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Tune the topology to create or destroy patterns

Malbor Asllania, Timoteo Carlettia, Duccio Fanellib
anaXys, Namur Center for Complex Systems, University of Namur,

rempart de la Vierge 8, B 5000 Namur, Belgium and
bDipartimento di Fisica e Astronomia, University of Florence,

INFN and CSDC, Via Sansone 1, 50019 Sesto Fiorentino, Florence, Italy

We consider the dynamics of a reaction-diffusion system on a multigraph. The species share
the same set of nodes but can access different links to explore the embedding spatial support. By
acting on the topology of the networks we can control the ability of the system to self-organise
in macroscopic patterns, emerging as a symmetry breaking instability of an homogeneous fixed
point. Two different cases study are considered: on the one side, we produce a global modification
of the networks, starting from the limiting setting where species are hosted on the same graph.
On the other, we consider the effect of inserting just one additional single link to differentiate
the two graphs. In both cases, patterns can be generated or destroyed, as follows the imposed,
small, topological perturbation. Approximate analytical formulae allows to grasp the essence of
the phenomenon and can potentially inspire innovative control strategies to shape the macroscopic
dynamics on multigraph networks.

PACS numbers: 89.75.Hc, 89.75.Kd, 89.75.Fb

I. INTRODUCTION

Macroscopic collective behaviours do emerge spontaneously in systems constituted by many-body interacting en-
tities. This is a widespread observation in nature with many interdisciplinary applications ranging from biology to
physics. Elucidating the key processes yielding to macroscopically ordered patterns is hence a fascinating field of
investigations, at the forefront of many exciting developments. The mathematics that underlies patterns formation
focuses on the dynamical interplay between reaction and diffusion processes. Irrespectively of the specific domain
of applications, elementary constituents can be ideally grouped in distinct species, family of homologous interacting
units. Usually, reaction-diffusion models are defined on a regular lattice, either continuous or discrete. In many cases
of interest, it is however more natural to place the system on a network, bearing a complex structure. Patterns
for multi-species reaction-diffusion systems defined on complex networks materialise in a spontaneous differentiation
between activator(inhibitor)-rich and activator(inhibitor)-poor nodes [1]. Directed coupling can further seed topo-
logically driven patterns, for a choice of the reaction parameters for which the trivial homogenous solution proves
stable [2]. Single individual effects are also crucial and significantly modify the idealised mean-field predictions: the
stochastic component of the microscopic dynamics resulting from the inherent discreteness of the system, can in fact
induce regular macroscopic patterns, both in time and space [3, 4].

Self-organisation may however proceed across interlinked networks, by exploiting the multifaceted nature of re-
sources and organisational skills. To account for the hierarchical organisation in multiple nested layers, networks
of networks can be also considered. These concepts are particularly relevant to transportation systems [5, 6], the
learning process in the brain [7] and to understanding the emergent dynamics in ecology and social communities in
general [8]. The process of pattern formation for a generalised reaction-diffusion scheme hosted on multiplex has been
studied in [9]. Depending on the cooperative interference between adjacent layers, stratified patterns can emerge also
when the deterministic instability on each individual layer is impeded. Conversely, patterns may dissolve by properly
tuning the degree of interlayer overlap. Diffusion-induced instability have been also studied for reaction systems
defined on multi-graphs, graphs decorated with multiple links between pairs of nodes [10], and shown to bear peculiar
traits [11]. In all considered cases, the topology of the spatial support impacts on the ability of the systems to yield
macroscopically organised patterns.

The aim of this paper is to expand on these ideas, bridging the frameworks discussed in [9, 11] and providing
further evidence on the key role played by topology in shaping the system response to an external perturbation. More
specifically, we will focus on the simplified setting where just two alternative sets of links are assumed to connect
the available nodes. Each species can diffuse from one node to the other, engaging only one of the two distinct
transportation layers. These latter are characterised in terms of their associated (weighted) adjacency matrices,
which depend parametrically on a scalar quantity ε. When ε = 0 the two graphs are identical. At variance, for
ε = 1, the graphs are independent complex networks generated via an assigned recipe. By continuously increasing ε,
within the allowed interval of definition, one can access intermediate configurations. As we shall make clear in the
following, the amount of disorder imposed at the scale of individual layers (and, consequently, their respective degree
of diversity) can be modulated to effectively control the large scale dynamics of the scrutinised system. Disorder and
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diversity, as encoded in the scalar factor ε, can make the patterns to emerge or, alternatively, fade away. Analytical
estimates for the critical ε are obtained by perturbatively characterising the spectrum of the multi-dimensional matrix
that governs the linear dynamics of the system, close to the homogeneous solution. Patterns obtained for increasing
ε appear to progressively localise [12, 13] on a subset of nodes, a phenomenon that eventually reflects the topological
characteristics of the dominant eigenmode. In the second part of the paper, we consider an alternative formulation
of the problem. The graphs that define the layers of the multigraph differ now by a single undirected edge, with
given weight w. By tuning w, one can control the onset of the instability, as we shall prove analytically. Different
topological controllers that act on the structural parameters of hosting network (nodes and edges), and their associated
characteristics (weights), can be hence devised which interfere with the inherent ability of the system to self-organise
in macroscopically ordered patterns. It is the heterogenous nature of the spatial support, and the non trivial coupling
between adjacent layers, which instigate (or deter) the instability, an observation that can be in turn exploited to alter
the fate of the system, without touching at its internal reactive dynamics, and thus providing a control strategy [14, 15]
for the onset or disruption of macroscopic patterns on complex networks.

