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Tunable VVC Frame Partitioning based on

Lightweight Machine Learning
Thomas Amestoy, Alexandre Mercat, Wassim Hamidouche, Daniel Menard and Cyril Bergeron

Abstract—Block partition structure is a critical module in
video coding scheme to achieve significant gap of compression
performance. Under the exploration of the future video coding
standard, named Versatile Video Coding (VVC), a new Quad
Tree Binary Tree (QTBT) block partition structure has been
introduced. In addition to the QT block partitioning defined
in High Efficiency Video Coding (HEVC) standard, new hori-
zontal and vertical BT partitions are enabled, which drastically
increases the encoding time compared to HEVC. In this paper,
we propose a lightweight and tunable QTBT partitioning scheme
based on a Machine Learning (ML) approach. The proposed
solution uses Random Forest classifiers to determine for each
coding block the most probable partition modes. To minimize
the encoding loss induced by misclassification, risk intervals
for classifier decisions are introduced in the proposed solution.
By varying the size of risk intervals, tunable trade-off between
encoding complexity reduction and coding loss is achieved. The
proposed solution implemented in the JEM-7.0 software offers
encoding complexity reductions ranging from 30% to 70% in
average for only 0.7% to 3.0% Bjøntegaard Delta Rate (BD-
BR) increase in Random Access (RA) coding configuration, with
very slight overhead induced by Random Forest. The proposed
solution based on Random Forest classifiers is also efficient to
reduce the complexity of the Multi-Type Tree (MTT) partitioning
scheme under the VTM-5.0 software, with complexity reductions
ranging from 25% to 61% in average for only 0.4% to 2.2%
BD-BR increase.

Index Terms—Video Compression, VVC, JEM, VTM, QTBT,
Complexity Reduction, Machine Learning, Random Forest

I. INTRODUCTION

The expansion of Internet coupled with the rapid introduc-

tion of Ultra High Definition (UHD), High Dynamic Range

(HDR) and 360° video contents in daily life have caused

the explosion of video traffic. Recent study published in

Cisco [1] has predicted that video traffic will increase from

61% of the global IP traffic in 2016 to 82% in 2021. This

increasing demand for video contents brings new challenges

to compression, especially to enhance the coding efficiency

and enable a high quality of experience of video services.

Moreover, in the context of embedded systems with limited

computing and energy resources, the complexity of video

codecs is a crucial challenge to reach real time processing

with low energy consumption.
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The ITU-T Video Coding Experts Group and ISO/IEC

Moving Picture Expert Group have released in 2013 the High

Efficiency Video Coding (HEVC) standard [2]. HEVC reduces

the bitrate up to 60% compared to its predecessor Advanced

Video Coding (AVC) standard [3] for the same subjective

video quality [4], [5]. The Joint Video Exploration Team

(JVET) has been recently established to investigate several

new coding tools under the Joint Exploration Model (JEM)

software [6] [7] in order to show the interest of developing

a new video coding standard called Versatile Video Coding

(VVC), with coding capability beyond HEVC. These new

coding tools already increase the coding efficiency by up to

40% compared to HEVC [8]. However, bitrate savings come

with a significant complexity increase compared to HEVC.

At the encoder side, computationally expensive tools have

been added in the JEM, especially for intra prediction and

frame partitioning scheme that select the appropriate block

size according to the local activity of the pixels. The new Quad

Tree Binary Tree (QTBT) partitioning scheme introduced in

the JEM improves the coding efficiency by approximately

5% [9] in Random Access (RA) configuration. However,

the coding gain is achieved at the expense of considerable

complexity increase. This complexity becomes a bottleneck

for the development of the VVC standard and may interfere

with its deployment especially on embedded platforms and

live applications.

To reduce the computational complexity of encoders, several

techniques propose to reduce the tested intra mode candidates.

These techniques use features such as gradients of luminance

samples [10]–[12] or Machine Learning (ML) techniques [13]

to predict a reduced set of likely intra modes. Other tech-

niques reduce the complexity of the encoding process by

focusing on the partitioning scheme and testing a reduced

number of partition configurations. In HEVC, to predict the

most probable Quad Tree (QT) partitions, these techniques

leverage intermediate encoding information [14]–[18], tex-

ture characteristics [19]–[21], motion divergence [22]–[24]

or ML solutions [24]–[28]. More recently, some techniques

have already investigated the complexity reduction of QTBT

partitioning scheme [29]–[34]. Even though Random Forest

(RF) is a classical method in ML that offers high classification

performance with slight overhead and is widely used in many

applications such as image classification [35] and 3D pose

estimation [36], none of the previously mentioned QT or

QTBT fast partitioning techniques rely on RF. Furthermore,

tunable complexity reduction for QTBT partitioning has not

yet been investigated in previous works.

In this paper, we propose a tunable ML solution based on
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RF classifiers to speed up the QTBT partitioning scheme in

RA coding configuration. The proposed solution explores a

novel approach to solve a 4 classes classification problem

inherent to QTBT partition scheme, which has not been fully

studied in related works. The decision of QTBT partition mode

for the Coding Unit (CU) is modeled as three distinct binary

classification problems. Thus, three binary RF classifiers are

trained independently off-line, with separate training for each

CU size. The goal of the classifiers is to skip expensive

exploration of the partition modes classified as unlikely. Fur-

thermore, the classifiers take as input only features from the

current CU, making the solution parallel-friendly. To limit

the Rate Distorsion (RD) loss induced by misclassification,

risk intervals are introduced to control the classifier decisions.

When the classifier decision falls into the risk interval, all

possible partitioning modes are processed. The risk intervals

are set by the encoder based on the encoding of a reference

frame, adapting the RD loss induced by misclassification to the

encoded content. By varying the size of risk intervals, tunable

complexity reduction is achieved.

To the best of our knowledge, the proposed solution is

the first tunable complexity reduction solution applied on an

encoder post HEVC. It includes various Complexity Reduction

Configurations (CRCs), each offering a new trade-off between

complexity reduction and Bjøntegaard Delta Rate (BD-BR) in-

crease. In JEM-7.0 software, encoding complexity reductions

vary from 30% to 70% in average at the expense of only

0.7% to 3.0% BD-BR increase. The proposed solution based

on RF classifiers is also efficient to reduce the complexity of

the Multi-Type Tree (MTT) partitioning scheme in the VVC

Test Model (VTM)-5.0 software, with complexity reductions

varying from 25% to 61% in average for limited BD-BR

increase of 0.4% to 2.2%. Moreover, the proposed solution

induces a very low overhead between 0.2% and 1.8% of the

encoding time according to the video content, which is a

key point to adopt this solution in a real-time and embedded

framework.

The rest of the paper is organized as follows. Section II

describes the frame partitioning decision in HEVC and JEM,

and then reviews the related works. Section III goes through

background of RF classifiers and presents the proposed clas-

sification problem. Section IV depicts the training dataset.

The training process to build RF classifiers is described in

Section V. Section VI details how tunable encoding com-

plexity reduction is achieved using various configurations

of the risk intervals. Experimental results are presented and

analyzed for both JEM-7.0 and VTM-5.0 in Section VII.

Finally, Section VIII concludes this paper.

II. RELATED WORKS

A. Overview of Frame Partitioning Scheme in HEVC and JEM

HEVC relies on the classic hybrid video coding combin-

ing intra/inter image predictions and transform coding. Intra

prediction exploits spatial redundancy within the same frame

whereas Inter prediction exploits temporal redundancy in the

video sequence. First, each frame is split into Coding Tree

Units (CTUs) of equal sizes. As shown in Fig. 1a, each CTU is

(a) QT partition of a CTU.

M/2xM MxM/2

MxM/4(U) MxM/4(D)M/4xM(L) M/4xM(R)

MxM M/2xM/2

(b) Allowed PU modes in HEVC.

Fig. 1: QT partition scheme of a CTU in HEVC. QT partition

modes in red and further PU modes in blue.

(a) QTBT partition of a
CTU.

 QT

BT Ver

BT Hor

No Split

(b) QTBT partition tree. Leaf boxed
in green corresponds to CU filled with
green in Fig. 2a.

Fig. 2: QTBT partition scheme in JEM. In red QT partition

mode and in green BT partition modes.

then recursively split into square CUs, following a QT partition

scheme. To perform the prediction, the CUs can be divided

into Prediction Units (PUs) of smaller size following one of

the eight PU modes illustrated in Fig. 1b.

