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ABSTRACT
In massive open online courses (MOOCs), peer grading serves
as a critical tool for scaling the grading of complex, open-
ended assignments to courses with tens or hundreds of thou-
sands of students. But despite promising initial trials, it
does not always deliver accurate results compared to human
experts. In this paper, we develop algorithms for estimating
and correcting for grader biases and reliabilities, showing
significant improvement in peer grading accuracy on real
data with 63,199 peer grades from Coursera’s HCI course
offerings — the largest peer grading networks analysed to
date. We relate grader biases and reliabilities to other stu-
dent factors such as student engagement, performance as
well as commenting style. We also show that our model can
lead to more intelligent assignment of graders to gradees.

1. INTRODUCTION
The recent increase in popularity of massive open-access
online courses (MOOCs), distributed on platforms such as
Udacity, Coursera and EdX, has made it possible for any-
one with an internet connection to enroll in free, university
level courses. However while new web technologies allow for
scalable ways to deliver video lecture content, implement
social forums and track student progress in MOOCs, we re-
main limited in our ability to evaluate and give feedback
for complex and often open-ended student assignments such
as mathematical proofs, design problems and essays. Peer
assessment — which has been historically used for logisti-
cal, pedagogical, metacognitive, and affective benefits ([17])
— offers a promising solution that can scale the grading of
complex assignments in courses with tens or even hundreds
of thousands of students.

Initial MOOC-scale peer grading experiments have shown
promise. A recent offering of an online Human Computer
Interaction (HCI) course demonstrated that on average, stu-
dent grades in a MOOC exhibit agreement with staff-given
grades [12]. Despite their initial successes, there remains
much room for improvement. It was estimated that 43% of
student submissions in the HCI course were given a grade
that fell over 10 percentage points from a corresponding staff
grade, with some submissions up to 70pp from staff given
grades. Thus a critical challenge lies in how to reliably ob-
tain accurate grades from peers.

In this paper, we present the largest peer grading networks
analysed to date with over 63, 000 peer grades. Our central
contribution is to use this unprecedented volume of peer as-

Figure 1: Peer-grading network: Each node is a learner with

edges depicting who graded whom. Node size represents the

number of graders for that student. The highlighted learner

shown above graded five students (circular nodes) and was in

turn graded by four students (square nodes).

sessment data to extend the discourse on how to create an ef-
fective grading system. We formulate and evaluate intuitive
probabilistic peer grading models for estimating submission
grades as well as grader biases and reliabilities, allowing our-
selves to compensate for grader idiosyncrasies. Our methods
improve upon the accuracy of baseline peer grading systems
that simply use the median of peer grades by over 30% in
root mean squared error (RMSE).

In addition to achieving more accurate scoring for peer grad-
ing, we also show how fair scores (where our system arrives
at a similar level of confidence about every student’s grade)
can be achieved by maintaining estimates of uncertainty of
a submission’s grade.

Finally we demonstrate that grader related quantities in our
statistical model such as bias and reliability have much to
say about other educationally relevant quantities. Specifi-
cally we explore summative influences: what variables cor-
respond with a student being a better grader, and formative
results: how peer grading affects future course participation.
With the large amount of data available to us, we are able to

ar
X

iv
:1

30
7.

25
79

v1
  [

cs
.L

G
] 

 9
 J

ul
 2

01
3



Table 1: Data Sets
First HCI Second HCI

Students 3,607 3,633
Assignments 5 5
Submissions 6,702 7,270
Peer Grades 31,067 32,132

perform detailed analyses of these relationships that would
have been difficult to validate with smaller datasets.

Because peer grading is structurally similar in both MOOCs
and traditional brick and mortar classrooms, these results
shed light on best practices across both mediums. At the
same time, our work helps to describe the unique dynamics
of peer assessment in a very new setting — one which may
be part of a future with cheaper, more accessible education.

2. DATASETS
In this work, we use datasets collected from two consec-
utive Coursera offerings of Human Computer Interaction
(HCI), taught by Stanford professor Scott Klemmer. The
HCI courses used a calibrated peer grading system [16] in
order to assess weekly student submissions for assignments
which covered a number of different creative design tasks for
building a web site. Calibration required students to cor-
rectly assess a training submission before they were allowed
to grade other students’ submissions. On every assignment,
each student evaluated five randomly selected submissions
(one of which was a “ground truth” submission, discussed
below) based on a rubric, and in turn, was evaluated by
four classmates. The final score given to a submission was
determined as the median of the corresponding peer grades.1

Peer grading was anonymized so that students could not see
who they were evaluating, or who their evaluators were. See
Kulkarni et al. [12] for details of the peer grading system.

