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ABSTRACT

A finite-element Galerkin formulation has been

employed to study the optimum attenuation and reflec-

tion characteristics of acoustic waves propagating in

two-dimensional straight ducts with extended reacting

absorbing walls without a mean flow. The reflection

and transmission of acoustic energy at the entrance and

the exit of the duct were determined by coupling the

finite-element solutions in the absorbing portion of

the duct to the eigenfunctions of an infinite, uniform,

hard wall duct. In the frequency range where the duct

height and acoustic wave length are nearly equal, power

attenuation contours were examined to determine condi-

tions for minimizing acoustic transmission through the

duct. The extended reacting liners were found to sig-

nificantly minimize the transmission of acoustic energy

when the liner wall properties were tuned to maximize

the reflective characteristics of the duct rather than

to increase absorption in the liner. Thus, extended

reacting wall liner properties can be theoretically

chosen to yield large impedance mismatches in an open

straight duct.

NOMENCLATURE

b' characteristic duct height

b dimensionless entrance height b_/b'

c '
o

adiabatic speed of sound

acoustic power

f

J

L

n

P

P

dimensionless frequency, Eq. (3)

dimensionless length (see Fig. 2), L'/b'

outward unit normal

p ,2
dimensionless acoustic pressure, P'(x,y,t)/#oacoa

dimensionless acoustic pressure, P(x,y,t)/e j_

t dimensionless time, t'cla/b _

x dimensionless axial distance, x'/b_

y dimensionless transverse distance, y'/b_

dimensionless complex acoustic permittivity

dimensionless complex acoustic permeability

[o dimensionless density, p_/p_

w' angular velocity, 2_f'

w dimensionless angular velocity, _'b_/c_

Subscripts:

a inlet duct condition

o ambient condition

x x component

y y component

Superscript:

' dimensional quantity

R real part

I imaginary part

INTRODUCTION

In sound absorbing ducts without a mean flow, the

absorptive characteristics of lined straight ducts have

been modeled by applying the classical admittance

boundary conditions at the duct walls. Admittance or

impedance type boundary conditions apply to locally

reacting liners. In a locally reacting liner, such as

a Helmholtz resonator array behind a perforated plate,



the sound energy interacts normally to the liner and

depends only on the local value of acoustic pressure in

the adjacent acoustic field. Optimizing locally react-

ing wall absorber for maximum attenuation is an impor-

tant part of the design of an acoustic duct suppressor.

In duct acoustics employing local impedance boundary

conditions, the maximum possible attenuation occurs at

the so-called optimum impedance. For a particular

acoustic mode or more generally for modes with common

cut-off ratios, the optimum impedance can be determined

analytically from semi-infinite duct theory using a

single soft-wall mode (Rice, 1979). Unruh (1976) has

determined the optimum impedance for finite length

liners.

In contrast, the extended reaction liner permits

wave propagation in the axial direction through the

liner, as shown in Fig. i, and its attenuation char-

acteristics depends on the entire acoustic field.

Fiber-glass or Kevlar would be some typical bulk

absorber material. Baumeister and Dahl (1987 and 1989)

developed a finite element model to study wave propaga-

tion in bulk materials as well as in any heterogeneous

medium. The absorptive characteristics of the bulk

materials, acoustic permittivity and permeability used

in those studies relied on the semi-theoretical devel-

opment presented by Hersh (1980). The theory and

property formulas were validated by a number of experi-

ments. Again, optimizing an extended reacting wall

absorber for maximum attenuation plays an important

part of the design of an acoustic duct suppressor. For

plane wave propagation, Baumeister (1989) has examined

a range of wall properties associated with optimizing

absorption in an extended reacting liner.

In the present paper, a finite element model will

be used to continue the study of the optimum wave

attenuation in straight ducts with extended reacting

absorbing walls. The present investigation will focus

on the optimal properties of extended reaction wall

liners of straight ducts over a larger range of the

duct wall properties than has previously been consid-

ered. In the frequency range where the duct height and

acoustic wave length are nearly equal, power attenua-

tion contours will be examined to determine conditions

for maximum acoustic power absorption.