The paper is organised as follows: in the next section the mathematical formalism is presented. In particular, we
carry out a perturbative study of the spectrum of the multi-dimensional Jacobian matrix which governs the evolution
of the perturbation, under the linear approximation. The issue of pattern localisation is also discussed. In Section 3,
we make the two layers of the multi-graph distinct through insertion of a single additional link and provide analytical
formulae to quantify its impact on the overall dispersion relation. The weight of the introduced link serves as a small
parameter in carrying out a perturbative expansion. Finally, we sum up and conclude.

II. REACTION-DIFFUSION EQUATIONS FOR MULTIGRAPH NETWORKS

Imagine two species to interact and diffuse on a multigraph [10]. For a sake of simplicity, we assume that each
pair of nodes can be connected at most by a double link. Label with ui and vi the densities of the species on node i,
and denote with Ω the total number of nodes. The species undergo local reactions, via a standard activator-inhibitor
scheme, and can diffuse among the nodes through the connecting links that are made available in the layer they belong
to (see Fig. 1 for a schematic representation).

u-layer :

v-layer : 

Au
ij

Av
ij

FIG. 1. A cartoon of a multigraph on the top of which the reaction-diffusion system evolves. The black circles denotes the
nodes common to both species, blue links denotes the channels through which species u can move, while red links are the ones
for the v species.
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Mathematically, we can cast the model in the following form:

u̇i = f(ui, vi) +Du

Ω∑
j=1

Luijuj

v̇i = g(ui, vi) +Dv

Ω∑
j=1

Lvijvj (1)

where f and g refer to the nonlinear reactions, Lu, (resp. Lv) indicates the Laplacian matrix for the undirected
network which defines the heterogeneous spatial support accessible to species u (resp. v). More specifically, label with
Axij the (symmetric and weighted) adjacency matrix of the network explored by species x = u, v. Then the Laplacian
operator reads Lxij = Axij − kxi δij , where kxi =

∑
j A

x
ij is the degree of node i, referred to the layer x [1]. In the

following we shall illustrate our results with reference to the celebrated Brusselator model. This amounts to setting
f(u, v) = 1 − (b + 1)u + cu2v and g(u, v) = bu − cu2v where b, c are parameters of the model. The methodologies
developed are however general and transcend the specific application here considered. Summing up, Eqs. (1) define
the general reaction-diffusion system on a multigraph network that we shall inspect in the rest of the paper. This
formulation of the process was first proposed in [11]. In the following, we will discuss the conditions that underly the
instability, by adapting to this reference framework the analytical techniques developed in [9].

A. The linear stability analysis: a perturbative approach

To determine the possible onset of the instability, following the scheme pioneered by A. Turing [16], one has to
preliminary require the existence of a stable homogeneous equilibrium, namely ui = u∗ and vi = v∗ for all i = 1, . . . ,Ω.
Non homogenous perturbation can turn unstable, as follows a symmetry breaking instability that reflects the non
trivial interplay between reaction and diffusion terms. To shed light onto this issue, it is customary to perform a
linear stability analysis of the non linear model (1). By setting ui = u∗ + δui, vi = v∗ + δvi and linearising for small
perturbation eventually yields:(

˙δu
˙δv

)
=

(
fuIΩ +DuL

u fvIΩ

guIΩ gvIΩ +DvL
v

)
·
(
δu
δv

)
=: J̃

(
δu
δv

)
(2)

where IΩ is the Ω × Ω dimensional identity matrix. The matrix J̃ is the generalised Jacobian and it is formally
defined via the latter equality: fu, fv, gu and gv stand for the partial derivatives of the reaction terms, evaluated at
the homogeneous equilibrium (u∗, v∗).