After performing prediction, residual blocks can be further

split recursively with a second QT partition scheme into Trans-

form Units (TUs) on which transform is performed. However,

the QT scheme suffers from the following limitations:

• CUs can only be square, with no flexible shape to cover

all block characteristics.

• Luma and Chroma components of the encoded sequence

have the same QT splitting which is rarely optimal for

chroma.

• Residual can only be split into TUs with square shapes,

reducing the potential impact of transformation.

To overcome these limitations, a QTBT partitioning scheme

has been proposed in the JEM [37]. QTBT is an extension

to the QT partitioning that enables symmetric binary partition

modes CUs in both horizontal (Binary Tree Horizontal (BTH))

and vertical (Binary Tree Vertical (BTV)) directions, as shown

in Fig. 2a. When Binary Tree (BT) partition mode is used in

a CU, QT partition mode is no longer allowed. In the JVET

Common Test Conditions (CTC) [38], BTdepth parameter is

set to 3, enabling only 3 successive BT partitions. Fig. 2b

shows the tree representation of QTBT partition, where the

leaf surrounded by a green square corresponds to the green

CU of Fig. 2a.

The flexibility brought by BT partition modes covers the PU

modes. In JEM, CUs are directly used to perform prediction.
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Rectangular transforms have also been adopted so that the

transform can be applied on the CUs without any further

splitting of residual blocks [39]. Moreover, different partition

trees can be applied on Luma and Chroma components for

intra predicted slices. For inter predicted slices, the partition

trees of Luma are used for Chroma.

B. Complexity Reduction of Frame Partitioning

QTBT partitioning scheme has not yet been fully studied

from the perspective of complexity reduction. Reason

why in this section, the techniques proposed to speed up

the QT partitioning scheme in HEVC are first described.

Subsequently, papers that have investigated the complexity

reduction of QTBT partitioning scheme are presented.

1) Partitioning Scheme in HEVC: the techniques proposed

to speed up the QT partitioning scheme in HEVC are divided

into four categories, whether they involve: intermediate en-

coding information, texture characteristics, motion divergence,

and ML.

Intermediate encoding information: techniques of the

first category are based on intermediate information computed

during the encoding process such as depths of previously

encoded blocks, encoding flags or RD cost of PU modes.

Pan et al. [14] use the motion estimation and all-zero block

detection informations of M×M PU mode (Fig. 1a), coupled

with merge mode informations of previous depths to determine

if early merge can save computational time. A threshold based

on Sum of Absolute Transform Differences (SATD) of M×M
PU mode has been proposed in [15]. The technique ignores

the unlikely remaining PU modes or early terminating QT

partitioning mode. In [16], Correa et al. figure out that some

QT depths tend to be used in co-located areas of adjacent

frames and exploit this correlation to target a computational

complexity reduction. Same authors adapt this principle to

speedup the coding of motion sequences in [17] by using a

motion compensated area as reference in previously encoded

frame (instead of co-located area) and by using depths of

spatial neighboring CTUs. In [18], a thresholding process

applied on RD cost of M ×M merge mode determines if the

skip mode shall be used for the PU. These techniques [15]

[17] [18] reduce the encoding complexity between 30% and

50% with a BD-BR increase in the range 0.4% to 1.4%.

Texture characteristics: second category covers tech-

niques exploiting the correlations between spatial information

of a sequence, also called texture, and the QT partitioning

scheme. Usually, areas having complex textures are split into

small blocks in order to fit better its local variations. Authors

in [19] apply thresholds on local and global edge filters

of luminance samples in 4 directions (0°, 45°, 90°, 135°) to

determine if a CU shall be split, non-split or undetermined. A

similar principle is applied in [20], where the authors compute

adaptive thresholds based on texture homogeneity for early

determination of QT depth of CTUs. Mercat et al. propose

in [21] a technique that determines at each step if the 4 smaller

CUs shall be merged into one CU. This bottom-up approach

exploits correlation between the QT partitioning scheme and

texture variance.

Motion divergence: techniques of the third category

explore the correlation between motion divergence in a frame

and the QT partitioning scheme. Areas of the frame with

continuous motion tend to be split into larger blocks. Reason

why in [22], authors detect motion continuity by applying

Sobel operators to a pre-computed optical flow and use this

information to predict block size and save computational time.

In [23], a score called Pyramid Motion Divergence (PMD)

based on variance of Motion Divergence Field is assigned to

every CU. The authors show that CUs with similar PMD tend

to be encoded with the same partitioning. Blasi et al. [24]

propose a bottom-up approach to ignore certain CU partition

modes based on a motion vector variance distance, computed

on the four QT sub-CUs.

Machine Learning: techniques of last category use ML

approaches to reduce encoding complexity. They either take

as input features extracted from one or more of previous

categories, or rely on Deep Learning (DL) approaches such as

Convolution Neural Networks (CNNs). Liu et al. [25] propose

a technique based on CNN for All Intra (AI) configuration

that determine if a CU must be early terminated or early

split. A CNN is separately trained for every QT CU size

from 32x32 to 8x8 pixels. In [26], Duanmu et al. focus on

Screen Coding Content (SCC), an extension of HEVC that

targets typical screen contents. Separate CNN classifiers are

separately trained for different Quantization Parameter (QP)

values and CU sizes to output a variable between 0 and 1,

representing the probability that a CU is early terminated. In

[27], to reduce RA encoding complexity in HEVC, Support

Vector Machines (SVM) classifiers are separately trained

for every CU size in order to determine if a CU should

be early terminated. The SVM classifier takes as an input

features such as pixel gradients, sub-CUs Movement Vectors

(MVs) and intermediate encoding information (encoding

flags, CU depth of neighboring blocks and the RD cost). The

technique proposed by Correa et al. [24] is based on decision

trees, each relying on spatial features and intermediate RA

configuration encoding information. The decision trees are

trained separately for every CU size from 64x64 to 8x8. In

[28], Shen et al. propose a Bayesian rule classifier employing

features of M × M PU mode such as SATD, RD cost and

MV to determine the PU mode of a CU. Finally, Mercat et

al. [40] compares features used in state of the art techniques

to predict HEVC partition, considering both information gain

and computational complexity.

2) QTBT Partitioning Scheme: QTBT partitioning scheme

in the JEM allows two more partition modes compared to

QT partitioning scheme, considerably increasing the encoding

complexity. Furthermore, intermediate PU splitting modes,

that provides useful information for early termination or early

skip decision in HEVC, have been removed in the JEM. For

these reasons, most of previously mentioned techniques can

not be directly used to speedup the JEM encoder.

In [29], Yamamoto proposes to reduce the encoding com-

plexity in RA configuration by setting high value of BTdepth

on frames with low Temporal ID, whereas frames with high
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Temporal ID use smaller value of BTdepth. In the QTBT

partition scheme the same CU can be generated by different

block partition choices. Huang et al. [30] reduce the encoding

complexity by re-using the encoder decisions of the same

CU explored in previous partition choices. The technique

proposed by Lin et al. [31] skips the BT Rate Distorsion

Optimization (RDO) process of the second sub-CU, when

the RD cost of the parent CU and the first sub CU fulfil

certain constraints. Authors in [32] and [33], use CNNs to

predict a depth description of QTBT partition of the CTUs.

In [32], the CNN takes as an input the 32 × 32 pixels

blocks of the frame, as well as QP value, and outputs a

class from 0 to 5 describing QTBT partition depth for AI

configuration. In [33], the false prediction risk of CNN is

controlled based on temporal correlation for RA configuration.

Wang et al [34] use a combination between Motion Divergence

Field and gradient of luminance samples to model the RD

cost of a CU. A probabilistic model is then proposed to

determine unlikely partition modes of the QTBT partitioning

scheme. Complexity reduction techniques [29], [33] and [34]

can reduce encoding complexity in RA configuration by

17%, 32% and 52% for 0.5%, 0.5% and 1.4% of BD-BR

increase in average, respectively. These results depend on the

encoder version of the used software, encoding parameters and

hardware configuration. They nevertheless provide an order of

magnitude of the techniques efficiencies.

Unlike previously mentioned techniques speeding up the

QTBT partition scheme, the proposed solution is tunable and

offers various complexity reduction opportunities, from 30%

to 70% in average. Moreover, this solution can be considered

as lightweight since it relies on RF classifiers, inducing much

smaller overhead compared to CNN based techniques [32]

[33].

III. RANDOM FORESTS FOR PARTITION DECISION

CLASSIFICATION PROBLEM

This section introduces RF classifiers and presents the three

binary classification problems proposed in this work to reduce

the number of processed partition modes.