GEOMETRIC MODEL

Consider the idealized acoustic duct shown in

Fig. 2 which can be used to simulate acoustic wave

propagation in a rectangular two dimensional straight

duct in the absence of flow. The interior passage is

assumed to contain air while an acoustic bulk absorber

is mounted in the cavity above and below the duct in

the central portion. The dimensionless duct coordi-

nates are defined as

y' x' L'
y = -- x =__ L = __

b_ b_ b_
(1)

and b_ is the dimensional height of the straight

duct leading into the finite element region. Absorp-

tion of the incoming wave's energy takes place in the

finite element region embedded in the wall absorber.

In the foregoing equations, the prime is used to denote

a dimensional quantity and the unprimed symbols define

a dimensionless quantity. This convention will be used

throughout this paper. These and all other symbols

used in the paper are defined in the nomenclature.

Some sort of acoustic pressure disturbance is

assumed to generate a harmonic pressure field at minus

infinity in the entrance duct. This field will propa-

gate down the duct and act as the input driving bound-

ary condition for the problem. A positive going acous-

tic wave of known magnitude is assumed at the entrance

(x = 0.0) of the finite element portion of the duct.

The pressure wave may be plane or have significant

transverse y pressure variations. The present paper

will focus on the interaction of plane propagating

acoustic waves with the extended reaction absorbing

materials.

In the uniform, infinitely long entrance and exit

duct regions with perfectly hard walls, the exact solu-

tion of the governing differential equations can be

easily written in terms of the duct modes (Astley and

Eversman 1981); thus, simple analytical expressions can

be employed to describe the pressure field in these

regions. In the central region which includes both the

duct and the fibrous region, the finite element analy-

sis is employed to determine the pressure field.

The assumed known pressure waves propagating down

the hard wall entrance duct are partially reflected,

transmitted and absorbed by the nonuniform segment of

the duct containing the acoustic absorber. Pressure

mode reflection at the inlet to the absorbing region

and transmission at the outlet of the absorbing region

are determined by matching the finite element solution

in the interior of the central region to the known

analytical eigenfunction expansions in the uniform

inlet and exit ducts. This permits a multimodal repre-

sentation accounting for reflection and mode conversion

by the nonuniform absorbing section (Astley and

Eversman 1981). This approach has been found to accu-

rately model reflection and transmission coefficients

(Saumeister etal. 1983).

GOVERNING EQUATION AND BOUNDARY CONDITIONS

The acoustic propagation through the two-

dimensional Cartesian duct and absorber regions in

Fig. 2 can be modeled by solutions of the continuity,

momentum, and state linearized gas dynamic equations in

the absence of flow. As developed by Baumeister and

Dahl (1987), for harmonic pressure propagation in a

heterogeneous bulk material, the equations of state,

continuity, and conservation of momentum were combined

to yield the following wave equation in dimensionless

form:

where the dimensionless frequency associated with this

Helmholtz like equation is defined as:

b_f' (3)
f =__ _ = 2_f

C'

and _ = _ = _.

T_e relationship between acoustic "permittivity"

and acoustic "permeability" _ and the physical

properties of the medium is complicated. For propaga-

tion in air, _ equals the fluid density and _ is the

inverse of the product of density and the speed of

sound squared. For bulk absorbers, Baumeister and Dahl

(1987, Eqs. (25) to (27)) employed Hersh's model (1980)

in explicitly relating z and _ to the porosity, a

viscous loss coefficient, a heat transfer parameter and

an effective speed of sound of the medium. Briefly,

for bulk absorbers, the real part of _ related to

fluid density while its complex part is proportional to

a viscous loss coefficient. The _ term is inversely

proportional to fluid density and the effective speed

of sound which depends on the heat transfer character-



of sound which depends on the heat transfer character-

istics of the media. The formula for _ and _ are

given by Eqs. (5) and (7) of Baumeister and Dahl

(19B7}. Morse and Ingard (1968, p. 253) also developed

more general parameters for describing propagation in

porous media for which _ and _ can be related.

In the present paper, the parameters $ and

will be treated as mathematical quantities independent

of property correlations. In particular, the values of

z and _ associated with the optimum absorption prop-

erties will be examined. Both these quantities are

complex with the imaginary parts associated with dissi-

pative losses.

