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Abstract— This paper demonstrates the effectiveness of sim-
ple control-theoretic tools in generating simulation-guided ex-
periments on a synthetic in vitro oscillator. A theoretical
analysis of the behavior of such system is motivated by high
cost, time consuming experiments, together with the excessive
number of tuning parameters. A simplified model of the
synthetic oscillator is chosen to capture only its essential
features. The model is analyzed using the small gain theorem
and the theory of describing functions. Such analysis reveals
what are the parameters that primarily determine when the
system can admit stable oscillations. Experimental verification
of the theoretical and numerical findings is carried out and
confirms the predicted results regarding the role of production
and degradation rates.

I. INTRODUCTION

Synthetic biology has two main objectives: engineering

new biological systems out of characterized parts, and, by

systematic modification of existing systems, improving our

understanding of design principles. This interdisciplinary

field attracts scientists from the areas of biology, mathemat-

ics, physics and engineering: a strong theoretical analysis

of experimental data increases our ability to interpret and

predict the behavior of engineered biological devices.

When operating in an in vitro environment with a limited

number of biological parts, scientists have the opportunity

to program and deeply investigate the molecular interactions

that produce overall designed behaviors. This is one of the

most important features of the field of DNA nanotechnol-

ogy [12], and is a key to the development of molecular

computation [11]. But even in a controlled environment,

there are cases in which the behavior of the system under

observation needs a thorough theoretical and experimental

analysis to be correctly interpreted.

A recently proposed synthetic in vitro oscillator [5], com-

posed only of nucleic acids and two enzyme species, presents

several challenges regarding its dynamics and tuning. In

particular, detailed modeling of the underlying chemical

reaction network offers a poor qualitative understanding of its

behavior: the complex model is in turn of little help in aiding

experiments to modulate the frequency/amplitude character-

istics of the circuit. Additionally, the cost and duration of the

experiments make it well worth looking for a better modeling
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resource that could qualitatively predict the features of the

oscillator.

In this paper we consider a simplified model of the

mentioned synthetic oscillator [7] and study its characteris-

tics using classical control-theoretic tools rather than solely

simulations of its differential equations. In particular, we

used the small gain theorem for monotone systems [2], [1] to

derive parametric conditions for which the system can admit

an oscillatory regime. Such results are numerically refined

using the method of the describing functions, which is an

appropriate tool for systems presenting static nonlinearities

and delays.

Under certain simplifying assumptions, we found that

RNA production and degradation, together with the Hill

functions thresholds, confine the region of the parameter

space where oscillations are achievable. We focused on the

role of production and degradation, mapping it qualitatively

to the amounts of enzymes used in the experiments. By

varying the production/degradation enzyme ratio and total

enzyme volume, we collected data that confirm the main fea-

tures of the model predictions. The theoretical and numerical

analysis were therefore useful in guiding the experimental

choices and allowed us to obtain a tuning methodology.

The paper is organized as follows. The synthetic oscillator

we consider is described in Section II, where we outline

its biological features and introduce the chosen simplified

mathematical model. In Section III we report the small-

gain theorem analysis and the numerical results based on

the describing function method. Finally, experimental results

are reported in Section IV.

II. A SYNTHETIC in vitro OSCILLATOR

The in vitro genetic circuits considered in this paper

consist only of nucleic acids (DNA and RNA) and two

enzyme species, RNA polymerase (RNAP) and RNase H.

RNAP binds to DNA double-stranded promoter regions and

transcribes the downstream sequence into RNA. The RNase

H instead hydrolyses and degrades RNA in RNA-DNA

duplexes, releasing the DNA strand.

The genes are synthetic and can be designed using ex-

isting software packages [8], [9]. Each gene state can be

switched on and off by designing its promoter with a nick

on the coding template (the strand complement-transcribed

by RNAP). Exploiting the mechanism of toehold-mediated

branch migration [13], the promoter can be covered or

uncovered, effectively reducing the rate of transcription by

RNAP. For example: a synthetic gene is in an off state when

the promoter is incomplete, i.e. partly single stranded. A

promoter-complementary activating DNA strand in solution
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
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d[rI2](t)
dt = kp [T

tot
21 ] [rA1](t−τ)n

Kn
A
+[rA1](t−τ)n − kd [rI2](t)

= f1(rI2, rA1)

y1(t) = [rI2](t) = h1([rI2])

and system Σ2 as:



d[rA1](t)
dt = kp [T

tot
12 ]

Kn
I

Kn
I
+[rI2](t−τ)n − kd [rA1](t)

= f2(rA1, rI2)

y2(t) = [rA1](t) = h2([rA1]).

The systems Σ1 and Σ2 are cascaded in a closed-loop

system. To apply the small gain theorem [2] we need to

verify the following points:

(i) Σ1 is monotone when its input and output are ordered

according to the “standard order”, which is the order

induced by the positive real semi-axis.

(ii) Σ2 is monotone when its input is ordered according

to the “standard order” and the output uses an order

induced by the negative real semi-axis.

(iii) Each subsystem I/O characteristics are respectively

monotonically increasing and decreasing.

(iv) Every solution of the closed-loop system is bounded.

(v) The discrete time dynamical system uk+1 = (ky2 ◦
ky1

)(uk) has a unique globally attractive equilibrium.

