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Abstract 

Understanding and tuning correlated states is of great interest and significance to modern condensed 

matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in 

magic-angle twisted bilayer graphene (tBLG) presents a unique platform to study correlation phenomena, in 

which the Coulomb energy dominates over the quenched kinetic energy as a result of hybridized flat bands. 

Extending this approach to the case of twisted multilayer graphene would allow even higher control over 

the band structure because of the reduced symmetry of the system. Here, we study electronic transport 

properties in twisted trilayer graphene (tTLG, bilayer on top of monolayer graphene heterostructure). We 

observed the formation of van Hove singularities which are highly tunable by twist angle and displacement 

field and can cause strong correlation effects under optimum conditions, including superconducting states. 

We provide basic theoretical interpretation of the observed electronic structure.  

Van der Waals heterostructures technology provides a variety of tuning knobs, including 

twist angle, displacement field, and stacking order, for band engineering by precise stacking of one 

atomically thin crystal onto another
1
. The lattice constant mismatch and relative twist angle give rise 

to a moiré superlattice, where, under some conditions, interlayer hybridization leads to the 

formation of an isolated low energy flat band, which quenches the kinetic energy of electronic 

system. Such low-energy subbands have been realised in several structures and emergent 

phenomena have been reported, including Mott-like insulators
2
, unconventional superconductivity

3-5
 

and ferromagnetism
6,7

 in twisted bilayer graphene (tBLG) and twisted double bilayer graphene 

(tDBLG)
8-11

. Similar correlated states have also been reported in ABC-trilayer graphene (TLG) 

superlattice on hexagonal boron nitride (hBN) and rhombohedral stacked graphite films
12-14

.     

In this work, we study small-angle twisted trilayer graphene (tTLG) van der Waals 

heterostructures, where a monolayer graphene (MLG) and bilayer graphene (BLG) are stacked and 

rotated by a small angle with respect to each other. Compared to tBLG, more tuning knobs are 

expected in tTLG, since the band structures in multi-layer graphene are more tunable than that of 

the monolayer counterpart
15-18

. In particular, there naturally exists two stacking orders in trilayer 

graphene, Bernal (ABA)-stacking with mirror symmetry and rhombohedral (ABC)-stacking with 

inversion symmetry. The former is semimetallic, while the latter is known to be semiconducting with 



a band gap tunable with an out-of-plane displacement field
19

. The symmetry is further reduced in 

tTLG, by stacking mono- and bi-layer graphene together with a small relative twist angle
20,21

, 

resulting into ABA-, ABB- and ABC-stacked domains. In this report, we observed electron-hole 

asymmetry, tunable van Hove singularities as well as correlated insulating states at commensurate 

fillings on the electron side under finite displacement field in tTLG. The correlated states are 

asymmetric with respect to D, and highly tunable with varying twist angle. In addition, we observed 

superconductivity signatures in the vicinity of the quarter-filling insulating state. tTLG can be seen as 

a model system to understand  emergent phenomena in the field of twistronics, with twist angle, 

displacement field and charge density as tuning parameters. 

Our twisted graphene heterostructures encapsulated in hBN flakes are fabricated using the 

recently developed ‘tear & stack’ method22,23
. We select the exfoliated graphene flakes with 

monolayer/bilayer steps to ensure the precise orientation between the two crystals. We use the 

dual-gate configuration as shown in Fig. 1b, to allow independent tuning of the carrier density n and 

transverse displacement field D. By simultaneously applying the top and bottom gate voltages, we 

obtain 𝑛 = 𝑉𝑡𝑔𝐶𝑡𝑔+𝑉𝑏𝑔𝐶𝑏𝑔𝑒 and 𝐷 = 𝑉𝑏𝑔𝐶𝑏𝑔−𝑉𝑡𝑔𝐶𝑡𝑔2𝜀0 , where  𝐶𝑡𝑔 and 𝐶𝑏𝑔 are the top and bottom gate 

capacitances (normalised to unit area) measured from the Hall effect, 𝑒 is the electron charge, and 𝜀0 is the vacuum permittivity, respectively. The twist angles are determined by the charge density at 

full filling of each sub-band and the Brown-Zak oscillations
24

 (Fig. s3). We have studied more than 

half a dozen samples with different twist angles ranging between 1.22
o
 and 1.6

o
. Here we mainly 

focus on two samples, S1 with twist angle ≈1.47
o
 and S2 with ≈1.22

o
. 

