SCIENTIFIC f‘“‘_?(, A3
REPg}RTS L

SUBJECT AREAS:

PHASE TRANSITIONS
AND CRITICAL
PHENOMENA

MECHANICAL PROPERTIES
NONLINEAR PHENOMENA
METALS AND ALLOYS

Received
3June 2013

Accepted
14 February 2014

Published
17 March 2014

Correspondence and
requests for materials
should be addressed to
K.A.D. (dahmen@

illinois.edu)

Tuned Ciritical Avalanche Scaling in Bulk
Metallic Glasses

James Antonaglia’, Xie Xie?, Gregory Schwarz', Matthew Wraith!, Junwei Qiao®, Yong Zhang?,
Peter K. Liaw?, Jonathan T. UhI® & Karin A. Dahmen'

University of lllinois at Urbana-Champaign, 2The University of Tennessee, Knoxville, *Taiyuan University of Technology, Taiyuan,
030024, China, “University of Science and Technology, Beijing, China, “Retired.

Ingots of the bulk metallic glass (BMG), Zrg4,15Cuy5 75Ni;¢.12Al;o in atomic percent (at. %), are compressed
at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts
(serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical
issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model
predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows
a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed
avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar
to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative
agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that
material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

n this study, we analyze and model slowly-compressed pillars of bulk metallic glasses (BMGs)'~* (Figure 1).

The pillar deformation proceeds via slips, observable through acoustic-emission measurements® or steps

(serrations) in the stress-strain curves (Figure 2). Here we present a quantitative model and theory for the
serration statistics in BMGs, which is critical for the understanding of the deformation behavior of BMGs. We
compare our experimental results on BMGs with the predictions of our model, which has previously shown good
agreement in describing the slip statistics of nano- and micro-crystals®''. Furthermore, scaling collapses of the
serration distributions at lower stresses predict the critical stress with roughly 5% accuracy. BMGs are non-
crystalline amorphous alloys whose microstructures have no periodic long-range order'*. In monotonic-com-
pression tests, BMGs deform by the intermittent nucleation, propagation, and subsequent arrest of shear bands in
highly-localized regions of large compressive stresses'” (see the Supplementary Material). At a specific temper-
ature and strain rate, a serrated plastic flow is usually observed in the compressive stress-strain curve after the
yield point, marked by almost-periodically-recurring sudden stress drops with smaller stress drops during the
loading intervals in-between. Cumulated shear bands can be as large as the system itself, or two to three orders of
magnitudes smaller”. The slip sizes are broadly distributed'*.

Our model’"! predicts a power-law distribution of slip sizes multiplied with an exponentially-decaying cutoff
function. The cutoff depends on experimentally-tunable parameters, such as strain rate or stress. The model is a
mean-field model with no explicit spatial dependence. Thus, it predicts that the long length-scale behavior of the
slip statistics should be universal and independent of microscopic structural details'. In particular, it predicts that
the statistics of the slip avalanches in slowly-compressed BMGs have the same scaling behavior as those observed
for slowly-compressed crystalline materials. In the following, we test this hypothesis. We first describe the model,
and then show the experimental results and their comparison to the model predictions.

The model'® assumes that typical materials have weak spots and that a slowly-increasing shear stress or a slow
shear rate triggers weak spots to slip. Each weak spot is stuck until the local stress exceeds a random local failure
stress. It then slips, thereby relaxing the local stress to a local (random) arrest stress. In crystals, the weak spots
may be the location of dislocations, and their slips correspond to dislocation slips. In BMGs, weak spots may be
the locations of shear transformation zones (STZs), shear bands, liquid-like sites, or other relatively weak regions
in the material>'>*%.

Weak spots are elastically coupled, so that a slipping weak spot can trigger other weak spots to slip, creating a
slip avalanche. At the slowest (“adiabatic”) driving rate, a slip avalanche finishes before the next one is started. Slip
avalanches are detected as steps in strain (for slowly-increasing stress-boundary conditions) or as stress drops (for
fixed strain-rate-boundary conditions). The elastic interaction between the weak spots is sufficiently long-ranged
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Figure 1| (a) lateral surface of a fractured BMG sample, Zr, ;3Cu; 5 75Ni; 124l ¢, after compression at a strain rate of 5 X 1075

~!, and (b) magnified

region indicated by a rectangle in (a) showing the interaction of multiple shear bands.

so that mean-field theory (MFT), which assumes infinite range inter-
actions, correctly predicts the scaling behavior of the slip statistics on
long-length scales'’. The MFT predictions agree with the slip statist-
ics of slowly-compressed nanocrystals’. Here we study whether MFT
can also predict the slip statistics in BMGs.