At the hard walls shown by the dark thick lines in

Fig. 2, the acoustic velocity normal to the wall is

zero. Again, using the momentum equations to relate

the acoustic velocity to the pressure fields requires

(4)

Vp. _0

In addition, recall that a modal solution (Morse

and Ingard 1968, p. 504) is used to represent the pres-

sure in the semi-infinite, hard wall entrance and exit

regions while a finite element solution is used to

generate the solution in the absorbing portion of the

duct. Consequently, both pressure and velocity conti-

nuity are required of the modal and finite element

solutions at the entrance and exit interfaces separat-

ing the finite element and modal regions. This is

easily enforced as discussed by Astley and Eversman

(1981).

Finally, it is not necessary to employ any inter-

facial boundary condition inside the finite element

region. For example the thin black line in Fig. 2

separating the air duct from the absorber region

requires no special consideration. The heterogeneous

form of the wave equation, Eq. (2}, automatically han-

dles the change in properties.

FINITE ELEMENT THEORY

In the central portion of the duct containing the

absorber region, the continuous domain is first divided

into a number of discrete triangular areas defined by

the corner nodal points, as shown in Fig. 2. The nodal

values of pi(xi,yi) are determined by the method of

weighted residuals. The finite element aspects of

converting Eq. (2) and the boundary conditions into an

appropriate set of global difference equations can be

found in text books (Burnett 1987) or more explicitly

in the paper by Baumeister (1986) and for conciseness

will not be presented herein.

RESULTS AND COMPARISONS

A number of sample calculations are now presented

to illustrate the use of the finite element theory in

minimizing the transmission of the input acoustic sig-

nal through a straight duct with bulk absorbers lining

the top and bottom walls over a length L. Plots of

the power attenuation and reflection contours are used

to display the wall properties associated with maximum

(optimum) signal attenuation. For a typical straight

duct, the grid generation package generates the geome-

tries and the linear triangular finite element grid

shown in Fig. 2. Calculations were performed with

varying grid size to check for convergence of the

results. In all the calculations to follow, an

absorber of dimensionless length 1.0 and dimensionless

thickness of 0.i has been placed above and below the

ducts. The duct height was a dimensionless 1.0 and the

forcing dimensionless acoustic frequency

Eq. (3) had a value of unity.

Case 1 - Resistive Dissipation

f given by

Consider a plane acoustic wave propagating down a

straight duct with a bulk absorber mounted along the

walls, as shown in the schematic of Fig. 2. The

acoustic attenuation for a fixed value of wall proper-

ties was first calculated. Then, by an iteration pro-

cess, the local attenuation contours were determined.

For an initial assumed _ value, the _ plane was

searched to find the optimum _opt which yielded maxi-

mum signal attenuation. Next holding this
' -opt

fixed, the _ plane was searched to find the optimum

. This process was repeated now holding t °
opt

fixed and finding a new value of B , and so _orth.

The final iteration on _ (holding'°_ t fixed) for maxi-

mum attenuation produced a value of 2.0 + i 2.0. Thus,

a four parameter optimization has been performed in a

series of two-dimensional optimization processes.

Figure 3 illustrates the characteristic attenua-

tion contours as a function of wall properties. In

this case, two components of wall material, acoustic

permittivity _ real and imaginary parts, are used as

the abscissa and ordinate to define the wall character-

istics with a fixed value of acoustic permeability

of 2.0 - i 2.0 as calculated by the previous iteration.

In the final iteration for the contour plots displayed

in Fig. 3, over 1600 separate decibel calculations were

performed with increments of 0.5 of the real and imagi-

nary values of _ throughout the E plane.

The decibel contours in Fig. 3 have been normal-

ized between 0 and 1 by the simple expression:

Contour level
IdBI - IdZ,_l,_l Is)

I dBE_az I - dBmlc I

The maximum attenuation of the incoming wave is

3.341 dB associated with the local optimum point dis-

played in Fig. 3 and as listed in the figure. Because

of the high density of the remaining contour plots, the

decibel levels of the contours will not be displayed

but only the decibel value of the optimum and its coor-

dinates will be listed.

For locally reacting liners, the global optimum

wall properties are usually represented by the peak

contours with a well defined maximum inclosed in the

smallest circle as shown in the insert plot of Fig. 3.