The schematic of moiré superlattice with a relative twist angle  in tTLG, together with the 

schematics of the transport measurements are presented in Fig. 1a,b. The electronic band structures 

of mono- and bi-layer graphene hybridize and fold into mini Brillouin zone (MBZ). The size of the 

moiré unit cell  is given by  𝜆 = 𝑎2𝑠𝑖𝑛𝜃2, where a=0.246 nm is the lattice constant of graphene, and 

the area of moiré unit cell is 𝐴 = √32 𝜆2. Each superlattice band in the MBZ can accommodate charge 

density 𝑛0 = 4𝐴 , where the prefactor 4 is because of spin and valley degeneracies in graphene and 

the filling factor is defined as n/n0.  

The transport behaviour of our samples is presented in Fig. 1c-g, which display xx(n/n0,D) 

maps for samples with  from 1.22
o
 to 1.6

o
, and n is normalized to the full-filling charge density 𝑛0 = 8√3𝜆2 , associated with the corresponding twist angle . Note that tTLG can be fabricated in two 

mirror-symmetric configurations, either with BLG on top or MLG on top. When we compare the 

samples with mirror-symmetric configurations, the overall picture flipped (see Fig. s1) which 

demonstrates that the structure of the states we observe is not an artefact. Therefore, the 

asymmetry with respect to D could be related to the lack of symmetry in tTLG
21

. To be consistent, we 

define positive D when electric fields point from monolayer to bilayer graphene (see Fig. s1).  

 



 

Fig. 1: Evolution of tTLG band structures with the twist angle. (a)Illustration of moiré pattern of stacked 

mono-bilayer graphene with a relative twist angle θ. λ is the wavelength of moiré pattern. (b) Schematic of 

sample structure and measurement configuration. (c-g) ρxx(n, D) measured at T=1.6 K and B=0 T of samples 

with twist angle θ ≈1.22
o 

(c), 1.26
o 

(d), 1.41
o 

(e), 1.47
o 

(f), 1.6
o 

(g). The correlated states under D>0 remain 

almost at the same D range for all samples, while the correlated states under D<0 move to larger D when the 

twist angle increases, and move out of experimentally reachable D in (f) and (g). Black dashed boxes indicate 

the two correlated regions. (h) Calculated band structure of tTLG with θ ≈1.22
o 

with U=0 (left) and 70 meV 

(right) and the path in k-space is ( 𝛤 ⟶ 𝑀 ⟶ 𝐾/𝐾′ ⟶ 𝛤 ). Red regions indicate the bandgaps at full fillings 1, 

and grey region shows the gap 0 at CNP opened by U. Cyan (blue) colour indicates the Dirac (parabolic) band 

inherited from MLG (BLG). Red dashed line indicates EDS, the energy of Dirac band shift. (i-m) Calculated single-

particle bandgaps and bandwidth of c1 and v1 band as a function of band filling and potential energy difference 

U for the twist angles studied in experiment. White to red shows the single-particle bangaps, -1, 0 and 1. 

Grey to blue shows the bandwidth of c1 and v1 bands. Black dashed boxes indicate local minima of bandwidth. 