After the first offering (HCI1), the peer grading system was
refined in several ways. Among other things, HCI2 fea-
tured a modified rubric that addressed some of the short-
comings of the original peer grading scheme. Additionally,
peer graders were divided into language groups (English and
Spanish) to address concerns of being graded by a non-native
speaker as well as the observed“patriotic grading effect” [12].
Counting just those who submitted at least one assignment
in the English offerings of the class, there were 3,607 stu-
dents from the first offering (HCI 1) and 3,633 students
from the second offering (HCI 2). These students came from
diverse backgrounds (with a majority of students from out-
side of the United States). Collectively, these 7,240 students
from around the world created 13,972 submissions, receiving
63,199 peer grades in total. See Table 1 for a summary of
the dataset. In our work, we used the data from HCI2 as
a hold out set. We formulated our models based only on
exploratory experiments performed using the HCI1 dataset,
testing on the second HCI class only after having finalized
our theories about which models were useful.

1 Our description is somewhat of a simplification — students
also performed self-assessments and were given the higher of
the median and their self grade provided that the two were
within five percentage points of each other. We did not
consider self assessments in this work.

The software for the peer grading framework used by the
HCI courses was designed to accommodate experimental val-
idation of peer grading. A small number (3-5) of submissions
for each assignment were marked as“ground truth”and were
then graded by the course staff. Since there were only a few
ground truth submissions and each student graded at least
one per week, the ground truth submissions were “super-
graded” and had, on average, 160 assessments. Of note,
the students were not told that one of the submissions they
were assigned to mark belonged to the ground truth set. For
example, Figure 1 shows the network of gradee-grader rela-
tionships on Assignment 5 of HCI1, where the three super-
graded ground truth submissions are clearly visible.

3. PROBABILISTIC MODELS OF PEER

GRADING IN MOOCS
The ideal peer grading system for a MOOC should satisfy
the following desiderata: it should (1) provide highly reli-
able/accurate assessment, (2) allocate a balanced and lim-
ited workload across students and course staff, (3) be scal-
able to class sizes of tens or hundreds of thousands of stu-
dents, and (4) apply broadly to a diverse collection of prob-
lem settings. In this section we discuss a number of ways to
formulate a probabilistic model of peer grading to address
these desiderata. The models that we introduce allow for
us to algorithmically compensate for factors such as grader
biases and reliabilities while maintaining estimates of uncer-
tainty in a principled way.

Through our paper, we will use the following notation. We
refer to the collection of all submissions to a homework as-
signment as U , and specific submissions indexed as u ∈ U .
We assume in this paper that each student corresponds to
a unique homework submission per assignment, and thus
refer to students (users) and submissions interchangeably.
The collection of all graders is denoted by G, and specific
graders by v ∈ G. Note that graders are themselves stu-
dents with submissions. Finally, we use the notation v → u
to mean that grader v grades submission u. For example,
the set {u : v → u} refers to the collection of submissions
graded by a single student v.

Our models assume the existence of the following quantities
which are either observed or latent (unobserved) variables
which we wish to estimate.

• True scores: We assume that every submission u is
associated with a true underlying score, denoted su,
which is unobserved and to be estimated.

• Grader biases: Every grader v is associated with a
bias, bv ∈ R. These bias variables reflect a grader’s
tendency to either inflate or deflate her assessment by
a certain number of percentage points.

• Grader reliabilities: We also model grader reliabil-
ity, τv ∈ R

+, reflecting how close on average a grader’s
peer assessments tend to land near the corresponding
submission’s true score after having corrected for bias.
In the models below, τv will always refer to the preci-
sion, or inverse variance of a normal distribution.

• Observed grades: Finally, zvu ∈ R is the observable
score given by grader v to submission u. The collection
of all observed peer grades is denoted as Z = {zvu}.
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Figure 2: (a) The relationship between a grader’s homework performance (her grade) and statistics (mean/standard deviation)

of grading performance (residual from true grade). (b) The relationship between a gradee’s homework performance against

statistics of assessments for her submissions. (c) Visualization of all three variables simultaneously, where intensity reflects the

mean residual z-score. Empty boxes mean that there is not enough data available to compute a reliable estimate.