The MFT model predicts many statistical distributions and quant-
ities, such as the probability distribution of slip sizes and the power
spectra of the acoustic emission'’, and their dependence on experi-
mentally-tunable parameters, such as the applied strain rate and the
stress.

For a low imposed strain rate, Q, and near-failure stresses, the
MFT predicts that the probability-distribution function (PDF) of
the magnitudes, S, of the stress-drop avalanches, scales in the steady
state, where the time-averaged stress is constant, as"'

D(S,Q)~S "D/ (sQ") (1)
This scaling form is predicted to be universal, i.e., independent of the
microscopic details, with k = 1.5. The exponentially-decaying cutoff
is given by the universal scaling function, D'(8€"). It reflects that the
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Figure 2 | Compression stress-time profiles of Zrg, 13Cu;5 75Nijg 124150 ingots (by atomic percent)'**. Cylindrical samples, 2 mm in diameter and

4 mm in length, have been compressed along their 4-mm axis at fixed strain rates and at room temperature, 298 K. Insets show sudden drops in the
applied stress, as the ingots are compressed at various constant strain rates. These stress drops indicate the occurrence of slip avalanches in the material.
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maximum observed slip size, S,ax, depends on the strain rate as S«
~ Q7" In MFT, the universal exponent is & = 2 in the steady state.

The corresponding complementary cumulative distribution func-
tion (CCDEF), C(S,L2), which gives the probability of observing an
avalanche of size greater than S, is useful for systems with low num-
bers of avalanches:

C(8,02)= J

N

D(S,Q2)dS ~ Q" <=1 Ju—fD'(u)du
()
— QM=) (S_Qi)

Here, C'(SQ") is another universal scaling function, A(x — 1) = 1in
MFT'*" in the steady state, and u = SQ*.

Likewise, for the lowest (“adiabatic”) strain rate, the distribution
of stress-drop avalanches is predicted to follow a modified power law
as a function of applied stress™’. For f = (1 — 1/t¢), where 1 is the
applied stress, and 1 is the critical (failure) stress, the model pre-
dicts™'%:

D(S,f)~S~*D" (5'/°) (3)
where D" is a universal scaling function, and ¢ = 0.5 in MFT. The
corresponding CCDF scales as”:

,L D(S f)dS ~f=Dc” (Sﬁ)

Again C’(x) is a universal scaling function’. The corresponding dis-
tributions were extracted from the experiments for slowly-com-
pressed ingots of BMGs (see the Methods Section) and compared
to the model predictions.

Widom scaling collapses'® of the experimental stress-drop size
distributions yield the critical exponents, k and A, for the strain-
rate-varied distributions, and k and 1/c for the stress-binned dis-
tributions. In Figures 3 and 4, we plot C(S,2)Q " versus SQ* for
the strain-rate-varied distributions, and C(S,/)f*~"'° versus S/ for
the stress-binned distributions, respectively. The critical exponents
(t, A, x, and ©) and 1c are tuned until the curves lie on top of each
other, thereby yielding the correct values of these critical exponents
and tc. The collapses themselves describe the scaling functions,
C'(SQ*) and C"(§f""). Error bars for the exponents indicate the range
of exponents that give approximately the same quality collapse.

C(Sf)= (4)

Results
The morphology of a lateral surface after compressive fracture is
described in Figure 1(a). Multiple primary shear bands can be found,
denoted by the short white arrows, and their slip direction is indi-
cated by the long white arrow. With a closer look at the adjacent
region of the fracture plane, which is marked by a rectangular in
Figure 1(a), secondary shear bands can be located by the short white
arrows in Figure 1(b). Furthermore, intensive interactions of shear
bands appear in the lower-right part of the figure. The shear-band
initiation, propagation, and arrest, including the interaction between
different shear bands, are expected to contribute to the serration
events, and these processes are closely related to the characteristics
in deformation, such as the stress drop in the stress-strain curve.
The complementary cumulative distribution functions (CCDFs)
of stress-drop magnitudes were extracted from the stress-time curves
shown in Figure 2. First, CCDFs are constructed, taking stress drops
from the entirety of each sample’s stress-time curve. The CCDFs for
three different strain rates are shown in the main body of Figure 3.
The axes were rescaled by changing « and A until the distributions lie
on top of each other’®. For this collapse, it was found that k = 1.42 *
0.20, and A = 0.22 = 0.02. The collapse function in Figure 3 is the
scaling function, C'(x), of Equation (2). Plugging this information
into Equation (2) then predicts the scaling behavior of the slip-ava-
lanche-size distribution for other strain rates as well. Note that for the

