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We proposed and demonstrated an all fiber passively Q-switching laser to generate cylindrical-

vector beam, a two dimensional material, tungsten disulphide (WS2), was adopted as a saturable

absorber inside the laser cavity, while a few-mode fiber Bragg grating was used as a transverse

mode-selective output coupler. The repetition rate of the Q-switching output pulses can be varied

from 80 kHz to 120 kHz with a shortest duration of 958 ns. Attributed to the high damage threshold

and polarization insensitivity of the WS2 based saturable absorber, the radially polarized beam and

azimuthally polarized beam can be easily generated in the Q-switching fiber laser. VC 2015

AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935465]

Since the first successful fabrication of graphene, two

dimensional (2D) materials have attracted growing attention

attributed to their various applications in photonic and optoe-

lectronic devices.1–3 One of the important applications of the

2D materials is the saturable absorber (SA), which has been

widely used to generate mode-locked or Q-switching laser

pulses. Since the demonstration of graphene based mode-

locked fiber laser,4,5 many setups were presented.6,7 After

that, topological insulator (TI), a new 2D material with a new

state of quantum matter with the metallic states on the surface,

was first proved having the saturable absorption effect in the

third telecommunication window,8 and TI-based passively

mode-locked and Q-switching fiber lasers have been experi-

mentally realized.9–11 Recently, molybdenum disulfide

(MoS2), one of a 2D semiconducting transition metal dichal-

cogenides (TMDs), despite the wide direct and indirect

bandgap, has been demonstrated the saturable absorption

effect in a wide band by deliberately introducing the defects12

or from the edge-related sub-bandgap states.13 Both the pas-

sively mode-locked and Q-switching lasers based on layered

MoS2
14–16 have been achieved. Another kind of TMDs, tung-

sten disulphide (WS2), with ultra-high optical damage thresh-

old,17 unusually large second order nonlinear susceptibility18

and large nonlinear refractive index,19 has also been demon-

strated saturable absorption and WS2-based pulsed lasers have

been successfully fabricated,17,20 indicating the promising

prospect for ultrafast photonic applications.

In 2012, Sobon et al. successively demonstrated linearly

polarized mode-locked and Q-switched erbium doped fiber

laser based on graphene or reduced graphene oxide saturable

absorber.21,22 The cavity was designed using only polariza-

tion maintaining fibers and components, resulting in linearly

polarized output beam with degree of polarization at the

level of nearly 100%. Linearly polarized light is one of the

spatially homogeneous states of polarization (SOP) and does

not depend on the spatial location in the beam cross section.

Besides, there is another kind of light beams with spatially

variant SOP.23 Cylindrical vector beam (CVB) is one partic-

ular example, which contains radially polarized beam and

azimuthally polarized beam. CVB was earliest discovered in

experiment by Pohl in 1972,24 but it caught little attention at

first. In recent years, there has been an increasing interest in

CVB, for their unique properties under high numerical-

aperture (NA) focusing.25,26 Till date, this laser beam with

cylindrical symmetry in polarization leads to a range of

applications such as optical tweezers,27 surface plasmon ex-

citation,28 high-resolution microscopy,29 material process-

ing,30 and optical data transmission.31 Various kinds of

continuous-wave (CW) CVBs have already been demon-

strated.32,33 In order to achieve high energy, some works

proposed to generate Q-switching CVBs,34 but all of them

were focused on solid structure and all-fiber configuration

has never been reported. The key elements to achieve

Q-switching CVBs are a transverse mode selector and a suita-

ble saturable absorber. Among various transverse mode selec-

tors (calcite crystal, sub-wavelength gratings, and spatial light

modulator, etc), FM-FBG has been proved to be an efficient

method when the laser operates within a narrow spectrum. On

the other hand, compared with traditional SAs, the aforemen-

tioned WS2 overcomes the low damage threshold and high

expense of semiconductor saturable absorber mirrors

(SESAMs) and the sensitivity to polarization and environmen-

tal changes of artificial SAs such as nonlinear amplifying-loop

mirrors (NALMs) and nonlinear polarization rotation (NPR).

The saturable absorption of WS2 has already been demon-

strated at the wavelengths of 532 nm,35 800 nm,19 1064 nm,36

1550 nm,17,20 and 1940 nm,37 indicating its ultra-wide opera-

tion band. What is more, WS2 shows high transmittance from

visible to infrared as shown below, which can reduce the inser-

tion loss in fiber lasers. So WS2 is predicted to be an ideal satu-

rable absorber to achieve an all-fiber passively Q-switching

CVBs, and this compact and alignment-free configuration will

dramatically expand the prospect of applications.

a)Author to whom correspondence should be addressed. Electronic mail:

xulixin@ustc.edu.cn.