We first discuss the common features emerging in all our devices. First, two resistive peaks 

emerge at 𝑛 = ±𝑛0. Second, at the charge neutrality point (CNP), the resistivity increases with 

increasing D, suggesting a gap opening resulting from the applied displacement field. To understand 

these features, we calculated the band structures of tTLG with a continuum model
25

 (see 

Supplementary Materials), and Fig. 1h shows an example of such band structure of tTLG with  

≈1.22
o
. Cyan (blue) solid line indicates the monolayer (bilayer) graphene band branch after interlayer 

hybridization, and black indicate higher energy branches. U is the energy potential between the top 

and bottom layer. When U=0, two single-particle bandgaps emerge at 𝑛/𝑛0= ±1 separating the low-

energy bands (lowest conduction band c1 and highest valence band v1) from higher energy bands, 

resulting in the band insulators at full fillings 𝑛/𝑛0 =±1. When U=70 meV, the band gap 1 at 𝑛/𝑛0=1 increases, while the gap -1 slightly decreases on the hole side. A gap 0 is opened by U at CNP, 

observed as the increase in the resistivity in experiment. The non-interacting band structure of tTLG 

is governed by two important features.  First, in the twisted system, the Dirac bands are always 

shifted to positive energy EDS>0 even in the absence of any displacement field (see Fig. 1h and 

explanation below).  Second, the shift of the parabolic bands is asymmetric with respect  

 



 

Fig. 2: Tunable band structure and transport properties of sample S1 with twist angle 1.47
o
. (a) ρxx(n,D) map 

of S1 measured at B=0 T and T=1.6 K. Charge density n is normalised to full-filling doping n0 = 5 x 10
12

 cm
-2

. (b) 

ρxy(n,D) at 𝐵⊥=2 T and T=1.6 K. (c) ρxx (B=0 T, blue) and ρxy (B=2 T, red) as a function of charge density at D=0 

(top panel), 0.3 (middle panel) and 0.6 V/nm (bottom panel). Red dashed line indicates ρxy=0. (d-e) Calculated 

DOS maps for twist angle 1.47
o 

(d) and 1.22
o
 (e) as a function of band filling and displacement field.  

 

to displacement field (see Fig. s4).  Combining these two features i.e. how the bands shift with U, 

and that EDS >0,  we can explain the evolution of the band structure with displacement field, and in 

particular, we expect at low energy: (i) electron-hole asymmetry (in particular, a smaller bandwidth 

for the conduction band compared to hole band at fixed U); and (ii) asymmetry with the sign of the 

displacement field (in particular, a smaller bandwidth for conduction band with positive U, 

compared to negative U). 

In addition we also observe states at half- and quarter-fillings that cannot be explained by 

the single-particle picture and evolve with twist angle. The corresponding resistivity peaks are 

strongly asymmetric for electrons and holes, as well as for positive and negative D, Fig 1c-g. Similar 

fractional-filling insulating states have been reported in tBLG
2-4

 and tDBLG
8-11

, and the states we 

observe here could be similar correlated states originating from band flatness and band isolation
10

. 

To confirm the nature of these states, we calculated the bandstructures and extract five features: 

the bandwidth of c1 and v1 bands, and the single-particle gaps 1, -1, and 0. Fig. 1i-m display the 

calculated bandgaps and bandwidths and their evolution with twist angle, in which the red stripes at 

CNP and full fillings show the single-particle bandgaps, and the blue stripes show the bandwidth of c1 



and v1 band. In Fig. 1i, two local bandwidth minima are present, as indicated by the black dashed 

boxes. The bandwidth minimum of c1 band for U>0 increases with , consistent with the 

experimental observation that the correlated feature on the positive D side fades away with 

increasing . While for U<0, the position of minimum bandwidth of c1 band moves to larger U. As a 

result, the flattest band moves out of D range that is experimentally achievable for twist angle 

>1.41
o
, and becomes less isolated from higher conduction bands as 1  decreases with increasing U. 