- " R i S
:{J-’ Zr64130u1575N|1012AI1D:
2 5x107s" ]
8 oG
g esseen] 107 5! 1
: o
g 01} : -
= il : ]
= s ]
B . ]
7] 5 % 1
A (% | x-1422020 |
= = A=022+002 H . 1
1;: =1 : '
s 001 ] | =
= . . ]
Q 001} = H 1 ]
SO ]
L L I L 1 PO R T T S S T A RN S A A R AR AR TYET]
10 20 30 40 50

Stress Drop Magnitude (S) (MPa)

Figure 3 | Complementary cumulative distribution functions (CCDFs),
or survival functions, of stress drops for samples of
Zrg4.13Cuy5.75Nijg.12Al10, 2 mm in diameter and 4 mm in length,
compressed at various constant strain rates at 298 K. Larger stress drops
occur more frequently in samples that are strained more slowly, which
agrees with the model’s prediction'®. The proposed model predicts a
scaling form for the stress-drop probability-distribution functions (PDFs),
which scale as S times a universal scaling function dependent on the
quantity, SQ", of Equation (1) in the main text. Appropriately integrating
the predicted form of the PDFs, the CCDFs also show the functional
dependence on SQ*, and the power-law dependence in S can be recast by a
change of variables to a power-law dependence in Q. The inset shows the
CCDFs and stress-drop sizes rescaled by appropriate Q-dependent scaling
expressions, which effectively reveals the scaling function, C'(x), of
Equation (2) in the main text. This scaling “collapse” was quantitatively
verified for the exponent values of k = 1.42 * 0.20 and A = 0.22 * 0.02.
With these exponents and the function, C’(x), shown in the inset, we can
predict the serration statistics at other strain rates, see Equation (2).

higher strain rates, the samples break before they reach the steady
state — Figure 2 shows that the stress versus time plots have no flat
region for strain rates of 2 X 10™*and 1 X 107% s™.

The second collapse, shown in Figure 4, was performed on the
most slowly-strained sample using CCDFs from stress bins near the
critical failure stress. Nearly all of the stress drops occurred above
92.0% of the highest average stress achieved in the sample. Three
partitions of average stresses were chosen — 94.0-96.0%, 96.0-97.0%,
and 97.0-97.6%, where the percentages indicate the percents of the
maximum stress on the sample, 1,980 MPa. Avalanches were not
sampled from higher than 97.6% of the maximum stress, because
near the critical stress, the avalanche sizes are cut off by the finite
system size, i.e., the avalanches “feel” the boundaries of the sample.
In this region, finite-size corrections to the infinite system predic-
tions of the theoretical model become non-negligible'. Therefore, it
is preferable to keep the stress bins close, but not too close to the
critical stress.

The second collapse yielded exponents of k = 1.40 * 0.28, 1/c =
1.85 * 0.20, and a relative critical stress ratio of T¢/ Ty = 1.05 *
0.01. The error bars reflect statistical fluctuations resulting from the
finite number of avalanches per sample. The parameter, Tc/ Ty
indicates the critical stress as a fraction of the maximum achieved
stress, Tyrax = 1,980 MPa. The fitted critical stress, T¢, and the mea-
sured maximum applied stress, Ty, are slightly different in that the
critical stress is the applied stress at which an infinite system is (by
extrapolation) expected to yield in an infinitely-large avalanche.
However, in a finite sample, one finds a sample-spanning avalanche
at the maximum stress, which is below the critical stress.
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Figure 4 | CCDFs of stress drops in the most slowly-compressed sample
(5 X 107 s7") of Zrg4.13Cuy5.75Niyg 12Al 0 at various average applied
stresses. Stress drops above the threshold of instrument-noise fluctuations
(10 MPa) only set in around 92.0% of the maximum applied stress. Thus,
small windows of stresses were examined: 94.0-96.0% (green dotted line),
96.0-97.0% (purple dashed line), and 97.0-97.6% (black solid line), with
the weighted average stress values given in the figure legend. The stress-
binned stress-drop PDFs are hypothesized to scale as a power-law
dependence of S multiplied by a scaling function dependent on S(1 — 1t/
1c)"°, see Equation (3) in the main text, which expresses the distance from
criticality'®. Because the bins of stresses are small, T is taken to be the
average applied stress within each bin. The resulting scaling collapse (inset)
was quantitatively verified for the exponent values of k = 1.4 = 0.28, 1/c =
1.85 £ 0.20, and T/ Tpax = 1.05 * 0.01. With these values, and the collapse
function, C” Sfl? , shown in the inset, we can predict the slip statistics at
other stresses, see Equation (4).