A. Background for Random Forests

Classification by RF [41] is a classical method in ML. RF

classifiers predict the value of a target variable, named class,

from values of several input variables, named features. They

bag many single little-correlated decision trees and gather the

results from all the trees to make the final decision.

1) Build Decision Trees: Decision trees are constructed by

a recursive partitioning of the data set into subsets called

nodes. At each node, a threshold that achieves optimal separa-

tion of the classes is selected among the input features. Each

child-node corresponds to a set of values of the selected input

features, so that the totality of child-nodes cover all possible

values of this input features.

The criterion used in this work to select the best split for

a node in decision trees is Mutual Information (MI). The

differential entropy H of a continuous random variable X is

computed as follows:

H(X) = −

∫

R

fX(x) log
2
(fX(x)) dx, (1)

where fX : R → [0,+∞] is the Probability Density Function

(Pdf) of X . The entropy H measures the quantity of infor-

mation delivered by the knowledge of X . MI of class C and

feature F , noted I(F,C), is defined as the entropy decreasing

of C when F is known [42]. The value of I(F,C) is comprised

between 0 and H(C), and is expressed by Equation (2)

I(F,C) = H(C)−H(C|F ). (2)

In other words, I(F,C) measures the information shared

by C and F . Therefore, the higher I(F,C), the more the

feature F is relevant to estimate class C. When MI is used

as a criterion, the optimal threshold of a feature F to split a

decision tree node is the threshold that maximizes I(F,C) on

both subsets of child-nodes.

2) Benefits of Random Forests: Let the error rate be the

percentage of wrong classification on the training dataset. By

de-correlating trees, RF classifiers achieve a better trade-off

between error rate and training data over-fitting compared to

a single decision tree classifier.

In order to de-correlate the decision trees of the RF, a

random subset of the training dataset is selected to build each

decision tree. The decision trees in the RF take as an input

all the features. However, the splitting threshold of each node

in the decision tree is selected among a random subset of the

input features. This random selection decreases the probability

that two decision trees in the RF select the same set of features

in the same order, and therefore is crucial to de-correlate one

decision tree from another.

The following example illustrates the interest of RF clas-

sifiers in term of error rate compared to single decision

tree classifiers. Assume the RF classifier is composed of 10

perfectly de-correlated decision trees, each with error rate ǫi
of 0.3: ǫi = ǫ = 0.3, ∀i ∈ {1, . . . , 10}.

If a RF classifier makes a wrong prediction when more than

half of the base decision tree classifiers are wrong, the error

rate ǫRF of the RF classifier is computed by Equation (3)

ǫRF =
10
∑

j=6

(

10

j

)

ǫj(1− ǫ)10−j ≈ 0.05. (3)

It is not possible to de-correlate perfectly the decision trees

of the RF as they are trained on the same data. Nonetheless,

the more the decision trees are de-correlated, the closer the

error rate of the RF classifier is to ǫRF .

B. Classification Problem

To find the CU partition mode that achieves the best RD

performance, the encoder recursively explores all possible

partition modes. This process is called full or exhaustive RDO

search. For each CU, the encoder computes the RD cost of

the whole CU, QT and BT partition modes, BT partition

modes being composed of BTH and BTV partition modes.
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The encoder selects the partition mode that minimizes the RD

cost J , expressed as a trade-off between distortion D and rate

R, with λ the Lagrangian multiplier:

J = D + λR. (4)

The aim of the proposed solution is to predict for every

encountered CU the partition mode that minimizes the RD

cost. Several partition modes are ignored reducing the number

of processed partition modes. As shown in Fig. 3, the problem

to solve is a four classes classification problem including the

following partition modes: NoSplit, QT, BTH and BTV.

NoSplit QT BTH BTV

Fig. 3: Four classes of the CU classification problem.

In this work, instead of creating a RF classifier that solves

directly the four classes classification problem, the partition

decision is divided into three successive binary classification

problems. This division adds flexibility into the decision

structure and allows a separate training of the classifiers on

specific features, improving global classification performance.

Split

NoSplit

BT

QT

BTV

BTH

classifier

QT-BT

classifier

S-NS

classifier

BH-BV

RDO process

Input Data

Decision

Features S-NS

Features QT-BT

Features BH-BV

Fig. 4: Convert Four Classes Problem into Three Binary

Problems

The three binary classifiers are named S-NS, QT-BT and

BH-BV. As shown in Fig. 4, each classifier takes as input

a different set of features and the classifiers are used in the

following order:

1) Classifier S-NS: The two output classes of classifier S-

NS are either NoSplit partition mode or Split partition

modes, where Split partition modes include QT, BTH

and BTV partition modes. When the Classifier S-NS out-

puts class NoSplit, NoSplit partition mode is processed

and Split partition modes are ignored. Otherwise, NoS-

plit partition mode is ignored, and the second classifier

QT-BT is requested.

2) Classifier QT-BT: The output classes of classifier QT-

BT are either QT partition mode or BT partition modes,

where BT partition modes include BTH and BTV par-

tition modes. When the classifier QT-BT outputs QT

partition mode, QT partition mode is processed and BT

partition modes are ignored. Otherwise, QT partition

mode is ignored, and the third classifier BH-BV is

requested.

3) Classifier BH-BV: The output classes of classifier BH-

BV are either BTH partition mode or BTV partition

mode. When the classifier BH-BV outputs BTH partition

mode, BTH partition mode is processed and BTV par-

tition mode is ignored. Otherwise, BTV partition mode

is processed and BTH partition mode is ignored.

IV. DATASET CREATION

Let us define a training instance as the entity composed of

the chosen set of input features and the associated output class.

This section details the creation of the training dataset, i.e. the

set that contains all the training instances used to train the RF

classifiers.

A. Training Setup

The effectiveness of ML is highly linked to the diversity

and relevance of the training dataset. To characterize a video

content, Spatial Information (SI) and Temporal Information

(TI) metrics are used [43]. The SI estimates the amount of

spatial details whereas the TI measures the quantity of motion

in the sequence. In Fig. 5, 25 sequences extracted from JVET

CTC [38] are represented under the SI TI coordinates.

0 10 20 30 40 50 60

Spatial Information (SI)
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T
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BQSq
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Flow
BQMa

John

Bask

BQTe

Traf

CatR
Dayl

Class D

Class C

Class E

Class B

Class A2

Class A1

Fig. 5: SI and TI of the CTC sequences according the classes.

To cover a wide range of these two content types, the train-

ing dataset is extracted from 10 training sequences spanning a

large range of SI and TI space and distributed across 6 classes

(A1, A2, B, C, D, E). The training sequences are circled

in black in Fig. 5 including: DaylightRoad and CatRobot1

(class A1), Traffic (class A2), BasketballDrive and BQTerrace

(class B), Flowervase and BQMall (class C), BQSquare and

Keiba (class D), Johnny (class E). The training instances are

extracted from encodings carried-out with the JEM-7.0 in RA

configuration across the 4 QP values used in CTC: 22, 27, 32

and 37. The corresponding output class of a CU is defined as

the optimal partition mode selected after a exhaustive RDO

process.
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Let the size category of a CU depend only on the number

of pixels in the CU. TABLE I gives the dimensions in width

and height of the CUs composing the 7 size categories. The

category S0 corresponds to the largest CUs and the category

S6 to the smallest CUs. For each CU size category, a separate

training dataset is created and a separate RF classifier is

trained. With this separation, the features are computed on

the same number of pixels in each training dataset.

TABLE I: Width and Height of the CUs composing the size

categories.

S0 S1 S2 S3 S4 S5 S6

128x128 128x64 64x64 64x32 32x32 32x16 16x16
64x128 128x32 32x64 64x16 16x32 32x8

32x128 128x16 16x64 64x8 8x32
16x128 128x8 8x64

8x128

Sequences with high resolution and high frame rate provide

more CTUs to the training datasets compared to the low

resolution and low frame rate sequences. To avoid being biased

by these particular training sequences, the datasets used for

training are composed of a fixed number of CTUs by training

sequence. To ensure a fixed number of CTUs by training

sequence, the number of frames used for training in a sequence

differs according to the sequence class: 7 frames for class A1,

13 frames for class A2, 25 frames for class B, 55 frames for

class E, 125 frames for class C and 500 frames for class D.

To avoid temporal bias, the CTUs come from frames evenly

distributed in their sequence time-line.

Furthermore, to reduce the problem of imbalanced data,

the training datasets are composed randomly with the same

amount of training instances classified into each output class.