The electron-hole asymmetry could also be explained by the band flatness and band 

isolation. For example, in Fig. 1i, the band width minimum of v1 band occurs when 80<U<120 meV, 

where the gap -1 shrinks in the presence of U, meaning the v1 band is less isolated from lower 

valence bands. With increasing angle, the v1 bandwidth minimum moves to higher U, and the gap -1 

is closed. Therefore, the extracted features from our band structures calculation explain the 

electron-hole asymmetry as well as why the correlated features are asymmetric with D, and absent 

on negative D for samples with  > 1.41
o
 in the experiment.  In fact, the asymmetric features of the 

band structure is due to the Dirac energy shift
20

 where Dirac cone energy states originating from the 

monolayer are shifted upward compared to the electronic state of the bilayer (Fig. 1h and Fig. s4). 

We note that the displacement field has two effects on the band structure
20

.  First, regardless of the 

sign of the displacement field, it pushes the conduction band of the monolayer upwards and the 

valence band downwards with equal magnitude.  Second, for parabolic bands originating from the 

bilayer graphene, a positive U shifts the conduction band upwards by U/2, as might be expected 

from an isolated BLG, and the valence band downwards by U/6.  This effect is reversed for negative 

U.  Notice, therefore, that for positive U, a bandgap at charge neutrality is opened up only after the 

conduction band of the parabolic bilayer is shifted upwards by the displacement field U≥2EDS.  The 

resultant conduction band is very flat because the top of the moiré band is pinned at the Γ 
point.  The positive EDS also guarantees that the conduction bandwidth is flatter than the hole 

bandwidth. For negative U, the band gap at charge neutrality is opened once U≥6EDS, and generically 

the electron and hole bandwidths are larger than for positive U.  These features can be clearly seen 

in the numerical band structures shown in Fig. 1h and Fig. s4, calculated within the continuum model. 

Fig. 2a shows the longitudinal resistivity xx of sample S1 as a function of n and D (n is 

normalized to the full filling-charge density n0= 5 x 10
12

 cm
-2

, associated with a twist angle ≈1.47
o
). 

The angle is confirmed by Brown-Zak oscillation (see Fig. s3). On the hole side, fractional filling 

resistive peaks emerge in the whole range of D measured, and the position of this resistive peak 

evolves with D. While on the electron side, resistive peaks only appear in a small range of D, 

between 0.4-0.7 V/nm, and are absent for D<0, in contrast to the case of tDBLG
10

, in which the 

correlated states are symmetric with respect to the sign of D.   

To characterise the resistive peaks at fractional fillings, we study the response of the sample 

in a perpendicular magnetic field. Fig. 2b shows the Hall resistivity at B=2 T, where sign changes are 

present at CNP and at full fillings 𝑛 = ±𝑛0, in agreement with the presence of  single-particle gaps 

and change of charge type. Unexpectedly, xy also tends to change sign, i.e. Hall density resets, at 

half filling n/n0=1/2 for 0.4<D<0.7 V/nm in Fig. 2b, which indicates the change of charge type from 

hole-like to electron-like. Considering the metallic low resistivity (≈200 ) in this region, the change 

of charge type at half filling could indicate the overlap between electron-like and hole-like bands, 

suggesting new band edge formation as a result of electron correlations when each moiré unit cell 

hosts 2 electrons. 

 



 

Fig. 3: Correlated states and transport properties of sample S2 with twist angle 1.22
o
. (a) ρxx(n,D) at B=0 T 

and T=1.6 K. Charge density n is normalised to full-filling doping n0 = 3.43 x 10
12

 cm
-2

. Correlated states with 

different manifestations emerge on both positive and negative D. (b-c) ρxx(B=0 T, blue) and ρxy (B=2 T,red) as a 

function of charge density at D=0.5 (b) and -0.5 V/nm (c). Red dashed line indicates ρxy=0. (d) Temperature 

dependence of ρxx(n) at D=-0.5 V/nm. (e) Thermal activation gaps at full-fillings n/n0=-1 (blue circles), +1 (red 

circles) and half-filing (cyan circles). Solid lines are calculated band gaps at CNP (grey), n/n0=-1 (blue) and +1 

(red). (f) Map of bandgaps and bandwidth as a function of band filling and potential energy difference.  