First, note that the delays do not affect the stability

analysis using the small gain theorem, so from now on

they will be neglected [1], [3]. For the system Σ1 let the

input, output and state space U1, Y1 and X1 respectively be

equal to R+ with the natural order induced by R+ and for

the system Σ2 let the input, output and state space U2, Y2

and X2 respectively be equal to R+ with the natural order

induced by R+ for U2 and X2 and with the reverse order

induced by R− for Y2. In fact 0 ≤ [rI2] ≤
kp

kd
[T21]

tot and

0 ≤[rA1] ≤
kp

kd
[T12]

tot which means that the closed loop

system is bounded, i.e. condition (iv) is fulfilled.

Monotonicity of system Σ1 holds because ∂f1
∂[rA1]

≥ 0 and

h1 is monotonically increasing [2]. After making a change

of variable in system Σ2 according to [r̃A1] = −[rA1]

it can be seen that ∂f̃2
∂[rI2]

≥ 0 and h̃2 is monotonically

decreasing, where f̃2 and h̃2 are the functions after the

change of variable, which shows monotonicity. That means

that conditions (i) − (ii) hold. Condition (iii) is fulfilled

since the I/O characteristic ky1
([rA1]) =

kp

kd
T tot
21

[rA1]
n

Kn
A
+[rA1]n

of system Σ1 is monotonically increasing and the I/O char-

acteristic ky2
([rI2]) =

kp

kd
T tot
12

Kn
I

Kn
I
+[rI2]n

of system Σ2 is

monotonically decreasing.

To prove the existence of a globally attractive equilibrium

of the discrete time dynamical system uk+1 = (ky2
◦

ky1
)(uk), the Banach fixed point theorem can be applied.

Assume that (X, d) is a non-empty complete metric space

and let T : X → X be a contraction mapping on X ,

i.e. there is a non-negative real number q < 1 such that

d(Tx, Ty) ≤ q d(x, y) for all x, y in X. Then the Banach

fixed point theorem states that the map T admits one and

only one fixed point x∗ in X and the sequence xn = Txn−1

converges to the limit x∗.

For the oscillator, let X = R+, d be the Euclidean distance

and the map T be the composition of the two I/O char-

acteristics ky1
(u1) =

kp

kd
[T21tot]

un
1

Kn
A
+un

1
≡ k1

un
1

Kn
A
+un

1
and

ky2(u2) =
kp

kd
[T12tot]

Kn
I

Kn
I
+un

2
≡ k2

Kn
I

Kn
I
+un

2
, i.e. T = ky2 ◦

ky1
. To show that T is a contraction mapping, it is enough to

show that the derivative |D(ky2
◦ky1

)| < 1. To that end, use

the fact that |D(ky2 ◦ky1)(u)| = |Dky2(ky1(u))Dky1(u)| ≤
sup |Dky2 | sup |Dky1 |. The derivatives are given by

Dky2
(u) = −nun−1k2

Kn
I

(Kn
I
+un)2 and Dky1

(u) =

k1
nun−1

Kn
A
+un −nun−1k1

un

(Kn
A
+un)2 respectively and the suprema

are found at arg sup |Dky2
| = KI

(
n−1
n+1

)1/n

≡ KIc

and arg sup |Dky1 | = KA

(
n−1
n+1

)1/n

≡ KAc respec-

tively, where c is introduced to simplify calculations.

This makes the suprema of the derivatives equal to

sup |Dky2
| = |Dky2

(KIc)| =
k2

KI

ncn−1

(1+cn)2 and sup |Dky1
| =

|Dky1
(KAc)| = k1

KA

ncn−1

(1+cn)2 . Restricting ourselves to the

case when k1 = k2 = k and KI = KA = K the

derivative of the map T becomes bounded by |D(ky2 ◦

ky1
)(u)| ≤ sup |Dky2

| sup |Dky1
| =

(
k
K

)2 ( ncn−1

(1+cn)2

)2

. The

last inequality is less than one when K
k > ncn−1

(1+cn)2 . With

n = 5 the condition for convergence is K
k ' 1.3.

This relationship between the thresholds K = KA = KI

and the ratio of production to degradation rates k =
kp

kd
[T tot

ij ]
defines a region in the parameter space where oscillations are

not admitted.

B. Describing functions

The describing function (DF) method is an approximate

technique allowing to determine whether a closed loop

linear dynamical system presenting nonlinearities can admit

periodic orbits. This technique has been previously applied to

models of biological oscillators [10], investigating the effect

of delays, of the Hill coefficient and of the linear transfer

function order. The DF method can be used to determine

at what frequencies periodic solutions can occur, what the

amplitude and offset are, and whether the oscillatory regime

is stable or not.

The idea with describing functions is that they give the

gain of the system at a particular frequency just as the trans-

fer function does for linear systems. The difference is that de-

scribing functions are dependent on the size of the input sig-

nal, which is natural since they describe a nonlinear system.

To define the describing functions for the dc-component and

fundamental frequency of a static nonlinear system f , assume

that the input signal can be written as w(t) = B+A sin (ωt) .
The output of the static system equals z(t) = f (w (t)) ≈
c0(A,B)+c1(A,B) sin (ωt+ φ (A,B)) , where the last step

is a truncation of the Fourier series of the output. It then

follows that the first two describing functions can be written

as H (A,B) = c0(A,B)
B and F (A,B) = c1(A,B) eiφ(A,B)

A
respectively.

The method can be directly applied to the biochemical

oscillator described by equations (1)–(4). The dynamical
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