The collapse function in the inset of Figure 4 is the scaling func-
tion, C"(x), of Equation (4). Plugging the extracted exponents, k¥ and
1/o, the critical stress, Tc, and the scaling function, C"(x), into
Equation (4) then predicts the scaling behavior of the slip-ava-
lanche-size distribution for other stress windows as well.

Discussion

(1) We first compare the results on BMGs or amorphous materials
to model predictions and crystal plasticity. The values of 1.42 +
0.20 and 1.40 * 0.28 for the magnitude scaling exponent, K, in
Figures 3 and 4, respectively, agree, within error bars, with the
model prediction of k¥ = 3/2' using the mean-field theory.
Within error bars, the values of 1.85 = 0.20 for the exponent,
1/c, in Figure 4, also agrees with the MFT prediction of 1/c =
2. As expected, the experimental exponent, A = 0.22, deviates
from the value that the MFT predicts for the steady state,
because at the higher shear rates, the samples do not reach
the steady state. 234, 181, and 189 avalanches were collected
for the samples at strain rates of 5 X 107°,2 X 107%, and 1 X
107%™, respectively.

The stress-binned data contained 38, 28, and 26 avalanches in
the bins with the average avalanche stresses at 95.2%, 96.5%,
and 97.3% of the maximum stress bins, respectively, in Figure 4.
Stress bins were chosen to be small, because the BMG samples
did not exhibit the avalanche behavior until about 92.0% of the
maximum stress was achieved, originating from BMGs’ high
strength but limited ductility’>*'. As explained above, finite-size
effects affect the distribution of avalanches close to the critical
fracture stress. Thus, stress bins must be kept a few percents

below the maximum stress’. Note that the stress-binned data
collapsed in the same way, with the same exponents, as stress-
binned data on slowly-compressed nanocrystals’, illustrating
the similar slip statistics of crystals and amorphous materials.

(2) Our MFT model assumes the presence of elastically-coupled
weak spots. This assumption applies to BMGs for the following
reasons. Recent studies reveal that structural heterogeneities
exist in BMGs, which are mainly composed of solid-like (den-
sely-packed) sites and liquid-like (anelastic) sites or so-called
weak spots®>**. Using the amplitude-modulation dynamic
atomic force microscopy (AM-AFM), one can easily find two
types of sites from the local energy-dissipation map***. It
should be pointed out that the correlation length of the hetero-
geneity equals ~ 2 nm, which is in good agreement with the
size of STZs*****. Furthermore, STZ dynamic simulations,
based on the kinetic Monte Carlo method, have been per-
formed to study the interaction between STZs during deforma-
tion in BMGs?®. The results clearly show that at low stress levels,
these STZs will behave separately, which corresponds to the
elastic-deformation mode. When the stress exceeds a certain
value, the activation of one STZ will induce the subsequent STZ
activation in its immediate neighborhood, i.e., the slip of one
weak spot triggers other weak spots to slip. These experimental
and simulation results strongly support our model assump-
tions.