 

Measurements in low magnetic field allow us to identify the events of the change of band 

curvature from electron-like to hole-like
26

, which are estimated as the states wherexy =0 (Fig. 2b). 

Such changes of the band curvature is usually associated with van Hove singularities (vHS). Such vHS 

appear on both electron- and hole-side, and span the whole D range reachable in experiment. For 

further clarity, three panels of Fig. 2c display the line cuts of xx(n/n0) and xy(n/n0) under B=2 T at 

D=0, 0.3 and 0.6 V/nm, respectively. As shown in Fig. 2c, xx peaks emerge at the position of vHS, 

corresponding to xy = 0. Moreover, the position of vHS depends on D. On the electron-side, 

correlated state emerges when the vHS moves to the position at half-filling, Fig. 2b. Therefore, the 

fractional-filling peaks on the electron side should be related to the vHS based on this observation.  

Fig. 2d plots the calculated density of states (DOS) map as a function of band filling and displacement 

field. The positions of DOS peaks in Fig. 2d qualitatively agree with the positon of white stripes in Fig. 

2b, confirming the presence of tunable vHS in tTLG. 

A much richer phase diagram is observed when the twist angle is close to the optimal or so-

called magic angle. Fig. 3a shows the xx(n/n0, D) map of sample S2 with twist angle ≈1.22
o
. 

Different from sample S1 where resistive peaks (≈200 ) emerge only on positive D between 0.4-0.7 

V/nm, sample S2 shows significantly more resistive states (order of 20 k) at quarter- and half-

fillings under both positive and negative D (Fig. 3a). To characterize these states, Fig. 3b and Fig. 3c 

show xx and xy(B=2 T) at D= 0.5 and -0.5 V/nm, respectively. In both Fig. 3b and Fig. 3c, xy changes 

sign at CNP, and at full fillings n/n0=±1, in agreement with the fact that the Fermi levels pass 

through single-particle superlattice gaps. The sign changes at n/n0=1/2 at D=0.5 V/nm in Fig. 3c 



indicates the formation of a new Mott-like bandgap as a result of strong correlation. On the contrary, 

at D=-0.5 V/nm, Hall density resettings appear at all commensurate fillings, indicating formations of 

three new Fermi surfaces when c1 band hosts integer number of electrons. The amplitude of the 

resistivity for the three states decreases with temperature (after background subtraction, see Fig. 3d, 

as well as Fig. s2). Therefore, we attribute these three peaks to the correlation at commensurate 

fillings, and the correlation weakens with increasing T. The relatively low resistivity and metallic 

behaviour of the features at D<0 could be because the correlations cause band overlaps, rather than 

open bandgaps when c1 band hosts integer number of electrons.  

The correlated states manifesting themselves as resistive peaks at commensurate fillings 

n/n0 = 1/4, 1/2, and 3/4, show qualitatively different behaviour for positive and negative D. The D>0 

correlated states are more resistive (order of 20 k) than those on the D<0 side (<2.5 k), Fig. 3a. 

The correlation is much stronger at half filling than at quarter and three-quarter fillings on the 

positive D side, while on the negative D side, the resistive peaks are of the same order at all 

commensurate fillings. The correlated states on the positive D side exhibit insulating behaviour, 

while the negative side are metallic, as shown in Fig. 3d.  