0003-6951/2015/107(19)/191108/5/$30.00 VC 2015 AIP Publishing LLC107, 191108-1

APPLIED PHYSICS LETTERS 107, 191108 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  131.238.108.120 On: Wed, 03 Aug

2016 16:15:55



In this letter, we report an all-fiber laser generating

Q-switching CVB by using WS2 as a SA and a FM-FBG as

a transverse mode selector. The repetition rate of the

Q-switching pulses can be tuned from 80 kHz to 120 kHz.

The minimum pulse duration achieved is 958 ns. Both the

high purity radially polarized beam and azimuthally polar-

ized beam in Q-switching state can be obtained just by

adjusting the polarization controllers (PCs).

The WS2 nanoplates used in our experiment were

obtained by lithium-based chemical exfoliation38 and then

dispersed in deionized water with a concentration of 0.1mg/ml.

Figure 1(a) shows the scanning electron microscopy (SEM)

image of the WS2 nano-sheets. The flakes diameter falls in

the range of 20–500 nm. Then we added 0.4 g polyvinylalco-

hol (PVA) powder into the WS2 solution and ultrasonically

agitated for �8 h. The WS2-PVA solution was dropped on a

Petri dish and slow evaporated in an oven at 45 �C, resulting

in a PVA-composite film. We characterized the Raman spec-

trum of the WS2-PVA using Arþ laser at 514 nm, as depicted

in Fig. 1(b). The characteristic bands at 350.8 and 420 cm�1

on the Raman spectrum can be clearly observed, correspond-

ing to the in-plane (E1
2g) and out-of-plane (A1g) vibrational

modes of WS2.
39 We also measured the linear transmission

spectrum of the WS2-PVA film [Fig. 1(c)]. The dip near

632 nm in the transmission spectrum is a typical fingerprint

of WS2 nanosheets due to the direct bandgap transition.40

The spectrum beyond 700 nm shows an almost flat curve,

indicating its broadband optical response.

The saturable absorption property of the prepared

WS2-PVA thin film has been investigated by open-aperture

Z-scan technology with a homemade picosecond fiber laser

centered at 1550 nm. The Z-scan curve and corresponding

nonlinear saturable absorption curve are shown in Figs. 2(a)

and 2(b). Through fitting the curve, the saturable intensity

and the modulation depth were measured and calculated of

13MW/cm2 and 1.4%. The physical mechanism behind the

saturable absorption of the WS2 is that electrons from the va-

lence band are excited into the conduction band for absorp-

tion of light. When under intense illumination, energy levels

in the conduction band are filled, and further absorption is

blocked due to Pauli blocking.4 The diameter of the WS2
flakes used in our experiment falls in the range of 20–500 nm,

resulting in a large edge to surface area ratio, so in spite of

operating below the material bandgap, the WS2 still exhibits

saturable absorption from the edge-related sub-bandgap states.

In order to assemble the WS2-PVA film into fiber laser, we

placed one small piece between two fiber connectors and

formed a fiber-compatible SA.

Figure 3 shows the schematic of the passively Q-switching

fiber laser to generate CVB based on the WS2 saturable absorber,

which consists of a 974 nm pumping laser diode (LD), a

980 nm/1550 nm wavelength division multiplexer (WDM), a

60 cm highly erbium doped fiber (Liekki Er110-8/125), a

3-ports circulator, two polarization controllers (PC-1 and

PC-2), an offset splice spot (OSS), a few mode fiber Bragg

grating (FM-FBG), a WS2-PVA based SA, and an output

FIG. 1. (a) The SEM image of WS2
nanoplates. (b) The Raman spectrum of

the WS2-PVA film. (c) The linear trans-

mission spectrum of the WS2-PVA

film.