The stability of the null solution of (2) can be assessed by solving the eigenvalue problem of the 2Ω × 2Ω matrix

J̃ . In general this task cannot be achieved analytically and one has to resort to numerical methods. Our aim is to
show that suitable perturbative techniques can be implemented to progress in the analytical characterisation of the
conditions that underly the instability. More specifically, we assume that the adjacency matrices that characterises
the independent layers of the multigraphs can be respectively written as Au(ε) = A0 + ε

(
A1 −A0

)
and Av(ε) =

A0 + ε
(
A2 −A0

)
, where ε ∈ [0, 1]. A0 specifies the topological characteristics of a network that the two species

happen to share when ε = 0. Conversely, for ε 6= 0, species relocate in space following distinct routes, the differences
being more pronounced as ε approaches unit. A1 and A2 identify the graphs made available to species u and v, when
ε = 1. Starting from this setting, we will carry out a perturbative study of the spectral properties of matrix J̃ , using
ε as a small parameter in the expansion. By enhancing the degree of diversity among layers, via ε, one can either
instigate or silence the instability, thus controlling the route towards the subsequent pattern formation.

Let us denote by L0 the Laplacian matrix of the “unperturbed”network A0. Then Lu = L0 + ε(L1 − L0) and

Lv = L0 + ε(L2 −L0). Hence we can rewrite the matrix J̃ as follows

J̃ =

(
fuIΩ +DuL

0 fvIΩ

guIΩ gvIΩ +DvL
0

)
+ ε

(
Du

(
L1 −L0

)
0Ω

0Ω Dv

(
L2 −L0

) ) = J̃ 0 + εD0 , (3)

where D0 is defined by the last equality. Consider ε > 0 to be small. One can therefore approximate the spectrum of
J̃ as a local perturbation of the spectrum of J̃ 0, which is assumed known a priori. The method of analysis that we
shall adopt follows the ideas developed in [9] and detailed in the annexed Appendix A.

Let us denote by λ
(0)
α the eigenvalues of J̃ 0 for α = 1, . . . , 2Ω; ψ

(0)
α and φ

(0)
α stand for the corresponding right and

left eigenvectors. Let us also assume, for simplicity, that the eigenvalues of J̃ 0 are distinct: we have hence a set of
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linearly independent eigenvectors. This latter assumption can be relaxed, yielding more cumbersome computations
that, however, do not add any further insight to the problem at hand [9].

Let λ̃max be the eigenvalue of J̃ with the largest real part. Assuming that the relative order of the eigenvalues is
not affected by the imposed perturbation (otherwise one can easily compensate for such an effect), it is possible to

trace back λ̃max to the corresponding quantity λ
(0)
max, the eigenvalue of J̃ 0 with the largest real part. By denoting

with ψ
(0)
max and φ

(0)
max the right and left eigenvectors of J̃ 0 relative to λ

(0)
max, one can write:

λ̃max = λ(0)
max + ελ1

max + ε2λ2
max +O(ε3) = λ(0)

max + ε
(φ

(0)
max)TD0ψ

(0)
max

(φ
(0)
max)T · ψ(0)

max

− ε2 (φ
(0)
max)TD0ψ

(1)
max

(φ
(0)
max)T · ψ(0)

max

+O(ε3) , (4)

where the definition of ψ
(1)
max is given in the Appendix A, together with a detailed derivation of the above formula.

Observe that Eq. (4) contains first and second order corrections in ε: high order corrections can be also computed,
following the procedure described in Appendix A (see also Fig. 2).

The approximated expression (4) opens up the perspective to assess the stability of the system versus ε, for any
choices of the arbitrary adjacency matrices A0, A1 and A2. Assume for instance that patterns cannot develop for
ε = 0, namely when species u and v diffuse on the same network, as specified by the adjacency matrix A0. This

in turn implies <λ(0)
max < 0, for ε = 0 (<(·) selects the real part of (·)). This condition is met in Fig. 2(a), for the

Brusselator model. Here, A0 identifies a regular one dimensional lattice, with long-range links. In this example, we
solely modify the network of the inhibitor species. This latter is in fact made to evolve on a graph which results from
the linear combination of the lattice A0 and a Watts-Strogatz (WS) network A2. As it is evident by direct inspection
of Fig. 2 (a), a modest diversification of the networks hosted on each layer suffices to drive the instability and opens
the route to patterns development. The opposite scenario also holds true, as illustrated in Fig. 2(b). Now the patterns
are allowed when the species live on a shared regular lattice. If the activator network is modified via A1, a random
graph generated with the Watts-Strogatz recipe, the system recovers stability for a suitable choice of the coupling
parameter ε. The accuracy of the analytical approximation sensibly depends on the inspected setting. In all cases,
however, the theory enables us to foresee if the networks contamination will eventually drive the system unstable or
if, conversely, it will restore the stability. Approximate values for the critical threshold εc can be also obtained, as a
straightforward consequence.