In tDBLG
8-10

, the correlated states at fractional fillings are attributed to the band flatness and 

maximum isolation of the first electron c1 band from its neighbouring bands, and in tBLG
2,3

, spin and 

valley degeneracy are broken as a result of strong correlation, giving rise to the correlated states at 

integer number of electron/hole fillings. Fig. 3f shows the bandwidth of c1 and v1 bands, as well as 

the bandgaps at CNP and n/n0=±1. Indeed, we find flattest c1 band occur at positive potential 

difference 40<U<70 meV, where both the gaps at CNP and n/n0=1 are present. In addition, a local 

minimum bandwidth also emerges for -120<U<-70 meV. The observation that the c1 band is flatter 

when U>0 than that when U<0 agrees with the experimental observation that correlated states 

under positive D are more robust than that under negative D. Fig. 3e displays the experimental 

thermal activation gaps at n/n0=±1, and the calculated single-particle gaps as a function of D, which 

qualitatively agree well with each other, confirming that the band isolation plays a role in the 

correlation. 

For a correlation mediated insulator, being close to commensuration is necessary but not 

sufficient condition. Similar to tBLG, the origin of the strongly correlated insulator is not yet 

understood.  It could arise from the formation of a Mott insulator
2
, a Wigner crystal

27
, or because 

the electron interactions lift the spin or valley degrees of freedom
5
.  For all of these mechanisms, the 

insulating state is expected to occur at commensurate fillings.  This is because electron-electron 

interactions conserve momentum, and can only dissipate current by the Umklapp processes that are 

enabled when a moiré subband is completely filled
28

.  

 

 

 



 

Fig 4:  Signatures of superconductivity in tTLG near electron quarter filling correlated state. (a) Zoom-in of Fig. 

3a between CNP and electron full filling. Black circle shows the region where superconductivity is observed. (b) 

Resistivity versus temperature under D=0.38 V/nm. The insulating response at half filling (red) onsets ≈12K, 

and the resistivity near superconducting regime decreases sharply from ≈2.5 kΩ to ≈ 400 Ω at 0.3 K (black). (c) 

Response of dV/dI at superconducting state D=0.38 V/nm, n/n0=0.15 as a function of DC current Ib at 9.3 K 

(red), 1.2 K (pink) and 0.3 K (blue). (d) dV/dI at superconducting state (D=0.38 V/nm, n/n0=0.15) as a function 

of perpendicular B field from 0 T to 3 T, increasing by a step of 0.5 T. 

 

Since it is anticipated both experimentally and theoretically
3,29-31

 that superconductivity 

occurs for doping away from commensurate filling, we look for superconductivity in our tTLG 

experiment close to the commensurate filling n/n0=1/4, and in regions where the non-interacting 

band structure has a peak in the DOS (Fig. 2e). Fig. 4 displays the signature of superconductivity near 

electron quarter-filling at positive D=0.38 V/nm in sample S2. A small excitation current 1nA is used 

to measure the resistance. Fig. 4b shows temperature dependence of resistivity at half filling 

n/n0=1/2 and at region near quarter filling n/n0=0.155 at D=0.38 V/nm. Half-filling state displays 

insulating behaviour, while the resistivity at doping n=0.155n0 drops abruptly at low temperatures. 

To verify its superconducting nature, we measure differential resistance dV/dI as a function of 

driving DC current in varying temperatures as shown in Fig. 4c. At low temperature, a typical 

superconducting dV/dI(Ib) is observed, where two sharp peaks are present to define the critical 

current Ic≈260 nA at 0.3 K, excluding the Joule heating mechanism of the non-linear I-V curves
32

. 

Increasing temperature drives the sample into normal metallic state. Perpendicular magnetic field 

also suppresses the superconductivity as shown in Fig. 4d. The observations confirm the emergence 

of superconductivity near quarter-filling under D=0.38 V/nm. The non-zero resistivity in the 

superconductivity regime could be attributed to sample inhomogeneity or non-ideal contacts, 

similar to previous reports
4,13

. 