(3) The observed scaling behavior and the scaling collapse in the
inset of Figure 3 reflect the tuned criticality. Ren et al.* find that
the elastic-energy density released in avalanche-slip events of
BMGs follows a power-law distribution for a high strain rate
(2.5 X 107% s7"), which they interpret as a signature of
self-organized criticality (SOC). However, both their and our
avalanche-size distributions reflect distinct strain-rate depend-
ence. As shown in Figure 3, we observe avalanche-size distribu-
tions whose exponential cutoff moves to larger sizes with
decreasing strain rate. The data of Ren et al.*® also show evid-
ence of broader distributions (larger average stress-drop sizes)
with decreasing strain rates, which may signify scaling with
respect to strain rate. In other words, the strain rate here is a
tuning parameter of the tuned critical point of BMGs™". Tuned
criticality is fundamentally different from SOC, which always
exhibits pure power-law scaling, without the need for para-
meter tuning to a critical point®. In contrast, the plastic flow
in BMGs exhibits tuned criticality with a critical point at low
strain rates, and at near-failure stresses, similar to crystals. For
both crystals” and BMGs, the tuning parameters (strain rate
and/or stress) must, thus, be tuned to their critical values in
order to observe the power-law scaling behavior®"’.

Conclusions

In conclusion, we have presented new analysis and modeling of the
dependence of avalanche statistics in BMGs on the applied strain rate
and the stress. We obtained the first scaling collapse of the slip-
avalanche statistics in BMGs. We have shown that the distribution
of avalanche sizes varies with strain rate and applied stress, which
indicates that both the strain rate and the applied stress are critical
tuning parameters. Because we observe that the criticality is tuned,
we conclude that the avalanche distributions reflect an ordinary
(tuned) critical point rather than self-organized criticality in
amorphous solid deformation.

A mean-field theoretical approach predicts the experimentally-
achieved values for the critical scaling exponents. The strain-rate
scaling exponent, A, differs from the mean-field prediction for the
steady state because at the higher strain rates, the samples are not in
the steady state. Most importantly, we find that the critical expo-
nents, k and o, and the scaling forms are consistent within error bars
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with the predictions of our MFT. The critical exponents, k and o,
also agree within error bars with recent experiments on nanocrystal
plasticity®. Note that the exponent, A, is yet to be determined for
crystal plasticity. The present result suggests that the model’s predic-
tions and interpretation of serrations as slip avalanches of weak spots
apply to both crystals and amorphous materials, irrespective of the
microscopic details and structures. This observation implies that the
same evaluation methods (using the slip-avalanche statistics and
acoustic emission below the failure stress) can be employed to predict
quantities, such as the critical stress, in both crystalline and BMG
materials. Moreover, from the slip-size distributions at the lower
strain rates, or at lower stresses, we can predict the serration statistics
at higher strain rates or at higher stresses, respectively (see Figures 3
and 4, respectively).

Methods

Ingots of an amorphous Zres 13Cu;575Nij0,12Al1 (nominal atomic percents) BMG
were prepared by arc-melting the alloy mixture of Zr, Cu, Ni, and Al with purity
higher than 99.9 weight percent in a Ti-gettered high-purity argon atmosphere. The
melting and solicitation processes are repeated at least five times to achieve chemical
homogeneity. Then the melted mixture is suction cast into a water-cooled copper
mold to form a cylindrical cast rod, 60 mm in length and 2 mm in diameter'>'*. The
cast rods were then cut into cylindrical bars with 4 mm in length. The two com-
pression faces of each bar were then carefully polished to be parallel to each other. The
sample was uniaxially compressed at 298 K (room temperature) using a computer-
controlled MTS 809 materials testing machine at a constant strain rate. Three strain
rates,5X 107° 7,2 X 107" s7',and 1 X 107* s~ were employed in the compression
experiments, with a data-acquisition rate of 33 Hz. Figure 1 shows images taken by
scanning electron microscopy of the lateral surfaces of one of the compressively-
fractured samples at a strain rate of 5 X 10~ s~ '. The fractograph clearly indicates the
multiple shear bands along which the sample deformed.

The slowest strain rate, closest to the theoretical adiabatic limit, was selected and
examined at different values of applied stresses to determine the stress dependence of
the distribution of stress-drop avalanches. The sample compressed at 5 X 107> s7!
exhibits many avalanche events at stresses above 1,800 MPa, which is 92.0% of the
maximum attained stress for this sample. The stress-drop avalanches were extracted
for values of average-stress intervals of 94.0-96.0%, 96.0-97.0%, and 97.0-97.6%.

The complementary cumulative distribution function (CCDF) of stress drops as a
function of their magnitudes is constructed numerically for each different strain rate’.
CCDFs are also constructed for each stress bin of the adiabatically-compressed
sample.
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