As an important remark, we notice that in deriving Eq. (4) use has been made of the eigenvectors of the matrix

J̃ 0. Alternatively, we could have employed the eigenbasis of L0 yielding a formula similar to that proposed by [1].
In both cases, however, one has to study the spectral properties of a 2Ω × 2Ω matrix, a task that requires resorting
to numerical methods.

The second order correction in Eq. (4) requires determining the whole spectrum of the perturbed matrix. This

information is implicitly stored in the correction term λ
(1)
max. By operating under the additional assumption that λ

(0)
max

is much larger than other eigenvalues of the collection, one can obtain a simplified expression for λ̃max which entirely
relies on 0–th order quantities (see derivation in the Appendix A)

λ̂2
max =

(φ
(0)
max)TD0(λ

(0)
max − J̃ 0)−1D0ψ

(0)
max

(φ
(0)
max)T · ψ(0)

max

. (5)

This latter contains as particular case the approximation provided in [18, 19], as discussed in the Appendix.

III. LOCALISED PATTERNS

An interesting property of the reaction-diffusion system on multigraph is the presence of localised patterns. When
the pattern is fully developed, the nodes of the networks can be ideally grouped into two sets: activator (resp.
inhibitor) rich (resp. poor) and activator (resp. inhibitor) poor (resp. rich). The relative size of the groups is very
different, and one in particular observes that the activators tends to accumulate in a few localised spots.

To illustrate this phenomenon, we again assume the unperturbed adjacency matrix A0 to identify a ring, a 1D-
lattice with periodic boundary conditions. We set the parameters so that patterns à la Turing can develop when the
two species are diffusing on the same network, as specified by A0, see Fig. 4 panel a) where the concentration of the
activator is depicted on each node. Patterns reflect the symmetry of the support which defines the spatial backbone of
the model: a 5-fold periodic distribution is observed for this specific case study. When inhibitors are made to evolve
on a network which loses progressively its inherent symmetry, as exemplified by the relation Av(ε) = A0 + ε(A2−A0),
patterns get steadily localised and thus interest a limited subset of nodes. These facts can be appreciated in Fig.4
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FIG. 2. Dispersion relation for the multigraph. Panel a). Patterns do not exist when both species use the same network A0 (a
ring made by N = 100 nodes: each node is linked to its 3 closest neighbours on the left and on the right) while they emerge
once the inhibitor is allowed to use different paths Av(ε) = A0 + ε(A2−A0), ε > 0, where A2 is a Watts-Strogatz [17] networks
obtained using N = 100 nodes, 〈k〉 = 6 and a probability to rewire of p = 0.8. The activator species is always made to evolve on
A0. The reaction terms follow from the Brusselator model with parameters b = 8, c = 26, Du = 1, Dv = 7. Panel b). Patterns
are present when both species share network A0, as previously defined. The patterns are instead impeded when the network
explored by the activator is made sufficiently different from that of the inhibitor, according to formula Au(ε) = A0 +ε(A1−A0).
Here A1 is a realisation of a Watts-Strogatz [17] network, obtained using N = 100 nodes, 〈k〉 = 6 and a probability to rewire of
p = 0.6. The Brusselator model is assumed with parameters b = 8, c = 22 and diffusion coefficients Du = 1, Dv = 7.1. In both
panels the circles denote the numerically computed, hence exact, dispersion relation. This latter follows from the eigenvalues
J̃ , defined in Eq. (3). The solid line (red on line) refers to the first order correction in the perturbative scheme, while the black
dot-dashed line is computed from the second order solution given by Eq. (4) .

panels b), c) and d), where the concentrations of the activator species is reported in each nodes, for increasing values
of ε.

Despite patterns formation is a non–linear process, one can trace back the pattern localisation to the spectral
properties of matrix J̃, which appear to rule the dynamics of the system in the linear regime of the evolution. Let
ψmax be the right eigenvector of J̃, relative to the most unstable eigenvalue, i.e. the eigenvalue with largest positive
real part. Denote with ψu,max the first Ω components of ψmax, namely the components associated to u. The entries of
ψu,max are plotted in Fig.4 : the external black circle sets the zero. Negative values appear in shades from blue–light
to blue and are trapped inside the ring. Positive elements of ψu,max extend beyond the reference ring and are coloured
in red-yellow. The larger ε (i.e. the more disordered the network which hosts the inhibitors) the more localised the
eigenvectors [1, 20, 21]. A strong correlation is seen between positive components of the most unstable eigenvectors
and the region dense in activators. Similarly, negative components of ψu,max are associated to nodes depleted in
activator content. By increasing ε the correlation gets even more significant.