B. Feature Evaluation and Selection

Let a feature be a property of the CU used to determine

which output class shall be selected by the RF classifiers.

In related works, features are extracted among others from

intermediate encoding information [28], texture of pixel lu-

minance samples [26] or motion divergence [34], as men-

tioned in Section II. Features based on intermediate encoding

information have been shown to be effective for the S-NS

classification problem in HEVC [24][28]. In this work, we

choose to build a parallel friendly set of features as an input

of the RF classifiers, since intense parallelization will be

compulsory to achieve real time encodings for VVC standard.

The features must not add dependencies between regions of

the frame, in order to preserve the opportunities of high level

parallelism and CU level parallelism. Therefore, the selected

features are only designed based on current CU data, such

as texture of pixel luminance samples and motion divergence.

This choice forces to neglect features based on intermediate

encoding informations. This section first introduces Motion

Divergence Field (MDF), then explains the feature evaluation

and selection.

1) Motion Divergence Field: In the following, motion

divergence in a frame is considered through the MDF. The

(a) Original frame.

(b) Visual representation of the MDF. The MVs with different motion
directions are displayed with different colors

Fig. 6: Correlation between MDF and frame QTBT partition,

frame #9 RaceHorses, at QP=32.

MDF is the array of MVs of every 4x4 pixels block of the

frame. The MVs point to the closest reference frame in term

of temporal distance. In this work, a separate motion search

process is needed to compute the MDF. Without optimization

and parallelization, the motion search process of the MDF

induces an average 0.8% overhead of the encoding complexity.

However, many real-time encoders x265 [44] already use look-

ahead techniques. A look-ahead technique consists in a pre-

analysis of the video sequence, generally including a motion

search on small blocks of the frame. For encoders using look-

ahead techniques, the overhead to compute the MDF is null.

Fig. 6a displays the original frame #9 of sequence Race-

Horses, while Fig. 6b gives a visual representation of its

MDF. MVs with different motion directions are displayed

with different colors, separating visually regions of the frame

with different movement. The optimal QTBT partition selected

by JEM-7.0 encoder after a exhaustive RDO process is also

displayed. Areas with similar colors tend to be merged together

in a CU, showing the correlation between frame’s optimal

QTBT partition and the MDF. Some edge-examples CUs

containing distant colors are recognized, and one of them is

highlighted with a yellow square. Indeed, this CU is not further

split and the blue zone is not separated from the purple zone.

The goal of the feature selection is to determine which features

extracted from the MDF and from pixel luminance samples are

the most relevant to determine the best partition mode of a CU.

2) Evaluated Features: Evaluated features are divided into

3 categories: features computed on whole CU, features com-

puted on sub-quarters of the CU and features based on

inconsistency among CU sub-quarters.

Features computed on the whole CU are the following:

• QP: Quantization parameter used to encode CU slice.
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• VarPix: Variance of luminance samples.

• Grad: Gradients in horizontal (gradx) and vertical

(grady) directions of the luminance samples (2 features).

• RatioGrad: ratio of gradients gradx

grady
.

• VarMv: σ2

MVx + σ2

MVy with σ2

MVx and σ2

MVy respectively

variances of horizontal and vertical MVs of MDF.

• MaxDiffMv: maximum 1-norm distance between MVs

of MDF, noted mv, and their mean, noted mv, as in

Equation (5).

MaxDiffMv = max
mv∈MDF

(||mv −mv||1),

= max
mv∈MDF

(|mvx −mvx|+ |mvy −mvy|).
(5)

Features based on sub-quarters of the CU are the following:

• QuarterVarPix: VarPix on 4 sub-quarters (4 features).

• QuarterVarMv: VarMv on 4 sub-quarters (4 features).

• QuarterMaxDiffMv: MaxDiffMv on 4 sub-quarters (4

features).

For any feature f , f1 is the feature computed on top-left sub-

quarter, f2 on top-right, f3 on bottom-left and f4 on bottom-

right. Let δH(f) and δV (f) be Horizontal Inconsistency (HI)

and Vertical Inconsistency (VI) as defined by Equation (6)

δH(f) = |f1 − f2|+ |f3 − f4|,

δV (f) = |f1 − f3|+ |f2 − f4|.
(6)

The aim of HI and VI is to highlight which rectangular

parts of the CU have the highest differences. Features based

on inconsistency among sub-quarters of the CU are the

following:

• InconsPix: HI and VI of mean, variance and gradients-

ratio of luminance samples (6 features).

• InconsMv: HI and VI of mean and variance of MDF (4

features).

• DiffInconsPix: difference between HI and VI for lumi-

nance based features (3 features).

• DiffInconsMv: difference between HI and VI for MDF

based features (2 features).

3) Feature Selection: As decision trees node splitting relies

on MI (see Section III-A), the feature evaluation is conducted

with MI as metric. Fig. 7 gives the MI of all evaluated features

according to the classifier and CU size. Only MI for CU

size categories S0, S2, S4 and S6 are displayed to avoid

overloading the figure as these values are representative of

MI of other CU sizes.

Fig. 7a shows that for classifier S-NS, the larger the CU,

the higher the MI, independently of the evaluated feature.

Therefore, the larger the CU, the more relevant are the

evaluated features to determine whether the optimal partition

mode of a CU is NoSplit or one of the Split partition modes.

For QT-BT and BH-BV classifiers, Fig. 7b and Fig. 7c

respectively show that features based on texture have higher

MI than features based on the MDF, independently of CU size.

In other words, features based on texture are more relevant

than features based on the MDF to estimate the partition modes

to process, independently of CU size. It can also be noted that

the MI of features are lower for classifiers QT-BT and BH-BV

than for classifier S-NS. The maximum MI reaches 0.22 for
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(c) BH-BV Classifier

Fig. 7: Mutual Information of evaluated features according to

classifier and CU sizes.

classifier S-NS whereas the maximum MI is 0.07 and 0.14 for

classifiers QT-BT and BH-BV, respectively.

For each classifier, only one set of features is selected to

create the training datasets of the various CU size categories.

Let the classification rate be the percentage of correct clas-

sification given by the 4-fold cross-validation on the training

dataset. The selected features are those providing the highest

MI and improving the classification rate when added to the

set of features.

The set of features for classifier S-NS is composed of the 24

features: QP, VarPix, Grad (2 features), RatioGrad, VarMv,

MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 fea-

tures), InconsMv (4 features), DiffInconsPix (3 features).

The set of features for classifier QT-BT is composed of
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the 19 features: QP, VarPix, Grad (2 features), RatioGrad,

MaxDiffMv, QuarterVarPix (4 features), InconsPix (6 features)

and DiffInconsPix (3 features).

For classifier BH-BV, the set of features is composed of the 21

features including VarPix, Grad (2 features), RatioGrad, Quar-

terVarPix (4 features), QuarterVarMv (4 features), InconsPix

(6 features) and DiffInconsPix (3 features).

V. CLASSIFIERS TRAINING PROCESS

The training process consists in building the classifier

through maximizing classification rate on the training dataset.

In addition to classification rates, the losses of RD perfor-

mance induced by misclassification are considered in the

training process.

A. Impact of Misclassification on RD-cost Errors

To assess the impact of misclassification on the encoding

efficiency, the RD error εRD caused by a misclassification is

introduced. In the following, the misclassification A|B is when

the partition mode A is chosen by the RF classifier, whereas

B is the optimal partition mode selected by the encoder after

exhaustive RDO process. RD error of misclassification A|B
is defined by Equation (7)

εRD(A|B) =
JA − JB

JB
(7)

JA and JB are the RD costs resulting from RDO process for

partition modes A and B, respectively. In our case,

(A,B) ∈ {(NS, S), (S,NS), (QT,BT ), (BT,QT ),

(BTV,BTH), (BTH,BTV )},

JS = min(JQT , JBTH , JBTV ) and

JBT = min(JBTH , JBTV ).

Fig. 8 shows the average εRD according to the classifier

and the CU size. Results are averaged across 4 sequences

(BasketballDrive, BQMall, Flowervase, Johnny) and 4 QP

values.

A statistical study in Fig. 8a shows that εRD caused by

classifier S-NS is in average 3.4 times higher compared to

εRD caused by classifiers QT-BT and BH-BV. In other words,

the partition modes S and NS are in average more divergent in

terms of RD cost, compared to partition modes QT and BT and

partition modes BTH and BTV. Therefore S-NS classification

problem is easier to solve compared to classification problems

QT-BT and BH-BV, explaining why the MI of selected features

in Section IV-B are lower for classifiers QT-BT and BH-BV

compared to classifier QT-BT.