FIG. 2. (a) The Z-scan curve of the

WS2-PVA film at 1550nm. (b) The cor-

responding nonlinear saturable absorp-

tion curve.
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coupler (OC). The FM-FBG is used as a transverse mode-

selective output coupler, which was fabricated in a few-

mode photosensitive fiber with a NA number of 0.12 with

core and clad diameter of 19 lm and 125 lm, Thus, the fiber

can support four linearly polarized (LP) modes around

1550 nm, including the 1st order mode (LP01), the 2nd order

mode (LP11), and the 3rd order mode (LP21 and LP02),

respectively. There are five reflection peaks on the spectrum

corresponding with five reflections between different order

modes, as shown in Fig. 4 with blue curve. Peak 1 represents

the 1st to 1st order mode reflection, peak 2 represents the 1st

to 2nd order mode reflection, peak 3 represents the 2nd to

2nd order mode reflection, peak 4 represents the 2nd to 3rd

order mode reflection, and peak 5 represents the 3rd to 3rd

order mode reflection. The FM-FBG is connected by a circu-

lator. Two fiber polarization controllers (PC-1 and PC-2)

were placed on each sides of an OSS. The OSS was formed

through splicing two section fibers with a 3.1-lm lateral mis-

alignment, which provided stable and efficient coupling from

the fundamental mode to high order modes.41 The WS2-PVA

based SA was placed between the output coupler and the cir-

culator. A 9:1 output coupler was used to output the laser

emission through the 10% port. The total length of the cavity

was �7m. The Q-switching laser output was measured by

an optical spectrum analyzer and a 4GHz digital oscillo-

scope, the transverse distribution of the intensity was output

through a collimator connected to the end of the FM-FBG

and recorded by a 1550 nm CCD camera.

When the pump power increased to 290mW, the stable

Q-switching laser pulse appeared. The repetition rate of the

Q-switching laser was observed pump-dependent up to our

maximum available power of 600mW, which is the typical

feature of Q-switching laser. The temporal behavior of the

pulse train and the single pulse shape at a pump power of

315mW are shown in Figs. 5(a) and 5(b). The repetition rate

was 84.12 kHz with the full width at half maximum (FWHM)

of 2.26ls. The Q-switching spectrum is shown in Fig. 4 with

red curve. The spectrum centered at 1547.5 nm and the width

at 30 dB depth was 0.14 nm. The operating wavelength was

within the peak 1 of the reflection spectrum of FM-FBG,

which represents the 1st to 1st order mode reflection, so the

FM-FBG worked as an efficient fundamental mode reflector

FIG. 3. The experimental setup of the Q-switching fiber laser. Inset: the pho-

tograph of the WS2-PVA film on the fiber connector.

FIG. 4. Reflection spectrum of FM-FBG (blue) and Q-switching output

spectrum (red).

FIG. 6. (a) The pulse repetition rate

and duration versus the pump power.

(b) The output power and pulse energy

versus the pump power.

FIG. 5. (a) Typical pulse train for

315mW pump power. (b) The corre-

sponding single pulse envelope.
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and only allowed the higher modes passing though. That

would greatly increase the mode purity of the output beam.

Fig. 6(a) shows the pulse duration and the pulse repeti-

tion rate as a function of the pump power. By increasing the

pump power, the repetition rate fell off a little at first and

then increased monotonically, similar to reference.17 The

repetition rate varied from 80 kHz to 120 kHz, with a range

of 40 kHz, when the pump power increased from 290mW to

600mW, while the output power increased from 2.44mW to

4.66mW [as shown in Fig. 6(b)]. The pulse energy rapidly

grew in the initial stage, but after the pump power beyond

450mW, the pulse energy came to saturate. The maximum

pulse energy measured was 44 nJ and the minimum duration

achieved was 958 ns.

A high purity radially polarized beam was obtained by

carefully tuning PC-1 and PC-2. The doughnut intensity

profile of the radially polarized output mode was shown in

Fig. 7(a). After passing through a linear polarizer under four

different orientations, the intensity distributions are shown in

Figs. 7(b)–7(e), respectively, demonstrating the radially

polarized output.

A high purity azimuthally polarized beam was also

obtained by tuning PC-1 and PC-2. The specific intensity dis-

tributions of the azimuthally polarized output mode are shown

in Figs. 8(a)–8(e).

In conclusion, we reported the experimental results on an

all-fiber WS2 based passively Q-switching laser to generate

CVB. By tuning PCs, both the radially polarized beam and

azimuthally polarized beam could be obtained easily.

Furthermore, by increasing the pump power, the repetition

rate can be tuned from 80 kHz to 120 kHz with minimum du-

ration of 958 ns. Our results not only proved the excellent per-

formance of WS2 but also provide a simple and efficient

method for generating Q-switching CVBs.

The authors would thank the support of National Natural

Science Foundation of China (Nos. 11374285 and U1330104).
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