IV. CONTROL THE INSTABILITY BY INSERTING A SINGLE WEIGHTED LINK

In the previous section, we considered the case where all the links are simultaneously, but modestly, changed by
varying the value of ε. We now turn to consider a different scenario. As before, the two species are initially assumed to
evolve on the same network. Then we allow the creation of just one weighted link, in one of the layers. More precisely,
Au and Av differ due to the insertion of just one individual undirected edge, with weight w ∈ [0, 1]. We will hereafter
show that such a punctual modification maybe sufficient to induce the creation of patterns, that are impeded when
w is set to zero. Conversely, patterns which can develop when w = 0 can be deterred when the additional link is
switched on. In short, our method configures as a veritable strategy to control the ability of the system to self-organise
at the macroscopic level. As a matter of fact, we will also determine the nodes which, upon insertion, are predicted
to return the most important modification of the pre-existing conditions.

In the following, we shall assume that species u explores an assigned network, characterised by the adjacency matrix
A0. Species v is instead associated to the network described by the adjacency matrix A0 +T (ij), i.e. the same network
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FIG. 3. Patterns in a multigraph. In the panel a) we report the concentration for the activator species and its network (red
links) Au. In the panel b) we shown the concentration of the inhibitor with the corresponding network (blue links) Av. In
both cases the concentration of the species is normalised to the corresponding equilibrium values (that is ui/u

∗ and vi/v
∗) and

plotted with an apt colour code. The parameters for the Brusselator model are b = 8, c = 10 and the diffusion coefficients are
Du = 1 and Dv = 10. The networks Au and Av are the same used in Fig. 2 for the corresponding species with a value of ε = 1.
One can appreciate the differentiation of the nodes content, rich nodes in the amount of u are poor in v, and vice-versa.

on which u is confined with the additional inclusion of an undirected extra link (ij). Then, Eq. (3) rewrites

J̃ =

(
fuIΩ +DuL

0 fvIΩ

guIΩ gvIΩ +DvL
0

)
+

(
0Ω 0Ω

0Ω wDvLT

)
= J̃ 0 + wDvT 0 , (6)

where LT is the Laplacian associated to matrix T , whose elements are all identical to zero, except for the element
of position (ij), and its symmetric homologue (ji) which are set to one. The 2Ω × 2Ω matrix T 0 is defined by the
last equation. Here, self-loops are not admitted, hence i 6= j. Moreover, multilinks are not allowed for. This in turn
implies that an edge between nodes labeled i and j (the non trivial element of matrix T ) can be drawn, only if it did
not exist in the original formulation of A0, namely A0

ij = 0. As anticipated, we are interested in assessing how the
newly inserted edge modifies the inherent ability of the system to give rise to self-organised patterns. The produced
effect will heavily depend on the selected pair of nodes, and their combined topological features. To progress in the
analysis we will make use of a perturbative approach to the study of the modified dispersion relation. In particular,
the weight w will serve as small parameter in the expansion. The formula reported below is obtained by arresting the
expansion, at the first perturbative order. Higher order terms can be accounted for, as follow the strategy outlined
in the preceding Section.

Introduce now the following notation. Given any vector ~x ∈ R2Ω, then we define ~xu = (x1, . . . , xΩ) and ~xv =
(xΩ+1, . . . , x2Ω) such that ~x = (~xu, ~xv). Hence, the insertion of the undirected link (ij) will materialise in a modified
dispersion relation which reads:

λ̃max = λ(0)
max + wλ1

max +O(w2) = λ(0)
max + wDv

(φ
(0)
v,max)i(ψ

(0)
v,max)j

(φ
(0)
max)T · ψ(0)

max

+O(w2) , (7)

that is only the i–th component of the v–split part of the left eigenvector, (φ
(0)
v,max)i, and the j–th component of the

v–splitted part of the right eigenvector, (ψ
(0)
v,max)j , associated to λ

(0)
max enters the first order correction term.