Concerning the first classifier S-NS, Fig. 8a shows that the

smaller the CU, the higher εRD(S|NS). When the classifier

selects Split partition modes instead of the correct NoSplit

partition mode selected by exhaustive RDO process, the mis-

classification has a higher RD impact for small CUs.

On the other hand, larger CU generate higher values of

εRD(NS|S). This is due to the fact that the larger the CU,

the greater the number of partitioning possibilities. Therefore,

for large CUs, the NoSplit partition mode is more divergent

in average from the optimal partitioning after exhaustive RDO

process, compared to small CUs.

For the second classifier QT-BT, Fig. 8b shows that

εRD(BT |QT ) is higher for large CUs (128×128 and 64×64)

than small CUs (32 × 32 and 16 × 16). When the classifier

selects BT partition modes instead of the correct QT partition

mode, selected by exhaustive RDO process, the misclassi-

fication has stronger impact on RD cost on the large CUs

than small CUs in average. Indeed, when BT partition mode

is selected on large CUs, QT partition mode is no longer

available, as detailed in Section II. Combined with the limit of

3 successive BT partitions, fine grain partitioning is no longer

achievable. On the other hand, εRD(QT |BT ) is higher for

small CUs than for large CUs. This is due to the fact that

rectangular BT partition modes offer more partitioning shapes

than square QT partition mode on small areas in the frame.

Concerning the third classifier BH-BV, Fig. 8c shows that

εRD are symmetric for misclassification BTH|BTV and

BTV |BTH . Moreover, misclassification has very small im-

pact in average on RD cost losses (below 2%) for S0 category

CUs and quite higher impact (around 10%) for S2, S4 and S6

category CUs.

B. Weighting of Training Dataset

Previous section shows that the impact of misclassification

on RD cost losses depends highly on the classifier and the CU

size. From this observation, all the training instances for classi-

fier A-B with (A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )} are

assigned a weight w(A,B). The value of w(A,B) is computed

by Eq (8).

∀(A,B) ∈ {(S,NS), (QT,BT ), (BH,BV )},

w(A,B) = max(εRD(A|B), εRD(B|A)).
(8)

By assigning a weight to the training instances, the RF clas-

sifiers are built in order to minimize the sum of misclassified

weights w(A,B), instead of minimizing the classification error

rate. Therefore the training process has more probability to

classify well training instances with high weights, i.e training

instances that induce high RD losses. Note that the weights

are needed only during the training process, and not when the

trained model is used to reduce the complexity of encoding

process.

C. Classification Rates

As mentioned in Section IV-B, the classification rate is

the percentage of correct classification given by the 4-fold

cross-validation on the training dataset, carried out with the

weighting of training instances described in Section V-B. In

the following, the number of decision trees of the RFs has

been set to 40 which represents a good trade-off between high

classification rate and low inference time. TABLE II gives the

average classification rates of the three classifiers according to

the CU size category, with 40 decision trees by RF.

In TABLE II, the classification rates of classifier S-NS

are between 69% and 83%. The larger the CU, the higher

the classification rate for classifier S-NS. In the literature,

classification rates of techniques using ML to reduce the
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Fig. 8: Average RD misclassification error according to the classifier and CU size category. Data from 4 Sequences

(BasketballDrive, BQMall, Flowervase, Johnny), encoded with QP = 22, 27, 32, 37

TABLE II: Classification rate (in %) according to the classifier

and the CU size category.

S0 S1 S2 S3 S4 S5 S6 Average

S-NS 83 82 78 76 73 72 69 76

QT-BT 69 - 70 - 67 - 60 67

BH-BV 62 64 70 67 69 68 67 67

complexity of the QT partitioning in HEVC are close to

80% [40], [45]. The classifier S-NS has therefore classification

rate performance comparable to previous works on HEVC.

Section V-A shows that the S-NS classification problem is

easier to solve compared to classification problems QT-BT and

BH-BV. For this reason the classification rates of classifiers

QT-BT and BH-BV are in average 67%, which is in 9% lower

than the average classification rate of classifier S-NS.

VI. TUNABLE COMPLEXITY REDUCTION

In order to control RD losses induced by misclassification,

risk intervals of classification are introduced for each binary

classifier. In the risk interval of the binary classifier, both

output partition modes are processed, limiting RD efficiency

losses at the expense of complexity reduction. By varying the

size of risk intervals, tunable complexity reduction is achieved.

A. Definition of Risk Interval

A score value, deduced from the votes of individual decision

trees, is used to determine the risk interval of a given classifier.

The associated score Score(A) corresponds to the percentage

of decision trees of the RF classifier that predicts the class A
which is defined by Equation (9)

Score(A) =
Nvotes(A)

Ntrees

(9)

where Nvotes(A) is the number of trees voting for class A
and Ntrees is the total number of trees constituting the RF

classifier. Score(A) takes values between 0 and 1 and the

value of Score(A) quantization step is 1/Ntrees. The closer

Score(A) is to 1, the more predominantly the RF classifier

selects class A.

In our specific case, all the classification

problems are between two classes A and B, with

(A,B) ∈ {(NS, S), (QT,BT ), (BTV,BTH)}. For binary

classification, as Nvotes(A) + Nvotes(B) = Ntrees, then

Score(A) + Score(B) = 1. Using this relation, the

classification decision of the binary RF classifier is A if

Score(A) > 0.5 and B otherwise (see Section III-A).

An example of risk interval is illustrated in red color in

Fig. 9. The risk interval is the range [0.5 − dS(A), 0.5 +
dS(B)] of Score(A), with dS(A) and dS(B) the risk interval

boundaries dS for decisions A and B, respectively. The risk

interval boundary dS are included in the range [0, 0.5]. When

Score(A) is inside the risk interval, the classifier makes

no decision and both output partition modes A and B are

processed.

10.50 10.5-dS(A) 0.5+dS(B)

Score(A)

class Aclass A & Bclass B

Fig. 9: Risk interval for binary classification.

B. Computation of Risk Interval Boundaries

The values of the risk interval boundaries dS for every

classifier and CU size category are computed at encoding

time. Every 32 frames, 1 reference frame is encoded with

the exhaustive RDO process of JEM-7.0, enabling the RF

classifiers only to gather misclassification RD statistics. No

complexity reduction is achieved on the encoding of the

reference frames. The complexity of the reference frames

is included in the final results and is compensated by the

complexity reduction achieved on frames constrained by the

RF classifiers.

In the reference frames, the RD costs of all partition modes

are computed, making it possible to compute the sum of εRD

error induced by misclassification, further called cumulative

εRD. The risk interval boundaries dS are computed in order to

limit cumulative εRD on the reference frame. The computation

of the the dS values at encoding time adjusts the RD efficiency

losses to video content variations, across different sequences

and scenes.
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Fig. 10: Cumulative εRD of QT |BT and BT |QT misclassi-

fications in function of Score(QT ). Data from S6 category

CUs of first frame of sequence BasketballDrill, QP = 22.

In Fig. 10, the blue and green histograms correspond to a

concrete example of cumulative εRD(QT |BT ) and cumulative

εRD(BT |QT ), respectively, in function of Score(QT ). The

cumulative εRD are computed from the RD costs of S6

category CUs, extracted from the RDO process of sequence

BasketballDrill reference frame. The maximum cumulative

εRD error tolerated on the reference frame is further noted L
and represented by the red line in Fig. 10. Depending on the L
value, the boundaries of the risk interval dS(QT ) and dS(BT )
are determined such as both cumulative εRD(QT |BT ) and

cumulative εRD(BT |QT ) are below L. Note that dS(QT )
is greater than dS(BT ) in this example, since the errors

εRD(BT |QT ) are greater than the errors εRD(QT |BT ).

C. Individual Performance of Classifiers

As explained in Section V-A, average RD losses induced

by misclassification depend highly on the classifier. Reason

why the possibility is left for the user to select a different

threshold L by classifier, further noted LS-NS, LQT-BT, LBH-BV.

For a given classifier, the same threshold is applied on all CU

size categories.

The performance of a complexity reduction solution is

evaluated by measuring the trade-off between RD efficiency

using the BD-BR increase [46] and encoding complexity

reduction ∆T , defined by Equation (10)

∆T =
1

4

∑

QPi∈{22,27,32,37}

TA(QPi)− TR(QPi)

TA(QPi)
, (10)

where TA(QPi) and TR(QPi) are the anchor (encoded with

exhaustive RDO process) and reduced time required to encode

the video with QP = QPi, respectively.