3.1 Models
Below we present, in order of increasing complexity, three
statistical models that we have found to be particularly ef-
fective.

Model PG1 (Grader bias and reliability). Our first model,
PG1 puts prior distributions over the latent variables and
assumes for example that while an individual grader’s bias
may be nonzero, the average bias of many graders is zero.
Specifically,

(Reliability) τv ∼ G(α0, β0) for every grader v,

(Bias) bv ∼ N (0, 1/η0) for every grader v,

(True score) su ∼ N (µ0, 1/γ0) for every user u, and

(Observed score) zvu ∼ N (su + bv, 1/τv),

for every observed peer grade.

G refers to a gamma distribution with fixed hyperparameters
α0, β0, while η0, and γ0 are hyperparameters for the priors
over biases and true scores, respectively. In our experiments,
we also consider a simplified version of Model PG1 in which
the reliability of every grader is fixed to be the same value.
We refer to this simpler model in which only the grader
biases are allowed to vary as PG1-bias .

Model PG2 (Temporal coherence). The priors for reli-
ability and bias can play a particularly important role in
the above model due to the fact that we typically only have
about 4-5 grades to estimate the bias and reliability of each
grader. A simple way to obtain more data per grader is to
leverage observations made about the grader from previous
assignments. To pose a model, we must understand the re-
lationship of a grader’s bias and reliability at homework T
to that at homework T ′. Is it the same or does it change
over time?

To answer this question, we examine the correlation be-
tween the estimated biases from Model PG1 using the HCI1
dataset (see Section 2). Between consecutive assignments, a
grader’s biases have a Pearson correlation of 0.33 which rep-
resents a utilizable consistency. Grader reliability, on the
other hand, has a low correlation. We therefore posit Model
PG2 which allows for grader biases at homework T to de-
pend on those at homework T − 1 (and implicitly, on all
prior homeworks). Specifically, Model PG2 assumes:

τ (T )
v ∼ G(α0, β0) for every grader v,

b(T )
v ∼ N (b(T−1)

v , 1/ω0) for every grader v,

s(T )
u ∼ N (µ0, 1/γ0) for every user u, and

zv,(T )
u ∼ N (s(T )

u + b(T )
v , 1/τ (T )

v ),

for every observed peer grade.

Model PG2 requires that we normalize grades across dif-
ferent homework assignments to a consistent scale. In our
experiments, for example, we have noticed that the set of
grader biases had different variances on different homework
assignments. Using a normalized score (z-score), however,
allows us to propagate a student’s underlying bias while re-
maining robust to assignment artifacts.

Note that while a model which captures the dynamics of true
scores and reliabilities across assignments can be similarly
imagined, we have focused only on the dynamics of bias
for this work (which contributes the most towards improved
accuracy while still being equitable).

Model PG3 (Coupled grader score and reliability). A
unique aspect of peer grading is that graders are themselves
students with submissions being graded. Consequently, it
is of interest to understand and model the relationship be-
tween one’s grade and one’s grading ability — for example,
knowing that a student scored well on his assignment may
be cause for placing more trust in that student as a grader,
and vice versa.

In Figure 2, we show experiments exploring the relationships
between the grader specific latent variables. In particular,
we observe that high scoring students tend to be somewhat
more reliable as graders (see details of the experiment in
Section 4). Model PG3 formalizes this intuition by allowing
the reliability of a grader to depend on her own grade, and
assumes the following:

bv ∼ N (0, 1/η0) for every grader v,

su ∼ N (µ0, 1/γ0) for every user u, and

zvu ∼ N

(

su + bv,
1

θ1sv + θ0

)

,

for every observed peer grade.



Note that Model PG3 extends PG1 by introducing new de-
pendencies, allowing us to use a student’s submission score
to estimate her grading ability. At the same time Model
PG3 is more constrained, forcing grader reliability to de-
pend on a single parameter instead of being allowed to vary
arbitrarily, and thus prevents our model from overfitting.