In summary, tTLG is a perfect model to study tunable vHS and emergent quantum 

phenomena resulting from electronic correlations in engineered flat bands. We demonstrated that 

correlated states in tTLG can be turned on and off by a displacement field. Moreover, the reduced 

symmetry in tTLG makes the correlated states highly tunable by twist angle, and two asymmetric 



correlated regions with respect to D are observed in our samples. In addition to the interesting 

correlation physics, the Bernal (ABA) and rhombohedral (ABC) stacked domains in tTLG provide ideal 

platforms to study topological edge states as ABA- and ABC-stacked few-layer graphene host totally 

different band structures
33

. Our work thus paves the way for understanding the mechanism of 

strong correlations in twistronics.  

 

Methods 

The heterostructures of twisted trilayer graphene encapsulated by hBN were assembled by 

the standard dry-transfer and tear-and-stack techniques
22

 with a polypropylene carbonate (PPC) film 

on top of a polydimethylsiloxane (PDMS) stamp. Graphene flake with monolayer/bilayer steps and 

hBN flakes were exfoliated onto SiO2/Si substrate. After picking up a top hBN flake with the 

PPC/PDMS stamp, we used the stack to tear and pick up the monolayer part of graphene flake from 

the bilayer part at the temperature of 40  ͦC. The remaining bilayer part on the substrate was then 

rotated by a desired angle and subsequently picked up by the monolayer graphene/hBN stack. The 

heterostructures were then released onto a bottom hBN exfoliated on 300 nm SiO2/doped Si 

substrate to form hBN/monolayer Gr/bilayer Gr/hBN stack. The standard Hall bar geometry of the 

devices was defined by e-beam lithography and etched by CHF3/O2 plasma. The one-dimensional 

electrical contacts and top gate were deposited by e-beam evaporation of Cr/Au. 

 Transport measurements were performed in an either dry or liquid helium cryostat using 

standard low-frequency AC measurement with Lock-in amplifiers. To detect the superconductivity, 

the sample was loaded into 
3
He cryostat. Low temperature electrical filters were used to increase 

the signal-to-noise ratio. The difference resistance dV/dI were measured by coupling a small AC 

current (1 nA) and a DC current bias and measuring the differential voltage using lock-in technique. 
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Supplementary Materials 

 

1. Electronic properties of twisted trilayer graphene 

Among the different van der Waals materials that can be twisted on each other, our system is 

rather unique.  For hetero-bilayers like graphene twisted on hexagonal boron nitride (hBN), the 

lattice mismatch between carbon lattice and the BN lattice is the dominant physics, as is the 

differential coupling between boron and nitrogen with carbon
34

.  Since our system is all comprised of 

carbon layers, we do not have any such complications of hetero bilayers.  Yet, MLG and BLG are 

electronically distinct materials.  MLG has massless fermions with π Berry’s phase, while BLG has 
massive fermions with 2π Berry’s phase.  The moiré bands formed by hybridizing these have weight 

on all three layers, and inherit the properties of both systems
35

. We know that MLG is much more 

susceptible to disorder compared to BLG
36

, while BLG require much larger magnetic fields to have 

the cyclotron energy comparable to the kinetic energy.  Our system combines the advantages of 

both.  Also, an isolated MLG preserves electron-hole symmetry, and is not susceptible to a 

displacement field, while an isolated BLG breaks both.  In our system, these are only weakly broken 

by higher order processes that couple the two systems, thereby giving us the advantages of both.  

2. Continuum model of twisted trilayer graphene 

To theoretically study the system of twisted monolayer-bilayer graphene, we built a 

continuum model following the approach introduced in Ref
25

. In our case we have a monolayer 

coupled to a bilayer graphene by three 2x4 tunneling matrices in contrast to the 2x2 matrices used 

to couple two monolayer graphene.   

The primitive lattice vectors for monolayer and bilayer graphene are defined as  

𝑎1 =  (𝑎2 , √3 𝑎2 )    , 𝑎2 =  (𝑎2 , − √3 𝑎2 )      
where a= 0.246 nm is the lattice constant of graphene.  

