therefore, valley splitting is observed in Fig.
2(d), matching the scenario shown in Fig. 2(b).

SPIN AND VALLEY SPLITTING

In order to determine the spin and valley splittings
quantitatively, we performed bias spectroscopy at finite
B. Figure 3(a) shows G(VCH) at constant B‖ = 8T . The
corresponding finite bias data is shown in (b) for B‖ = 8T
and in (c) for B‖ = 4T . Diamond-shaped regions of sup-
pressed transconductance are indicated and numbered
with the corresponding G value reflecting the relevant
mode. The extent of diamonds in Vsd is converted to en-
ergy and plotted in Fig. 3(d) as a function of B‖. We
extract the g-factor from linear fits with ∆s = gsµBB ,
where µB is the Bohr magneton, g is the Lande g-factor.
We find g = 2.16± 0.07 , as expected [13, 15, 16].

To investigate the bias dependence of the valley split-
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FIG. 3. (a)(e) G(VCH) at B‖ = 8 T and (VBG, VSG) =
(7 V,−4 V) in QPC2 and at B⊥ = 0.8 T and (VBG, VSG) =
(4.5 V,−2.93 V) in QPC3. (b)(c) dG/dVCH(VCH, Vsd) at B‖ =
8 T and 4 T, respectively. The plot shows spin-split energy
levels. Diamonds at 14, 18, 22 e2/h grow larger in size with
increasing B. (f)(g) dG/dVCH(VCH, Vsd) at B⊥ = 0.8 T and
0.5 T, respectively. (d) Energy spacings ∆Espin, extracted
from the height of the diamonds at 14, 18, 22 e2/h show a lin-
ear dependences on B‖. In a similar fashion the energy spac-
ings ∆Evalley(B⊥) are extracted from plots as the ones shown
in (f) and (g). Dashed lines are linear fits.

tings, we apply B⊥. Fig. 3(e) shows G at B⊥ = 0.8 T
and VBG = 4.5 V. Plateaus appear at G = 6, 10, 14, 18, 22
and 26 e2/h due to the strong valley splitting (compare to
the measurement in Fig. 2(d)). In Fig. 3(f), Diamond-
like feature are numbered with the corresponding con-
ductance values. The height of the large diamonds at
G = 6, 10, 14, 18, 22 and 26 e2/h range from 2 ∼ 5 meV,
corresponding to the energy level difference of the valley
splitting [6, 11, 17]. At B⊥ = 0.5 T, see Fig. 3(g), energy
spacings are smaller, such that the diamonds at multiples
of 2 e2/h) follow the scenario in Fig. 2(b). We summarize
the valley induced energy splittings in Fig. 3(h). From
the linear behavior we extract valley g-factors ranging
from 50 ∼ 120 according to ∆v = gvµBB⊥. The gv-
factors at lower G are as small as gv = 40 ∼ 60 and then
increase and saturate at ∼ 100 for large G. gv values are
in agreement with results obtained in bilayer graphene
quantum dots[13].
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TUNABLE VALLEY SPLITTING

We show a summary of gv as a function of the mode
number for various VCH in Fig. 4(a). gv increase with
increasing mode number and then saturate once the two-
dimensional limit is approached. Fig. 4(b) shows the
same data, but this time plotted as a function of the gap
∆. For sufficiently large displacement fields D, ∆ ∝ D,
and D is tuned by VBG (see SI). The general tendency
is that gv decreases with increasing ∆. Especially for
G ≥ 14 e2/h, i.e. a QPC approaching the 2D limit, there
is little dependence on conductance plateau index. Only
for small G, namely 6 and 10 e2/h, there is a substantial
drop, reaching values as low as gv ≈ 30.

THEORY

In order to obtain a theoretical understanding of these
features we have calculated the relevant properties. The
valley splitting is related to the orbital magnetic moment
M that originates from the Berry curvature [11], given
by [18]

M = −ie/2~〈∇k|Φ(k)× [ε(k)−H(k)]|∇kΦ(k)〉 · ez.(1)

A plot of M is shown in Fig4d. The maximum magni-
tude of M , Mmax = max(|M |), gives an upper bound for
the valley splitting. When the gap is increased, the mini-
valleys are pushed apart [19] and the distribution of M
in momentum space gets broader. Mmax decreases with
increasing gap. The result of the calculation is depicted

by the dotted purple line in Fig. 4(b). It describes well
the experimental data for high mode numbers. Some ex-
perimental points exceed the dotted purple line and we
speculate that this originates from small strain fluctua-
tions that can have a significant influence on the M [20].
For smaller mode numbers, however, when the states are
more strongly affected by the confinement potential, the
shape of the confined wave functions Ψ has to be taken
into account. We compute how much of the M is picked
up according to

Mred =

∫
M(kx)|Ψ(kx)|2dkx, (2)

where Ψ(kx) are the wave functions of the states living
at the lowest subband edge of the discrete channel spec-
trum (see Fig.4c). The electronic structure of the channel
is obtained from numerical diagonalization of the BLG
Hamiltonian [21] including a continuous confinement po-
tential and a spatially modulated gap (akin to References
[6, 11]). The system parameters have been chosen to cor-
respond to the splittings of the lowest subbands for the
lowest modes’ energy spacings extracted from Fig. 1 (see
SI). From this calculation we obtain the brown dashed
line in Fig. 4(b) which gives a lower bound for gv, in
agreement with the experimental data.

The valley splitting in bilayer graphene is directly re-
lated to the M , which can be tuned by D. However, the
valley splitting in planar 2D bilayer graphene is difficult
to access experimentally unless one enters the quantum
Hall regime. In the experiment, this requires fields ex-
ceeding 1 T (for more details see Ref.[11]). A quantum
point contact is a local probe which offers energy resolu-
tion and can thus be used as a spectrometer to probe the
energy spectrum. In the limit where many modes (> 3)
are occupied in the constriction, the valley g-factor can
be tuned gv ∼ 40− 120 by D. Calculations of the valley
splitting of the 2D system agree well with experimen-
tal results. In the limit of one occupied mode, the wave
functions are drastically modified leading to a reduced
gv, which can be accounted for in the calculation.

The calculation of the M shown in Fig4(d) is also valid
for bilayer graphene quantum dots. However, the wave
functions in a quantum dot depends on both, kx and
ky. Therefore, in order to obtain gv, a two-dimensional
convolution with the M has to be considered and Eq.2
needs to be modified accordingly. Still, gv will yield a
similar dependence on ∆ as presented here.

Graphene quantum dots hold the promise to be a suit-
able host for spin qubits because both relevant spin deco-
herence mechanisms, hyperfine coupling to nuclear spins
and spin-orbit interactions, are expected to be small in
carbon-based systems. The additional valley degree of
freedom can also be used to define a qubit. While or-
bital degrees of freedom (e.g. charge) usually suffer from
short coherence times, it is possible that valley qubits
are long-lived, since valley scattering requires scattering
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events on the atomic scale. The experiments presented
here show that the valley g-factor can be tuned by more
than a factor of two via the vertical displacement field.
This will stimulate research to explore valley qubits and
exploit their tunability by suitably defined nanoelectron-
ics circuits.

CONCLUSION

We performed transport measurements on electrostati-
cally defined quantum point contacts in bilayer graphene.
The energy resolution of the quantum point contact en-
ables access to the quantitative determination of the spin
and valley splitting. The valley g-factor could be tuned
by about a factor of 3, from 40 to 120. By consider-
ing the topological orbital magnetic moment in bilayer
graphene and how its modification by a vertical displace-
ment field, the tunable valley g-factor can be quantita-
tively explained by a band structure calculation.
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