Ethics and Incentives. If we are to use probabilistic infer-
ence to score students in a MOOC, the end goal could not
simply be to optimize for accuracy. We must also consider
fairness when it comes to deciding what variables to include
in the model. It might be tempting, for example, to include
variables such as race, ethnicity and gender into a model for
better accuracy, but almost everyone would agree that these
factors could not be fairly used within a scoring mechanism
even if they improved prediction accuracy. Another example
might be to model the temporal coherence of student grades
(we observe a particularly strong temporal correlation be-
tween students’ grades — with 0.46 Pearson coefficient —
of consecutive homework assignments). But incorporating
this temporal coherence for students scores into a scoring
mechanism would not allow for students to be given a “clean
slate” on each homework.

Model PG3 allows for the inferred true score of a submission
to depend on graders’ scores, which may seem contentious,
but the dependence is weak, only affecting the influence by a
particular grader on the final prediction, which is desirable.
Interestingly, using the more complex scoring mechanism
from Model PG3 may in fact incentivize for good grading.
In particular, a student’s grade is influenced by how closely
her assessments as a grader match those of other graders
who graded the same assignments. Consequently, by allow-
ing for student grades to depend on their performance as
graders, Model PG3 used as a scoring mechanism may in-
centive students to put more effort into grading.

3.2 Inference and evaluation.
Given a probabilistic model of peer grading such as those dis-
cussed above, we would like to infer the values of the unob-
served variables such as the true score of every submission, or
the bias and reliability of each student as a grader. Inference
can be framed as the problem of computing the posterior
distribution over the latent variables conditioned on all ob-
served peer grades (e.g., P ({su}u∈U , {bv}v∈G, {τv}v∈G | Z)).

Computing this posterior is nontrivial, since all of the vari-
ables are correlated with each other. For example, having
good estimates of the biases of all of the graders to submis-
sion u ({bv : v → u}) would allow us to better estimate u’s
true score, su. However to estimate each bias bv, we would
have to have good estimates of the true scores of all of the
submissions graded by v ({su : v → u}). We must therefore
reason circularly, in that — if we knew every submission’s
true scores, we would be able to easily compute posterior
distributions over grader biases (and reliabilities), but in or-
der to estimate these biases, we must know the true score of
each submission.

To address this apparent chicken and egg problem, we turn
to simple approximate inference methods. In the experi-
ments reported in Section 4, we use Gibbs sampling [6],
which produces a collection of samples from the (approx-

imate) desired posterior distribution. These samples can
then be used to estimate various quantities of interest. For
example, given samples s1u, s

2
u, . . . , s

T
u from the posterior dis-

tribution over the true score of submission u, we estimate the
true score as: ŝu ≡ 1

T

∑T

t=1 s
t
u. We can also use the samples

to quantify the uncertainty of our prediction by estimating
the variance of the samples from the posterior, which we use
in Section 4 when we examine peer grading efficiency. Note
that while the ordinary Gibbs sampling algorithm can be
performed in“closed form”for Models PG1-bias , PG1 and
PG2 , Model PG3 requires numerical approximation due to
the coupling of a submission’s true score su with that of its
grader, sv. We discuss details in the Appendix.2 Visually
we observe rapid mixing for our Gibbs chains, and in the ex-
periments shown in Section 4, we use 800 iterations of Gibbs
sampling, discarding the initial 80 burn-in samples.

Expectation-maximization (EM) is alternative approximate
inference approach, where we treat the true scores and grader
biases as parameters and then use an iterative coordinate
descent based algorithm to obtain point estimates of pa-
rameters. In practice, we find that both the Gibbs and EM
approaches behave similarly. In general EM has the advan-
tage of being significantly faster while obtaining posterior
credible intervals is more natural using Gibbs. On the peer
grading dataset the two methods produce analogous results.
For example, PG1 with Gibbs and EM have RMSE scores
of 5.42 and 5.43 on the first dataset respectively and with
Gibbs running in roughly 5 minutes and EM running in 7
seconds. We refer the reader to the appendix for the full
algorithmic details of Gibbs as well as EM.