In order to evaluate the performance of the classifiers

individually, encodings are run activating only one classifier at

a time with different values of L: 0.0%, 0.01%, 0.02%, 0.05%,
0.10%, 0.15%, 0.20%, 0.30%. The value L = 0.0% means

that the classifier is disabled. The performance is gathered

across the encodings of the 32 first frames of 10 training

sequences over 4 QP values.
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(b) BTdepth = 2
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(c) BTdepth = 1

Fig. 11: Average ∆T and BD-BR, according to the BTdepth

and classifier. Average computed across the encodings of 32

first frames of 10 training sequences with 4 QP values. Points

correspond to different values of L: 0.0%, 0.01%, 0.02%,
0.05%, 0.10%, 0.15%, 0.20%, 0.30%.

Fig. 11 shows the average ∆T versus the average BD-

BR, according to the classifier for BTdepth equals to 1, 2

and 3. As explained in Section II-A, BTdepth is the encoding

parameter that specifies the number of successive allowed BT

partitions. In the CTC [38], BTdepth value is set to 3, reason

why the conducted experiences only consider BTdepth values

lower than 3. The blue, green and red curves correspond

to performance obtained with the individual activation of

classifiers S-NS, QT-BT and BH-BV, respectively. The points

of the curves are obtained from left to right for the following
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values of L: 0.0%, 0.01%, 0.02%, 0.05%, 0.10%, 0.15%,
0.20%, 0.30%. In Fig. 11, the higher left the curve, the

better the classifier performance, as it minimizes BD-BR while

maximizing ∆T .

Fig. 11a shows that for BTdepth = 3, when BD-BR is lower

than 1.2%, the curve of classifier BH-BV is below the curve

of classifier QT-BT and above the curve of classifier S-NS.

Classifier QT-BT has therefore the best performance. Even

though classifier S-NS has the best successful classification

rates (see Section V-C), it has the worst performance in

term of trade-off between ∆T and BD-BR. This is due to

the fact that misclassification induces much higher RD errors

in average for classifier S-NS compared to other classifiers, as

explained in Section V-A.

For BTdepth = 2, Fig. 11b shows that classifiers QT-

BT and BH-BV have equivalent performance as their curves

overlap from 0% to 30% ∆T . Classifier S-NS has the lowest

performance as its curve is the rightmost from 0% to 40%

∆T .

Finally, when BTdepth = 1, BT partition modes are avail-

able for less CUs compared to BTdepth = 3 and BTdepth =
2. Classifiers QT-BT and BH-BV have therefore less CUs

to address, meaning less complexity reduction opportunities

compared to classifier S-NS. This explains why in Fig. 11c,

the curve of classifier QT-BT is lower compared to the

curve of classifier S-NS when BD-BR is between 0% and

1.7%. This also enlighten why ∆T for classifier BH-BV only

reaches 20%, whereas it reaches 30% for BTdepth = 3 and

BTdepth = 2.

D. Optimal Selection of Complexity Reduction Configurations

In order to activate the three classifiers simultaneously at

encoding time, three values of L are required. The triplet

(LS-NS, LQT-BT, LBH-BV) is further called Complexity Reduction

Configuration (CRC).

For a given CRC, knowing the individual complexity reduc-

tions of classifiers ∆T (LS-NS), ∆T (LQT-BT) and ∆T (LBH-BV)
presented in Section VI-C, this section first explains how to

estimate the expected complexity reduction (called ∆Tcrc)

when the three classifiers are used simultaneously. In the

following, ∆Tcrc is computed considering an example where

∆T (LS-NS) = 15%, ∆T (LQT-BT) = 25% and ∆T (LBH-BV) =
20%. Intermediate values ∆TS , ∆TQ and ∆TB are introduced

by Equation (11)

∆TS = ∆T (LS-NS) = 15%,

∆TQ = (1.0−∆TS) ·∆T (LQT-BT)

= 0.85 · 25% = 21%,

∆TB = (1.0−∆TS −∆TQ) ·∆T (LBH-BV)

= 0.64 · 20% = 13%.

(11)

The expected complexity reduction ∆Tcrc is given by Equa-

tion (12)

∆Tcrc = ∆TS +∆TQ +∆TB = 49%. (12)

Over all CRCs achieving an expected complexity reduction

∆Tcrc, a CRC is considered optimal when it obtains the

lowest sum of BD-BR after exhaustive search. The optimal

CRCs, noted from C0 to C4, are given in TABLE III each

corresponding to a target ∆Tcrc, according to the BTdepth.

TABLE III: Optimal CRCs and associated expected ∆Tcrc,

according to BTdepth.

CRC BTdepth = 3 BTdepth = 2 BTdepth = 1
Name ∆Tcrc LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV LS-NS LQT-BT LBH-BV

C0 30% 0.0 0.01 0.02 0.0 0.01 0.02 0.01 0.0 0.05

C1 35% 0.0 0.05 0.02 0.0 0.02 0.05 0.01 0.0 0.15

C2 40% 0.0 0.10 0.05 0.0 0.05 0.10 0.02 0.0 0.20

C3 45% 0.0 0.10 0.15 0.0 0.10 0.15 0.05 0.0 0.20

C4 50% 0.0 0.15 0.15 0.0 0.15 0.15 0.10 0.0 0.20

For both BTdepth = 3 and BTdepth = 2, in all optimal

CRCs the value of LS-NS is 0.0, meaning classifier S-NS is

not used to reduce encoding complexity. This is explained by

the results of Section VI-C, where classifier S-NS has lower

performance in term of trade-off between BD-BR and ∆T
compared to classifiers QT-BT and BH-BV, for BTdepth = 3
and BTdepth = 2,.

When BTdepth = 1, the value of LQT-BT is 0.0 for all optimal

CRCs. It is therefore more efficient in term of BD-BR to use

only classifiers S-NS and BH-BV when BTdepth = 1.

VII. EXPERIMENTAL RESULTS

This section gives the experimental setup and the results

obtained for the proposed tunable complexity reduction solu-

tion. Sections VII-B and VII-C present the results obtained on

JEM-7.0, while Section VII-D present the results obtained on

VTM-5.0.

A. Experimental Setup

The selected set test sequences is composed of 18

video sequences different from training set sequences (see

Section IV-A), selecting 3 sequences by class: Campfire,

ParkRunning3, ToddlerFountain, PeopleOnStreet, SteamLoco-

motiveTrain, NebutaFestival, Cactus, RitualDance, Kimono,

RaceHorsesC, PartyScene, BasketballDrill, ParkScene, Kris-

tenAndSara, FourPeople, BlowingBubbles, RaceHorsesD and

BQSquare.

The experiments are carried-out under the CTC [38] in

RA coding configuration at four QP values: 22, 27, 32 and

37. The performance of the proposed complexity reduction

solution is evaluated by measuring the trade-off between BD-

BR increase and encoding complexity reduction ∆T , defined

in Section VI-C. In the following, the complexity overhead

induced by the RF inference during partition scheme is noted

θ. The proposed complexity reduction solution is implemented

in both JEM-7.0 and VTM-5.0. In order to limit the encoding

time, JEM-7.0 encoder compares the RD cost of the whole

current CU with those of the BTH and BTV partition modes

to prune the QT partition mode. As our solution does not

compute all the RD costs of the BT partition mode, this

condition is removed in the experiments.
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TABLE IV: BD-BR(%) and ∆T (%) for JEM-7.0 exhaustive

RDO process encodings with different BTdepth values. Results

averaged across 18 test sequences.

JEM-7.0 Exhaustive RDO

BTdepth = 3 BTdepth = 2 BTdepth = 1 BTdepth = 0
BD-BR ∆T BD-BR ∆T BD-BR ∆T BD-BR ∆T

+0.0% 0% +0.6% 20% +2.0% 50% +5.1% 79%

B. Performance Evaluation of the Proposed Solution in the

JEM-7.0.

In order to set the upper bound in term of complexity

reduction of the proposed solution, the maximum complexity

reduction opportunity ∆Tmax for QTBT partitioning scheme

in JEM-7.0 is computed. ∆Tmax is the value of ∆T achieved

when the only tested QTBT partition is the optimal partition.

The average ∆Tmax value across the 18 test sequences in RA

configuration is:

∆Tmax = 90%.

TABLE IV shows the average BD-BR and ∆T values across

the 18 test sequences, encoded with exhaustive RDO process

according to the BTdepth value. Reducing BTdepth value

and allowing exhaustive RDO process is a straightforward

technique to reduce complexity of QTBT partition scheme.