The displacement vectors from an atom A to the nearest three B atoms are  𝛿1 = (0,    𝑎√3  ),   𝛿2 = ( 𝑎2 ,   − 𝑎2 √3 ),   𝛿3 = (− 𝑎2 ,   − 𝑎2 √3)  
The primitive reciprocal lattice vectors are given by  𝑏1 =  (2𝜋𝑎  , 2𝜋 √3 𝑎),    𝑏2 =  (2𝜋𝑎  , − 2𝜋 √3 𝑎) 



Considering pz orbitals on A1 and B1 sublattices, the tight-binding description for monolayer 

graphene is  

𝐻𝑀𝐿𝐺 =  ( − 𝑈2 𝛾0 𝑓(𝑘)𝛾0 𝑓∗(𝑘) − 𝑈2 ) 

where f(k) describes the nearest neighbor hopping, given by 

𝑓(𝑘) = ∑ 𝑒𝑖 𝑘.𝛿𝑗3
𝑗 =1     

In the tight-binding description for AB-stacked bilayer graphene, we take four pz orbitals on A2, B2, A3 

and B3 sites. The resulting Hamiltonian is  
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with parameter values determined by DFT
37

 as (𝛾0, 𝛾1, 𝛾3, 𝛾4) = (−2.61 , 0.361 , 0.283 , 0.138)  𝑒𝑉 

Layer 1 and Layer 2 are coupled by three 2x 4 tunneling matrices  

𝑇𝑗 =   
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where 𝜙 =  2𝜋3  and j=1,2,3,  𝑤𝐴𝐴= 0.050 eV  is the Fourier component of the tunneling between 

sublattice  A1 and  sublattice A2 and 𝑤𝐴𝐵= 0.085 eV is the Fourier component of the tunneling 

between sublattice A1 and sublattice B2
38

. 

 

 

 

 



 

Fig. s1: Two mirror-symmetric configurations of tTLG.  ρxx maps as a function of back gate voltage Vbg and top 

gate voltage Vtg of samples with twist angle ≈1.47
o
 (a) and 1.6

o
 (b) measured at T=1.6 K and B=0 T. The 

schematics above the maps show the stacking configuration. Black and blue balls indicate bilayer and 

monolayer graphene, respectively. Red arrows define positive D. 

 

 

 

Fig. s2: Temperature dependence of correlated states under D<0 in sample S2. (a) The same figure as Fig. 3d 

in the main text, but after subtracting a smooth background.  (b) Peak amplitudes as a function of temperature 

at fractional electron fillings. 

 

 

 

 

 



 

Fig. s3: Brown-Zak oscillations. σxx maps of sample S1 (a) and S2 (b) versus normalised charge carrier density 

and magnetic field measured at T=1.6K and D=0. Numbers indicate 
𝛷0𝛷  fractions, where 𝛷0 = ℎ𝑒, h is Planck 

constant, e is electron charge, and 𝛷 = 𝐵𝑆 is magnetic flux through a moiré unit cell.  



 

 

Fig. s4: Dirac energy shift in the asymmetric evolution of band structure in tTLG. Energy units are in meV and 

the path in k-space is ( 𝛤 ⟶ 𝐾/𝐾′ ⟶ 𝛤 ). (a) Band structure without coupling the two subsystems through the 

tunnelling matrices T. (b) Band structure with non-zero tunnelling matrices for zero interlayer potential energy 

difference U=0.  The coupling of the two subsystems even without applying potential difference U results in 

shifting the Dirac cone upwards. (c-h) Effect of applying positive interlayer potential energy difference U>0. 

The bandgap at CNP needs U smaller than 30 meV to open. Moreover, electron band c1 is flatter than the hole 

band v1. (i-n) Effect of applying negative interlayer potential energy difference U<0. In contrast to when U>0, it 

requires larger energy difference U< -50 meV to open a gap at CNP.  

 

 

 

Fig. s5: Dirac energy shift as a function of twist angle. Solid black curve is the Dirac energy shift produced by 

our continuum model and the red dots are the results of tight-binding model in Ref 
20.    

 