Evaluation. To measure peer grading accuracy, we repeat-
edly simulate what score would have been assigned to each
ground truth submission had it been peer graded. Our eval-
uation of how well we would have graded a single ground
truth submission uses a two step methodology (based on the
evaluation method of [12]): (1) We run inference using all
of our data, except the peer grades of the ground truth sub-
mission being evaluated. This gives us an estimate of each
grader’s biases and reliabilities as well as model priors that
were independent of the submission being evaluated. (2)
We run simulations where we sampled four student assess-
ments randomly from the pool of peer grades for the ground
truth submission, estimate the submission’s grade using the
sample of assessments and recorde the residual between our
estimated grade and the“true”grade. For each ground truth
submission we run 3000 such simulations, from which we re-
port the RMSE, the number of simulations which fell within
five, and ten percentage points of the true score, the average
standard deviation of the errors over each ground truth and
the worst misgrade that the simulations produced.

An interesting issue is whether one should consider the“true”
grade of a ground truth submission to be the score given by
the staff, or the consensus from the hundreds of students
that assessed the submission. For our datasets, we believe
that the discrepancy between staff grade and student con-
sensus typically results from ambiguities in the rubric and
elect to use the mean of the student consensus on a ground

2See accompanying appendix at www.stanford.edu/
~cpiech/bio/papers/appendices/edm13_appendix.pdf

www.stanford.edu/~cpiech/bio/papers/appendices/edm13_appendix.pdf
www.stanford.edu/~cpiech/bio/papers/appendices/edm13_appendix.pdf


Table 2: Comparison of models on the two HCI courses

HCI 1 HCI 2

Baseline PG1-bias PG1 PG2 PG3 Baseline PG1-bias PG1 PG2 PG3

RMSE 7.95 5.42 5.40 5.40 5.30 6.43 4.84 4.81 4.75 4.73

% Within 5pp 51 69 69 71 70 59 72 73 73 74

% Within 10pp 81 92 94 94 95 88 96 96 97 97

Mean Std 7.23 5.00 4.96 4.92 4.77 6.19 4.57 4.52 4.53 4.52

Worst Grade -43 -34 -30 -32 -30 -36 -26 -26 -25 -26

truth submission as the true grade. One interesting obser-
vation that came from our exploration: peer graders in our
datasets have a tendency to grade towards the mean, inflat-
ing grades for low-scoring submissions and deflating grades
for high-scoring submissions. We remark that while our ex-
periments were run in an “unsupervised” fashion, it would
be reasonable to use staff grades in the training process in
order to encourage the model to place more trust in students
who consistently grade like the instructors.

We compare each of our probabilistic models to the grade
estimation algorithm used on Coursera’s platform. In the
baseline model, the score given to students is the median of
the four peer grades they received. Specifically, the baseline
estimation does not take into account individual grader’s
biases and reliabilities. Nor does it incorporate prior knowl-
edge about the distribution of true grades.

4. EXPERIMENTAL RESULTS
4.1 Accuracy of reweighted peer grading
Using probabilistic models leads to substantially higher grad-
ing accuracy. In our experiments we are able to reduce the
RMS error on our prediction of the ground truth grade by
33% from 7.95 to 5.30. Similarly, on the second offering of
the course we were able to reduce error by 31% from 6.43
to 4.73. For the second offering, this means that the num-
ber of students who received grades within 10 percentage
points (pp) of their grade increased from 88% to 97%. Fig-
ures 3(a), 3(b) show the effect of using Model PG3 as a
scoring mechanism on the histogram of grading errors and
Table 2 shows the complete results for each model. Due
to course improvements, we observe that students in HCI2
were significantly more consistent as graders compared to
students in HCI1. However, we remark that every one of
our models run on HCI1 outperforms the baseline grading
system run on HCI2 with respect to every metric, indicating
that the best gains in peer grading are likely to come from
both an improved class design as well as statistical modeling.

Our results show that Models PG3 (with coupled grader
score and reliability) and PG2 (with temporal coherence)
yield the best results, with Model PG3 outperforming the
other models with respect to most metrics. But the sin-
gle change that provides the most significant gains in ac-
curacy is obtained by estimating each grader’s bias (Model
PG1-bias ). This simple model is responsible for 95% of our
reduction in RMSE. The other changes all contribute com-
paratively smaller improvements to a more accurate model.

Our evaluation setup also allows us to test how accurate
we would have been, had we had more than four grades per
student. If the class had increased the number of grades that

each student received to five (instead of four), our model
could reduce RMSE error on the first and second offering of
HCI to 4.19 and 4.36 respectively.