For a fixed value of BD-BR, if the average ∆T value of the

proposed solution is lower than the average ∆T value obtained

simply by allowing exhaustive RDO process with a reduced

value of BTdepth, the CRC is considered as non-efficient for

this value of BD-BR.

0 1 2 3 4 5 6
BD-BR (%)

0

20

40

60

80

100

T 
(%

)

BTdepth = 3

BTdepth = 2

BTdepth = 1

BTdepth = 0
Tmax

C0 to C4, BTdepth = 3
C0 to C4, BTdepth = 2
C0 to C4, BTdepth = 1
Full RDO

Fig. 12: Average BD-BR and ∆T for optimal CRCs and

exhaustive RDO with different BTdepth. CRCs adopted in the

proposed solution are circled in black. All results averaged

across 18 test sequences and 4 QP values.

The performance of the CRCs in term of BD-BR and ∆T
is displayed in Fig. 12. The upper bound ∆Tmax, as well as

BD-BR and ∆T for exhaustive RDO process with different

BTdepth values, are also displayed in red. In Fig. 12, the

blue stars correspond to CRCs with BTdepth = 3, as in the

CTC. With BTdepth = 3, the optimal CRCs offer an average

∆T value between 30% and 57% for an average BD-BR

TABLE V: Average BD-BR, ∆T and complexity overhead θ
of the CRCs adopted in the proposed solution.

Proposed Solution in the JEM-7.0

BTdepth Adopted CRC BD-BR (%) ∆T (%) θ (%)

C0 0.7 30.2 1.4
BTdepth = 3 C1 1.0 37.3 1.2

C2 1.3 44.1 1.1

C0 1.6 48.2 0.7
BTdepth = 2 C1 1.9 54.3 0.7

C2 2.3 59.4 0.6

BTdepth = 1
C0 2.5 63.2 0.5
C1 3.0 70.0 0.5

increase comprised between 0.67% and 2.22%. The yellow

crosses and green hexagons correspond to CRCs with reduced

values BTdepth = 2 and BTdepth = 1, respectively. With

BTdepth = 2, the ∆T of the optimal CRCs are in average

comprised between 48% and 66% with BD-BR increase

between 1.48% and 3.40%. With BTdepth = 1, the optimal

CRCs offer an average ∆T value between 63% and 78% for

BD-BR increase between 2.45% and 5.21%.

The 8 CRCs adopted in the proposed solution are circled

in black in Fig. 12. They are located on the pareto front,

i.e. the CRCs with lower BD-BR for a given value of ∆T .

The CRC inducing a BD-BR increase superior than 3% are

not adopted in the proposed solution since they offer a trade-

off between ∆T and BD-BR not considered good enough.

The adopted CRCs include: C0(BT3), C1(BT3), C2(BT3),
C0(BT2), C1(BT2), C2(BT2), C0(BT1) and C1(BT1). TA-

BLE V summarizes the average BD-BR, ∆T and θ of the

CRCs adopted in the proposed solution. TABLE V shows that

in order to achieve complexity reductions higher than 43%

in average, it is more efficient to apply our solution with a

value of BTdepth < 3, compared to applying our solution

with BTdepth = 3. With these adopted CRCs, the proposed

tunable solution offers a range of average ∆T between 30%

and 70% for an average BD-BR increase between 0.7% and

3.0%.

C. Comparison with Related Works in JEM-7.0.

The proposed solution is evaluated and compared to pre-

vious techniques on QTBT partition scheme in RA config-

uration [29], [31], [33] and [34]. Previous techniques [29]

and [31] offer an average encoding complexity reduction of

17% and 10% for an average BD-BR increase of 0.5% and

0.2%, respectively. The encoding complexity reductions are

much lower compared to the encoding complexity reductions

proposed in our solution, which is in minimum equals to 30%

for C0(BT3).
For a fairer comparison with the two most recent tech-

niques [33] and [34], TABLE VI details the performance of 2

CRCs of the proposed solution - C0(BT3) and C0(BT1) - with

respect to the performance announced by Wang et al. in papers

[33] and [34]. The performance in TABLE VI is shown by test

sequence, in terms of BD-BR increase, encoding complexity

reduction ∆T and θ induced by the respective techniques.
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TABLE VI: BD-BR, ∆T and complexity overhead θ of CRCs C0(BT3) and C0(BT1) of the proposed solution with respect

to the performance announced by Wang et al. in papers [33] and [34]. The results are shown by test sequence.

Proposed Solution Related Work Proposed Solution Related Work
CRC C0(BT3) Wang CNN [33] CRC C0(BT1) Wang Proba [34]

Class Sequence name
BD-BR
(in %)

∆T

(in %)
θ

(in %)
BD-BR
(in %)

∆T

(in %)
θ

(in %)
BD-BR
(in %)

∆T

(in %)
θ

(in %)
BD-BR
(in %)

∆T

(in %)

A1 Campfire 0.36 35.1 0.5 0.66 40.6 2.4 3.4 68.8 0.2 1.7 46.7
A1 ParkRunning3 0.49 21.1 1.0 - - - 2.0 57.4 0.4 - -
A1 ToddlerFountain 0.58 18.2 0.8 - - - 1.8 59.5 0.3 1.2 48.4

A2 PeopleOnStreet 0.22 21.8 1.5 - - - 2.2 58.0 0.5 - -
A2 SteamLocomotiveTrain 0.57 24.6 1.0 - - - 2.7 63.5 0.3 - -
A2 NebutaFestival 1.37 35.1 0.9 - - - 2.2 68.0 0.3 - -

B Cactus 1.18 34.1 1.2 - - - 2.8 64.1 0.4 1.5 48.2
B RitualDance 0.90 32.0 0.7 0.55 32.6 4.2 3.9 64.7 0.2 - -
B Kimono 0.79 23.1 1.0 - - - 4.0 65.3 0.3 1.4 54.7
B ParkScene 0.63 30.8 1.6 - - - 2.5 68.1 0.5 1.2 45.7

C RaceHorsesC 0.42 32.8 0.9 0.47 30.7 1.7 2.1 63.1 0.3 1.6 60.5
C PartyScene 0.45 29.2 1.5 0.54 34.6 2.2 1.6 62.8 0.5 1.7 62.3
C BasketballDrill 0.61 30.2 1.2 - - - 2.4 63.5 0.4 1.5 62.3

D RaceHorsesD 0.41 28.8 1.2 0.51 36.3 2.7 2.3 61.5 0.6 1.3 56.5
D BQSquare 0.64 25.1 1.8 0.44 26.0 2.1 1.5 57.5 0.8 1.3 51.8
D BlowingBubbles 0.46 31.6 1.6 0.60 35.7 1.9 1.9 60.0 0.8 1.2 50.3

E FourPeople 0.76 40.8 1.8 0.32 28.9 4.1 2.5 68.3 0.5 1.3 47.7
E KristenAndSara 1.17 46.6 1.2 0.38 33.8 3.6 2.7 70.2 0.4 1.0 45.6

Same Sequences Average 0.62 33.5 1.4 0.50 32.8 2.8 2.42 64.0 0.5 1.38 52.3
Global Average 0.67 30.2 1.3 2.45 63.4 0.5

TABLE VI shows that configuration C0(BT3) applied to the

same sequences as technique [33], offers in average the same

encoding complexity reduction (∆T ≈ 33%) for a BD-BR

increase 0.12% higher in average. However, technique [33] is

based on CNNs to reduce the encoding complexity without

specifying his implementation, whereas CNNs are known to

have high computational overhead. For C0(BT3), θ has values

between 0.7% and 1.8%, whereas θ for technique [33] has

values between 1.7% and 4.2% according to the sequence. θ
is included in the encoding complexity reductions of of the

proposed solution. These overhead performance confirms the

lightweight of our approach and highlights that RF classifiers

consume few computing resources, which is a key point to use

this solution in a real-time or embedded framework.

TABLE VI also shows that configuration C0(BT1) achieves

higher encoding complexity reductions for all tested sequences

compared to considered previous techniques, and achieves in

average 12% higher encoding complexity reduction compared

to technique [34], with tolerable BD-BR increase of 2.45%

in average. Moreover, the fact that the proposed solution is

tunable offers more flexibility for concrete use-cases compared

to previous techniques that aim to reduce the complexity of

QTBT partition scheme.