However, in Fig. 3 the center of the circular local

peak appears to the left of the abscissa. This local

optimum wall value associated with maximum signal

reduction is seen in Fig. 3 to occur at a _ of

1.0 - i 5.0 with _ equal to 2.0 - i 2.0. The magni-

tude of the imaginary part of _ is shown negative in

Fig. 3. A number of different starting values of the

permeability failed to shift the expected peak on to

the plot.

For the same geometry as considered in Fig. 3, the

sensitivity of the initial starting material value of

or _ on the contours was examined and found to be

quite significant. The local optimum properties can

vary depending in the initial starting value of

used in the optimum search. As another example {not

shown in a figure), with _ equal to 4.1 - i 0.0 as

the starting point, the local optimum value of

shifted to 1 - i i0.00 with _ remaining at

4.1 - i 0.0. In this new case, the attenuation was a

significantly higher 7.465 dB.

The relatively small set of calculations performed

here do not guarantee that a global optimum has been



foundin the four-dimensionalpropertyparameterspace
(real andimaginaryparts of z and _). However,

they do indicate trends. A series of additional numer-

ical calculations has shown that any combination of

material properties with approximately the same ratio

of (_/_) will have yield similar values of the maximum

attenuation. As commonly used in electromagnetic

theory, the square root of _/z can be defined as an

intrinsic impedance of the wall. For Fig. 3 the ratio

of _/z at the local optimum was 0.461 + i 0.308. In

the other example, with _ equal to 4.1 -i 0.0 as the

starting point, the ratio of _/¢ changed to

0.0406 + i 0.406 and the attenuation was significantly

higher.

Case 2 - Impedance Mismatch

In contrast to the circular like optimum shown by

the insert in Fig. 3, observe that for bulk absorbers

the contour lines split apart in the lower portion of

Fig. 3 rather than form closed rings. This suggests

that other local optimums might exist for other values

of the acoustic wall material properties that have been

missed in the previous searches. To further explore

these regions, the next optimum search was initiated

with many different starting values. With a starting

value of _ equal to 1.0 -i 0.0, the optimum value of

was found (after a series of iterations in _ and

space) to be 6.0 - i 0.0 as shown in Fig. 4 and the

local optimum attenuation was 7.994 d8. Surprisingly,

Doth _ and _ have real values, which indicate that

no absorption occurred from resistive effects in the

wall material. Rather, the attenuation in the duct was

a result of the wave's energy being reflected back down

the duct, as will be shown shortly.

The next iteration sequence was started with a

much larger value of _ equal to 14.0 - i 0.0 and the

results shown in Figs. 5(a) and 5(b) with contour plots

for both permittivity and permeability. The local

optimum now occurs at _ of 3.0 - i 0.0. Again since

the imaginary part is zero, the attenuation must occur

by wave reflection. For this case, the local optimum

attenuation was 18.472 db which is an unexpected sig-

nificant increase in the attenuation characteristics of

the duct beyond the simple dissipative effects of the

liner. The reflective attenuation contours for the

same properties are also displayed in Fig. 6. At

equals 3.0 - i 0.0, the reflective attenuation is at a

minimum value of 0.0625 which implies from Eq. (4) that

nearly all the signal is reflected back down the duct.

It is highly unlikely that a material structure

could be devised such that its effective properties of

¢ and _ reached this optimum attenuation point. The

porosity would have to be low (0.33) to obtain an z

of 3.0 which is usually associated with viscous mater-

ial (Zwikker and Kosten, 1949, p. 77). A high value of

requires a low effective speed of sound. Such low

values have only been seen in two phase mixtures like

air and water. On the other hand, in the analogous

problem of electromagnetic propagation in ducts for

which this code was developed, such material structures

might easily be manufactured.

CONCLUDING REMARKS

A finite-element Galerkin formulation was used

to study optimum acoustic wave attenuation in two-

dimensional straight ducts with extended reaction

absorbing walls. Optimum properties to maximize wall

absorption were also examined. Designing the acoustic

absorber for wave reflection or impedance mismatch

yield significantly higher absorption of the incoming

sound wave than conventional dissipation in the liner.

The primary aim of the present paper has been to

present a new theoretical optimum concept in bulk liner

design. However, from a practical point of view, the

board band nature of such a liner, it possible con-

struction, and a correlation between _ and _ have

not been addressed.
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