Surprisingly while modeling grader bias is particularly effec-
tive, modeling grader precision does little to improve our
performance. To dig deeper into this result we test our
model on a synthetic dataset — one generated exactly from
Model PG1 . When using this synthetic data with only
four grades per student it is difficult for the model to cor-
rectly estimate grader reliability. Modeling variance for each
grader only seems to have a notable impact when students
grade many assignments (more than 10). This experiment
also suggests why PG3 is more useful than PG1 . Though
PG1 contains more expressive power than PG3 , estimating
only two parameters for grader reliability (θ0 and θ1) is more
statistically tractable with only four grades per student than
estimating a reliability, τv, for each grader.

4.2 Fairness and efficiency in peer grading
One of the advantages of using a probabilistic model for peer
grading is that we can obtain a belief distribution over grades
(as opposed to a single score) for each student. These distri-
butions give us a natural way of calculating how confident
the model is when it predicts a grade for a student. The fact
that the confidence results can be trusted open up the possi-
bility of a more equitable allocation of graders. For example,
at a given point midway through the peer grading process,
our model may be highly confident in its prediction for a
given student’s score, but very unsure in its prediction for
another student. In this situation, to ensure that each stu-
dent gets fair access to quality feedback, we could reassign
graders to gradees such that submissions which have low-
confidence scores are given to more and/or better graders.

The first step towards more fair allocation of grades is to
ask ourselves: how accurate are our estimates of confidence?
For example, we would like to know how to interpret what it
means in practice when our Bayesian model is 90% confident
that its prediction of a learner’s true score is within 10pp of
the actual true score.

To better understand our confidence estimates, we run the
following experiment: We first performed a large number
of peer grading simulations on ground truth. From each
simulation we calculate how confident our model is that the
grade it predict for the ground truth submission is within
5%, 7%, and 10%, of the true score, respectively. We then
bin the estimated confidences into ranges 0-5%, 5-10%, etc.
After collecting over 5000 predictions per range, we test the
pass rate of each range. For example, suppose we select
four assessments of the same ground truth submission in a
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Figure 3: (a) Histogram of errors made using the baseline (median) scoring mechanism. (b) Histogram of errors using PG3 .

(c) A comparison of model confidence (x-axis) and actual success rate of predictions (y-axis), where being above the diagonal

(dark bars) is better. (d) Number of submissions for which our model can declare “confidence” after K rounds of grading.

simulation. If our model reports a 72% confidence — based
on those four assessments — that our predicted grade is
within 5pp of the true score, we add that estimate to the set
of predictions in the 70% to 75% confidence range. When we
test this confidence range the example prediction “passes” if
its estimate is in fact within 5pp of the ground truth score.

One worry is that our model might be overconfident about
its predictions even when wrong. However the results, shown
in Figure 3(c), demonstrate that our confidence estimates
are on the conservative side — for example over 95% of
the time that our model claims it is between 90 and 95%
confident of a prediction, the model’s estimate is correct.

Since we have reason to believe that our confidence values
are accurate, we can employ our posterior belief distribu-
tions to better allocate grades. To understand how much
benefit we could get out of improved grade allocation, we
estimate at what point in the grading process we were con-
fident about each submission’s score. For each homework
assignment, we simulate grading taking place in rounds. In
the first round, we only include the first grade submitted by
each grader (which may have been a ground truth grade).
In the second round, we included the first two, etc. For each
round we run our model using the corresponding subset of
grades and count the number of submissions for which we
are over 90% confident that our predicted grades were within
10pp of the student’s true grade.

After only two rounds of grading we are highly confident in
our estimated grade for 15% of submissions (this generally
means that the submission has a grade close to the assign-
ment mean, and has two similar grades from graders). Fig-
ure 3(d) shows how the set of confident submissions grows
over the grading rounds. Our experiment demonstrates a
clear opportunity for grades to be reallocated as well as a
pressing need for some submissions to get more grades. For
54% of students, after all rounds, we are still unsure of their
submission’s true score.

4.3 Graders in the context of the MOOC
Applying probabilistic models to peer grading networks al-
lows us to increase our grade accuracy and better allocate
what submissions students should grade. Another product
of our work is an assignment — with a belief distribution —
for a true score, grader bias and grader reliability for each
student. We can use this large dataset to derive new under-
standing about peer grading as both a formative and sum-
mative assessment. We focus our investigation on two ques-
tions, (1) what factors influence how well a student grades?

and (2) how does grading ability affect future class perfor-
mance in a MOOC?