Assume that patterns cannot develop for w = 0, i.e. when both species are evolving on exactly the same network,
as specified by the adjacency matrix A0. We have therefore, <λ0

max < 0. We also require <λ0
max to be small enough,

for the perturbative scheme devised above to accurately signal possible instabilities, byproduct of the newly inserted
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FIG. 4. Localised patterns. The periodic patterns on a 1D-lattice are destroyed once inhibitors are allowed to use a disordered
network to move among the nodes. The activators always diffuse on the regular ring, specified by the adjacency matrix A0. In
all panels, we report the asymptotic concentration of activators. Panel a): The initial configuration, ε = 0. A0 represents a
1D-ring. The activator shows a regular pattern, of period 5 (the same holds true for the inhibitor). Panel b): the inhibitors
diffuse on a modified networks Av(ε) = A0 + ε(A2 − A0) with ε = 0.05. Here A2 is a is a Newman-Watts network [22] with
N = 50 nodes and p = 0.5, generated starting from a A0. The activator still exhibit periodic patterns but now of period 3. Panel
c): the same as panel b) but with ε = 0.085. The patterns displayed by activators loose the periodicity and the concentrations
start to increase in a few nodes. Panel d): same as panel b) but with ε = 1, the patterns are aperiodic and extremely localised.
In all panels we show only the links of the inhibitor network, links with larger weights are shown with darker and thicker lines.
The parameters of the Brusselator model are b = 8, c = 20, the diffusion coefficients Du = 8, Dv = 80. The outer drawing
represents the eigenvector localisation, the black circle denotes the zeroth level, red-yellow colours are associated to positive
entries of ψu,max , while blue-light blue to negative values.

link. By making use of formula Eq. (4) one can readily determine, which of the selected pair (ij) registers the most
relevant increment in the unperturbed, negative, dispersion relation <λ0

max. In other words, we build a symmetric

edge between the pair of nodes that are seen to yield the largest <λ̃max > 0. Results of the analysis are reported in
Fig. 5, where the approximate analytical formula is challenged versus the exact numerical solution for the dispersion
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FIG. 5. Dispersion relation for the multigraph: the original dynamics of the system is controlled via the insertion of a newly
added, symmetric and weighted, link, between a pair of nodes (ij). Patterns do not exist when both species employ the
same network, with adjacency matrix A0, to explore the available nodes. Here, A0 is generated via the WS recipe: the
resulting network is made by N = 50 nodes; each node is connected to other 6 nodes of the network (< k >= 6) with a
rewiring probability p = 0.01. Patterns can instead develop when the networks that hosts the inhibitor is altered: the modified
adjacency matrix reads Av = A0 + wT (ij), where only one undirected link (ij) has been added. The circles denote the exact
dispersion relation numerically computed from Eq. (3) and plotted as a function of the strength w. The solid line (red online)
refers to the approximated analytical solution, arrested at the first order of the expansion. The black dot-dashed line includes
also second order corrections.

relation <λ̃max vs. w. In Fig. 6 we display the pattern emerging for the Brusselator model. Here, species u is made
to diffuse on a WS network A0 made by N = 50 nodes with < k >= 6 and rewiring probability p = 0.01. The
species v diffuses on the network with adjacency matrix Av = A0 + T (ij), where the additional link (ij) is chosen so
to maximise the magnitude of the (positive) first order correction computed in Eq. (7).

V. CONCLUSIONS

In this paper we studied the problem of patterns formation in a reaction-diffusion model defined on a multigraph
network. This representative scenario can be invoked when distinct families of interacting agents employ distinct paths
to reach the same target sites, the node of the networks. The aim of the paper is to analyse how small changes in the
topological characteristics of the networks may interfere with the intrinsic ability of the system to yield self-organised
patterns, via a symmetry breaking instability of the Turing type. Assuming that the modifications imposed can be
traced back to a small scalar parameter, we obtained approximated analytical formulae for the relevant dispersion
relation. We can hence foresee the effect of any enforced topological change to the structure of the hosting support, so
yielding a machinery which could possibly guide the definition of novel protocols to control the dynamics of the systems
on networks [14, 15]. We have in fact shown that patterns can be created (or, alternatively, destroyed) by tuning
the characteristic of the networks on which the dynamics take place. Importantly, the macroscopic dynamics can
be shaped as sought by adding/deleting one individual weighed link, which therefore acts as a veritable dynamical
switcher. We also studied the phenomenon of patterns localisation and explained it in terms of the eigenvector
localisation.
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FIG. 6. Creation of patterns by adding one link. A0 is a WS network made by N = 50 nodes, where each node is connected
to other 6 nodes (< k >= 6) and a rewiring probability p = 0.01. Patterns cannot develop when both species evolve on such a
networks, because the dispersion relation returns <λ0

max = −0.0858 < 0. By adding the link (ij) with weight w = 1 depicted

in the figure and using Eq. (4) we estimate (at the second order correction), <λ̃max ∼ 0.5270 > 0, the exact value being

<λ̃(true)
max = 0.4002. Panel a): the asymptotic distribution of u and its network A0, panel b) the asymptotic distribution of v

and its network Av = A0 + T (ij): the newly added link is clearly visible.