D. Performance Evaluation of the Proposed Solution in the

VTM-5.0

The VTM-5.0 is the latest reference software for VVC

standardization. Several new coding tools have been added

compared to the JEM-7.0 reference software. For instance,

the VTM-5.0 includes the MTT partitioning scheme, more

complex than QTBT in JEM-7.0. Thus, the proposed solution

TTH TTV

Fig. 13: Additional partition modes in MTT partition scheme.

has also been implemented in the VTM-5.0 in order to verify

its performance. The following section first introduces the

MTT partitioning scheme and second presents the results of

the proposed solution integrated in the VTM-5.0.

The MTT partitioning scheme is an extension to QTBT

that enables Ternary Tree (TT) partition modes, including

Ternary Tree Horizontal (TTH) partition mode and Ternary

Tree Vertical (TTV) partition mode. When TT partition modes

are used, the CU is divided either horizontally or vertically

into three blocks and the size of the middle block is half

the size of the CU, as shown in Fig. 13. The MTdepth

parameter defines the maximum number of successive BT or

TT partitions allowed for the encoding of a CTU.

The proposed solution has originally been designed for

complexity reduction of QTBT partitioning scheme. MTT

partitioning scheme is more complex than QTBT partitioning

scheme, as it enables two additional partition modes. In order

to adapt the proposed solution to MTT partitioning scheme,

horizontal partition modes including TTH and BTH, and

vertical partition modes including TTV and BTV, are both

grouped as outputs of the BH-BV classifier, as shown in

Figure 14. The same classifier BH-BV is used to classify both
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BTV

BTH classifier

BH-BV

RDO process

Input Data

Decision

Features BH-BV

Fig. 14: Outputs modification of BH-BV classifier in VTM-5.0.
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Fig. 15: Average BD-BR and ∆T for optimal CRCs and

exhaustive RDO with different BTdepth. CRCs adopted in

proposed solution are circled in black. All results averaged

across 18 test sequences and 4 QP values.

BT and TT partition modes in the VTM-5.0. This choice is

supported by the fact that partition modes TTH and BTH, as

well as partition modes TTV and BTV, generate partitions

with the same directions.

The same features selected in Section IV-B are used as an

input of the RF classifiers. Moreover, CRC assessed under

the VTM-5.0 are selected with the same process described in

Section VI-D. Instead of applying the CRCs with different

values of BTdepth as in JEM-7.0, the CRCs are applied with

different values of MTdepth in the VTM-5.0. The performance

of the CRCs in term of BD-BR and ∆T is illustrated in

Fig. 15. The BD-BR and ∆T for exhaustive RDO process

with different MTdepth values, are also displayed in red. In

Fig. 15, the blue stars correspond to CRCs with MTdepth = 3,

while the yellow crosses and green hexagons correspond to

CRCs with reduced values MTdepth = 2 and MTdepth = 1,

respectively.

Fig. 15 shows that for a similar ∆T complexity reduction,

the proposed solution offers a BD-BR value 1.0% lower

compared to exhaustive RDO process with MTdepth = 1.

This result confirms that our approach is relevant compared

to the most straightforward complexity reduction technique,

that allows exhaustive RDO process with reduced values of

MTdepth.

The 7 CRCs circled in black in Fig. 12 are adopted in

the proposed solution. As for the JEM-7.0 in Section VII-B,

the CRC inducing a BD-BR increase superior than 3% are

TABLE VII: Average BD-BR, ∆T and complexity overhead

θ of the CRCs adopted in the proposed solution for VTM-5.0.

Proposed Solution in the VTM-5.0

Adopted CRC BD-BR (%) ∆T (%) θ (%)

MTdepth = 3

C0 0.43 25.5 0.6
C1 0.61 30.1 0.6
C2 0.75 33.4 0.6
C3 0.97 38.6 0.5

C0 1.32 50.7 0.3
MTdepth = 2 C1 1.67 56.3 0.3

C2 2.22 61.5 0.3

TABLE VIII: BD-BR, ∆T and complexity overhead θ of

CRCs C1(MT3) and C2(MT2) of the proposed solution in

the VTM-5.0, according to the test sequence.

Proposed Solution Proposed Solution
CRC C1(MT3) CRC C0(MT2)

Sequence name
BD-BR
(in %)

∆T

(in %)
θ

(in %)
BD-BR
(in %)

∆T

(in %)
θ

(in %)

Campfire 0.95 29.3 0.4 3.06 65.1 0.2
ParkRunning3 0.46 30.9 0.4 1.91 62.9 0.2
ToddlerFountain 0.74 23.2 0.4 1.95 64.2 0.2

PeopleOnStreet 0.72 25.6 0.6 3.13 62.2 0.2
SteamLocomotive 0.92 44.9 0.4 1.71 69.5 0.2
NebutaFestival 0.25 36.3 0.5 0.83 75.8 0.2

Cactus 1.00 36.7 0.5 2.45 64.5 0.2
RitualDance 0.93 27.5 0.5 3.26 61.5 0.2
Kimono 1.16 33.7 0.5 2.74 64.7 0.2
ParkScene 0.29 30.3 0.6 1.93 59.2 0.3

RaceHorsesC 0.35 26.9 0.6 2.77 64.1 0.2
PartyScene 0.42 19.6 0.8 2.05 58.0 0.3
BasketballDrill 1.00 29.9 0.7 2.96 62.8 0.3

RaceHorsesD 0.17 26.6 0.7 2.19 57.1 0.4
BQSquare 0.16 26.2 1.0 1.55 49.1 0.6
BlowingBubbles 0.54 31.3 0.8 1.79 57.7 0.5

FourPeople 0.46 31.6 0.7 1.90 55.6 0.5
KristenAndSara 0.53 30.5 0.6 1.74 54.3 0.4

Average 0.61 30.1 0.6 2.22 61.5 0.3

not adopted in the proposed solution since they do not offer

a relevant trade-off between ∆T and BD-BR. TABLE VII

summarizes the average BD-BR, ∆T and θ of the CRCs

adopted in the proposed solution. TABLE VII shows that the

complexity reductions vary from 25% to 61% in average for

0.4% to 2.2% BD-BR increase. Moreover, the RF inference

overhead θ is below 0.7% for all the CRCs, which confirms

the lightweight overhead of our approach.

TABLE VIII shows the BD-BR, ∆T and θ of CRCs

C1(MT3) and C0(MT2) of the proposed solution under the

VTM-5.0, according to the test sequence. We can notice that

the scores given in TABLE VIII differ slightly according

to the test sequence. For instance, the lowest resolution se-

quences (class D), including RaceHorsesD, BQSquare and

BlowingBubbles, achieves in average 54.6% ∆T for C2(MT2)
configuration. The ∆T values of class D sequences are in

average 7% lower compared to the average ∆T value of all

test sequences for C2(MT2). Indeed, the lowest resolution

sequences tend to have a finer grained partitioning, which

offers less complexity reduction opportunities compared to

A
cc

ep
te

d 
M

an
us

cr
ip
t



IEEE TRANSACTIONS ON IMAGE PROCESSING, AUGUST 2019 15

higher resolution sequences.

In conclusion, this section has shown that it is possible

to apply the proposed solution in the VTM-5.0. The perfor-

mance under the VTM-5.0 prove that the proposed solution

is scalable to two different encoders and does not over-fit

the JEM-7.0 encoding characteristics. The good performance

achieved under VTM-5.0, the latest reference software of VVC

standard, also attests the reliability of the proposed solution

for future encoders, compliant with VVC standard. Finally,

to the best of our knowledge, this contribution is the first

to propose a complexity reduction technique for the VTM

reference software in Inter coding configuration.

VIII. CONCLUSION

In this paper, a tunable ML solution based on RF classifiers

to speed up the QTBT partitioning scheme in RA configuration

is proposed. Three binary RF classifiers are trained off-line in

order to ignore expensive exploration of the partition modes

classified as unlikely. By varying the size of risk intervals

for classification decision, tunable complexity reduction is

achieved, offering an average encoding complexity reduction

varying from 30% and 70% for an average BD-BR increase

between 0.7% and 3.0% in the JEM-7.0, with very low

overhead. The proposed solution as also been implemented in

the JVET software post JEM, named VTM. To this end, the

proposed solution as been extended to the new TT partition

modes included in the VTM partition scheme. In VTM-5.0

software, encoding complexity reductions vary from 25% to

61% in average for only 0.4% to 2.2% BD-BR increase.

Tunable encoding complexity reduction being the first step

for encoding time control, future works will investigate the

possible modification in the proposed solution in order to

achieve encoding time control.
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