Influential factors for grader ability. To explore what
factors influence how well a student grades we compare grad-
ing residual (how far off a grader’s score is from our model
estimated true score) to: time spent grading, grader grade,
and gradee grade.

Time spent grading shows a particularly interesting trend
(Figure 4(a)). As hypothesized, students that “snap grade”
their peers’ work (the students whose time spent grading has
a z-score of less than -0.30), are both unreliable (the variance
of their residuals is over 1 standard deviation away from the
gradee’s true score) and tend to slightly inflate grades. More
surprising is that over the tens of thousands of grades, there
is a “sweet spot” of time spent grading. Students who grade
assessments with a time that has a z-score of around -0.25
have significantly lower residual standard deviations (with p-
value < 0.001, diff = 0.3 standard deviations) than students
who take a long time to grade (i.e., time spent grading has
a z-score > -0.20). This sweet spot is only visible when
we look at normalized grading times. For most assignments
in the HCI class, the sweet spot corresponds to around 20
minutes grading. This may reflect both that with any less
time a grader does not have enough of a chance to fully
examine her gradee’s work, and that a long grading session
may mean that the grader had trouble understanding some
facet of the submission.

Examining the relationship between grader grade, gradee
grade and how they affect the residual also shows a set of
notable trends. Graders that score higher on assignments
have close to monotonically decreasing biases (Figure 2(a)).
Getting a better grade on the homework in general makes
students more reliable graders; with the notable exception
that the students that get the best grades (+1.75 z-score)
are not as accurate as the students who do very well (+.75
z-score, p = 0.04). The superlative submissions — both the
best and the worst — are the easiest to grade, and the sub-
missions which are one standard deviation below the mean
are the hardest (Figure 2(b)). Finally, our results show that
students are least biased when grading peers with similar
score (Figure 2(c)). The best students significantly down-
grade the worst submissions and the worst students notably
inflate the best submissions.

In addition to numerical scores, graders were asked to pro-
vide feedback in the form of free form text comments to
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Figure 4: (a) Grader consistency (measured using standard deviation of grading residual) as a function of time spent grading.

(b) ROC curve comparing performance (with linear SVM) at predicting future class participation given a student’s grade, bias,

reliability or all three. (c) Commenting style (length of comment and sentiment polarity) as a function of grading residual.

their gradees. In order to understand the relationship be-
tween grading performance and commenting style, we com-
pare grading residual against the comment length as well as
sentiment polarity of the comment (Figure 4(c)). To mea-
sure the polarity of a comment, we use the sentiment anal-
ysis word list from [14] and implement a simple sentiment
analyzer that returns a (normalized) polarity score (posi-
tive or negative) proportional to the sum of word valences
over the comment. For both comment length and polar-
ity, we filter out all non-English words. We observe that
comments that correspond to larger negative residuals are
typically significantly longer, suggesting perhaps that stu-
dents write more about the weaknesses of a submission than
strong points. That being said, we observe that overall, the
comments mostly range in polarity from neutral to quite
positive, suggesting that rather than being highly negative
to some submissions, many students make an effort to be
balanced in their comments to peers.

Grader ability and future performance. We also tested
what signal grading ability has with predicting future par-
ticipation. Based on the theory that the best graders are
intrinsically motivated, we hypothesized that being a reli-
able grader would add a different dimension of information
to a student’s engagement which we should be able to use to
better predict future engagement. We tested this hypothe-
sis by constructing a classification task in which we predict
whether a student would participate in the next assignment
(or conversely which students would “drop out”). In addi-
tion to the student’s grade, we experimented with including
grader bias and reliability as features in a linear classifier.
Our results (Figure 4(b)) show that including grader bias
and reliability improved our predictive ability by 5pp from
an area under the curve (AUC) score of 0.93 to an AUC
of 0.98. Properties about how a student grades, captures
a dimension of their engagement which is missed by their
assignment grade.