Appendix A: Eigenspectrum perturbation method

The eigenvalues problem (3) can be cast in the following general form. Given a matrix A0, whose eigenvalues and
eigenvectors are known, and a small parameter ε, we wish to determine the eigenvalues of the matrix A0 + εA1. A1

acts as a perturbation rescaled by the small scalar quantity ε.
Let us introduce the matrices Λ(ε) = diag(λ1(ε), λ2(ε), . . . λ2Ω(ε)) and Ψ(ε) =

(
~ψ1(ε) ~ψ2(ε) . . . ~ψ2Ω(ε)

)
and expand

them in powers of ε as follows:

Λ(ε) =
∑
l≥0

Λlε
l and Ψ(ε) =

∑
l≥0

Ψlε
l , (A1)

where Λ0 stands for the eigenvalues of the unperturbed matrix A0; Ψ0 (resp. Φ0, to be used later) stands for the matrix

whose columns (resp. rows) are the right (resp. left) eigenvectors of A0, ~φ0,i (resp. ~ψ0,i). Inserting formulae (A1)
into the eigenvalues problem for the perturbed system (A0 + εA1)Ψ = ΨΛ and collecting together the terms of same
order in ε beyond the trivial zero-th order contribution, we get

A0Ψl +A1Ψl−1 =

l∑
k=0

Ψl−kΛk ∀l ≥ 1 . (A2)

Left multiplying the previous equation by Φ0 and setting Cl = Φ0Ψl yields:

Λ0Cl − ClΛ0 = −Φ0A1Ψl−1 + C0Λl +

l−1∑
k=1

Cl−kΛk . (A3)

Eq. (A3) contains two unknowns, namely Cl and Λl for all l ≥ 1. To obtain the analytical solution used in the main
text we observe that Eq. (A3) can be cast in the compact form

[Λ0, X] = Y , (A4)

where X and Y are 2Ω × 2Ω matrices and [·, ·] stands for the matrix commutator. In practice, given Y ∈ R2Ω×2Ω,
one needs to find X ∈ R2Ω×2Ω solution of (A4). Since Λ0 is a diagonal matrix, the codomain of the operator [Λ0, ·] is



10

formed by all the matrices with zero diagonal. To self-consistently solve (A4) it is therefore necessary to impose that
Y has zero diagonal elements. Therefore the matrix X will have its diagonal elements undetermined.

Because of the above remark one can solve Eq. (A3) by setting Λl so to cancel the diagonal terms on its right hand
side, that is:

(Λl)ii =
(Φ0A1Ψl−1)ii −

∑l−1
k=1(Cl−kΛk)ii

~φT0,i · ~ψ0,i

and (Λl)ij = 0 for i 6= j , (A5)

where the denominator is nothing but (C0)ii. Assuming the eigenvalues of A0 to be simple, then Cl is readily found
to match:

(Cl)ij =
(−Φ0A1Ψl−1)ij +

∑l−1
k=1(Cl−kΛk)ij

λ
(0)
i − λ

(0)
j

if i 6= j (Cl)ii = 0 . (A6)

This latter epression allows us to simplify (A5). In fact:

(Cl−kΛk)ii =
∑
h

(Cl−k)ih(Λk)hi = 0 ,

and thus the approximated eigenvalues are given by

(Λl)ii =
(Φ0A1Ψl−1)ii
~φT0,i · ~ψ0,i

and (Λl)ij = 0 for i 6= j . (A7)

In the case l = 1 the previous formula reduces to:

λ
(1)
i =

~φT0,iA1
~ψ0,i

~φT0,i · ~ψ0,i

and (C1)ij = −
~φT0,iA1

~ψ0,j

λ
(0)
i − λ

(0)
j

for i 6= j, (A8)

which is the first order approximation used in the main text.
The second order correction can also be straightforwardly obtained:

λ
(2)
i =

(Φ0A1Ψ1)ii
~φT0,i · ~ψ0,i

=
(Φ0A1Φ−1

0 C1)ii
~φT0,i · ~ψ0,i

, (A9)

where we used the definition C1 = Φ0Ψ1. Observe that C1 will involve all the eigenvectors and so it does the second
order correction. Using the explicit form of C1 given by Eq. (A8) Eq. (A9) can be rewritten as:

λ
(2)
i = − 1

~φT0,i · ~ψ0,i

∑ (Φ0)im(A1)mn(Φ−1
0 )nk(Φ0)kp(A1)pq(Ψ0)qi

λ
(0)
k − λ

(0)
i

, (A10)

where the sum runs over all the repeated indexes.