5. RELATED WORK
The statistical models we present in this paper can be seen
as part of a long tradition of models which have been pro-
posed for the purposes of aggregating information from noisy
human labelers or workers. Many of these works adapt clas-
sical item-response theory (IRT) models [3] to the problem
of “grading without an answer key” and appear in the liter-
ature from educational aptitude testing [9, 15, 13], to cul-
tural anthropology [4, 11], and more recently to HCI in the

context of human computation and crowdsourcing [18]. In
educational testing, for example, Johnson [9] and Rogers et
al. [15] propose models for combining human judgements of
essays. These papers analyze dedicated human graders who
each evaluated hundreds of essays, allowing for a rich model
to be fitted on a per-grader basis. In contrast, with peer
grading in MOOCs, each student only assesses a handful of
assignments, necessitating more constrained models.

In a recent paper, and in a setting perhaps most similar
to our own, Goldin et al. [8, 1, 7] use Bayesian models for
peer grading in a smaller scale classroom setting. As in our
own work, [7] posits a grader bias, and in fact incorporates
rubric-specific biases, but does not consider many of the
issues raised here such as grading task reallocation or the
relationship between grader bias and student engagement,
for example.

One of the central themes of the crowdsourcing literature,
that of balancing label accuracy against labor cost, is one
which MOOC peer grading systems must contend with as
well. In such problems, one typically receives a number of
noisy labels (for example in an image tagging task) and the
challenge lies in (1) resolving the “correct” label (often dis-
crete, but sometimes continuous) and (2) deciding whether
to hire more labelers for a given task. Explosion of interest
in recent years has led to widespread applications of crowd-
sourcing [2, 10]. For example in image annotation, Whitehill
et al. [18] present a method similar to our own in which they
model discrete “true image labels” as well as labeler accu-
racy. While our work draws from the crowdsourcing litera-
ture, the problem of peer grading is unique in several ways.
For example, the fact that the graders are also gradees in
peer grading is quite different from typical crowdsourcing
settings in which there is a dichotomy between the labelers
and the items being labeled, and motivates different mod-
els (such as Model PG3 ). In crowdsourcing applications,
the end goal often lies in determining the true labels rather
than to understand anything about the labelers themselves,
whereas in peer grading, as we have shown, the insights that
we can glean about the graders have educational value.

A similar problem to peer-grading is the paper assignment
problem for the peer review process in academic conferences.
While related in that the central challenge of both problems
involves fusing disparate human opinions about open-ended



creative work, many of the specific challenges are distinct.
For one, side information plays a much larger role in peer
review, where conference chairs typically rely heavily on per-
sonal or elicited knowledge of reviewer expertise or citation
link structure to assign reviewer roles [5]. Peer grading on
the other hand seems less sensitive to personal preferences,
where a single submission should be equally well graded by
a large fraction of students in the course.

6. DISCUSSION AND FUTURE WORK
Our paper presents methods for making large scale peer
grading systems more dependable, accurate, and efficient.
In particular, we show that there is much to be gained by
maintaining estimates of grader specific quantities such as
bias and reliability. In addition to improving peer grading
accuracy by up to 30%, these quantities give a unique insight
into peer grading as a formative and summative assessment.

There remain a number of issues to be addressed in future
work. We have considered the problem of determining which
submissions need to be allocated additional graders. How-
ever, deciding which grader is best for evaluating a partic-
ular submission is an open problem whose solution could
depend on a number of variables, from the writing styles
of the grader and gradee to their respective cultural or lin-
guistic backgrounds, a particularly important issue for the
global scale course rosters that arise in MOOCS.

Another issue arises from our study of the biases from graders
who do not spend adequate time on grading. Incentivizing
these students to provide careful and high quality feedback
to their peers is a question of paramount importance for
open-access courses. Using model PG3 for scoring, as we
discussed, makes a student’s score dependent on grading per-
formance, and may be one way to build a justified, incentive
directly into the scoring mechanism. Understanding this
and other scoring rules from a game theoretical perspective
remains for future work.

Finally, it is not clear how to present scores which are cal-
culated by a complicated peer grading model to a students.
While this communication might be easy when a student’s
final grade is simply set to be the mean or median of peer
grades, does each student need to know the inner workings
of a more sophisticated statistical backend? Students may
be unhappy with the lack of transparency in grading mech-
anisms, or on the other hand might feel more satisfied with
their overall grade.

As MOOCs become more widespread, the need for reliable
grading and feedback for open ended assignments becomes
ever more critical. The most scalable solution that has been
shown to be effective is peer grading. By addressing the
shortcomings of current peer grading systems, we hope that
students everywhere can get more from peer grading and
consequently, more from their free online, open access edu-
cational experience.
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