Assuming now λ
(0)
i to be the largest eigenvalue, namely λ

(0)
i >> λ

(0)
k for all k 6= i, using the expansion 1/(1− x) =∑

l≥0 x
l for x = λ

(0)
k /λ

(0)
i and recalling that (λ

(0)
k )l(Φ0)kp = (Λl0Φ0)kp = (Φ0A

l
0)kp, we can rewrite the previous

formula as follows:

λ
(2)
i =

1

~φT0,i · ~ψ0,i

∑
l≥0

∑ 1

(λ
(0)
i )l+1

(Φ0)im(A1)mn(Φ−1
0 )nk(Φ0A

l
0)kp(A1)pq(Ψ0)qi =

=
1

~φT0,i · ~ψ0,i

∑
l≥0

1

(λ
(0)
i )l+1

(Φ0A1A
l
0A1Ψ0)ii =

1

~φT0,i · ~ψ0,i

(Φ0A1(λ
(0)
i −A0)−1A1Ψ0)ii

=
~φT0,iA1(λ

(0)
i −A0)−1A1

~ψ0,i

~φT0,i · ~ψ0,i

. (A11)

Observe that the first term, i.e. neglecting all the terms in the sum but l = 0, is given by

λ
(2)
i ∼

1

λ
(0)
i

~φT0,i(A1)2 ~ψ0,i

~φT0,i · ~ψ0,i

, (A12)
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which is nothing but the formula proposed in [18, 19].

[1] H. Nakao and A. S. Mikhailov, Nature Physics 6, 544 (2010).
[2] M. Asllani, J. D. Challenger, F. S. Pavone, L. Sacconi, D. Fanelli, Nature Communications 5, 4517 (2014).
[3] M. Asllani, F. Di Patti, D. Fanelli, Phys. Rev. E 86(4), 046105 (2012).
[4] M. Asllani, T. Biancalani, D. Fanelli, A. McKane, Europ. Phys. J. B 86, 476 (2013).
[5] R. Olfati-Saber and R.M. Murray, IEEE Trans. Auto. Control 49, 1520–1533 (2004).
[6] W. John, M. Dusi and K. Claffy, Tech. rep., ACM 1st International Workshop on TRaffic Analysis and Classification

(TRAC). ACM (2010).
[7] O. Sporns, G. Tononi and R.Kötter, PloS Comp. Biol. 1, e42 (2005).
[8] M. Rietkerk and J. van de Koppel, Trends Ecol. Evol. 23, 169 (2008).
[9] M. Asllani, D.M. Busiello, T. Carletti, D. Fanelli, G. Planchon, Phys. Rev. E 90(4), 042814 (2014).

[10] B. Bollobas, Phys. Rev. E 90(4), 042814 (2014).
[11] N. E. Kouvaris, S. Hata and A.Diaz-Guilera, Scientific Reports, 5, 10840 (2015).
[12] V. K. Vanag and I. R. Epstein, Chaos 17, 037110 (2007).
[13] S. Koga and Y. Kuramoto, Prog. Theor. Phys. 63(1), 106-121 (1980).
[14] Y-Y. Liu, J-J Slotine and A-L. Barabasi, Nature 473, 167-173 (2011).
[15] Y-Y. Liu and A-L. Barabasi, http://arxiv.org/pdf/1508.05384v2.pdf (2016).
[16] A. M. Turing, Phil. Trans. R. Soc. Lond. B 237, 37 (1952).
[17] D.J. Watts, S.H. Strogatz, Nature 393 409 (1998).
[18] J.G. Retrepo, E. Ott and B.R. Hunt, PRL 97 094102 (2006).
[19] A. Milanese, J. Sun and T. Nishikawa, PRE 81 046112 (2010).
[20] P.N. McGraw and M. Menzinger, Phys. Rev. E 77, 031102 (2008).
[21] R. Pastor-Satorras and Cl. Castellano, Scientific Reports 6, 18847,(2016).
[22] M.E.J. Newman and D.J. Watts, Physics Letters A, 263, 341, (1999).

http://arxiv.org/pdf/1508.05384v2.pdf

	Tune the topology to create or destroy patterns
	Abstract
	I Introduction
	II Reaction-diffusion equations for multigraph networks
	A The linear stability analysis: a perturbative approach

	III Localised patterns
	IV Control the instability by inserting a single weighted link
	V Conclusions
	 Acknowledgments
	A Eigenspectrum perturbation method
	 References


