Tuning Algorithms for Jumbled Matching

Tamanna Chhabra, Sukhpal Singh Ghuman, and Jorma Tarhio

Department of Computer Science
Aalto University
P.O. Box 15400, FI-00076 Aalto, Finland
firstname. lastnameQaalto.fi

Abstract. We consider the problem of jumbled matching where the objective is to
find all permuted occurrences of a pattern in a text. Besides exact matching we study
approximate matching where each occurrence is allowed to contain at most k£ wrong or
superfluous characters. We present online algorithms applying bit-parallelism to both
types of jumbled matching. Most of our algorithms are variations of earlier algorithms.
We show by practical experiments that our algorithms are competitive with the previous
solutions.

Keywords: jumbled matching, Abelian matching, permutation matching, approxim-
ate string matching, comparison of algorithms, counting algorithm, algorithm engineer-
ing

1 Introduction

String matching [I7] is a common problem in Computer Science. Let T = tyty- - - t,
and P = pips---pm be text and pattern respectively, over a finite alphabet X' of
size 0. The task of exact string matching is to find all the occurrences of P in T, i.e.
all positions ¢ such that ¢;t;11 - - t;ivm—1 = p1p2 - - - pm- In approximate string matching
the objective is to find all substrings of T" whose edit distance to P is at most k or
which have at most k£ mismatches with P, where 0 < k < m.

Jumbled matching [5lJ7] (also known as Abelian matching or permutation match-
ing) is an interesting variation of string matching. The task is to find all substrings
of T" which are permutations of P. For instance, a permutation of abcb occurs in
cdfbbacda. Jumbled matching can be formalized with Parikh vectors [19]. The Parikh
vector p(S) of a string S over a finite ordered alphabet is defined as the vector of multi-
plicities of the characters, for example p(S) is (1,2,1,0) for S = abcb in X' = {a, b, ¢, d}.

Jumbled matching has applications in many areas such as alignment of strings [I],
SPN discovery [3], discovery of repeated patterns [10], in the interpretation of mass
spectrometry data [2]. In case of discovery of repeated patterns [10], jumbled match-
ing algorithms can be used to solve the problem of local alignment of genes. Also
the problem of matching of protein domain clusters [10] can be solved by these al-
gorithms as the clusters have common functionality even though appear in different
orders. In the field of interpretation of mass spectrometer [2], permutation matching
is used to find the strings having the same spectra. Mass spectra are simulated for
every potential sequence and comparing the resulting simulated spectra against the
measured mass spectrum. In addition to that, permutation matching can be used in
SNP [3] and mutation discovery which are based on base-specific cleavage of DNA
or RNA and mass spectrometry. Composition alignment [I] is a process of matching
strings whether they have equal length and same nucleotide content.

Tamanna Chhabra, Sukhpal Singh Ghuman, Jorma Tarhio: Tuning Algorithms for Jumbled Matching, pp. 57-66.
Proceedings of PSC 2015, Jan Holub and Jan Zdérek (Eds.), ISBN 978-80-01-05787-2 (© Czech Technical University in Prague, Czech Republic

58 Proceedings of the Prague Stringology Conference 2015

Simple counting solutions [I3II5/16] for jumbled matching work in linear time.
The idea is to scan the text forward while maintaining counts of characters in a slid-
ing alignment window of 7. Originally, these counting algorithms were developed as
filtration methods for online approximate string matching, but they recognize jum-
bled patterns as a side-effect when no errors are allowed. Also many other algorithms
[46J9T2] have been introduced for jumbled matching. In this paper, we introduce
new algorithms for jumbled matching and compare their efficiency with the previous
solutions. Most of our algorithms are variations of earlier algorithms.

Besides traditional jumbled matching, we also consider approximate jumbled match-
ing. We define an approximate permutation as follows. The string P’ is a k-approximate
permutation of P, 0 < k < m, if |P'| = |P| = m holds and

> max(ce(P', ¢) — ce(P,c),0) <k,

ceset(P’)

where set(P’) is the set of characters in P’ and cc(u, ¢) is the number of occurrences
of a character ¢ in a string u. Our definition of approximate jumbled matching is
different from the one presented by Burcsi et al. [5]. Ejaz [9] considers also other
cost models. Note that according to our definition, a O-approximate permutation is
an exact permutation. We will present linear and sublinear algorithms for both exact
and approximate jumbled matching. By sublinear we mean those algorithms which
are on average able to skip a part of the text.

In the pseudocodes of the algorithms, we use C-like notations ‘&’ and ‘>>’ repre-
senting bitwise operations AND and right shift, respectively. The size of the computer
word is denoted by w. All the bitvectors and bit masks contain w bits.

Our main emphasis is on the practical efficiency of the algorithms which is demon-
strated by experimental results. In almost every tested case, the best of our algorithms
was faster than any previous solution, and in many cases even doubling the speed of
the best previous solution.

The paper is organized as follows. Section 2] describes previous solutions for jum-
bled matching, Section [3] presents our solutions, Section Ml presents and discusses the
results of practical experiments, and Section [l concludes the article.

2 Previous solutions

Grossi & Luccio’s and Navarro’s solutions [13[15/16] are based on the frequency of
characters occurring in the pattern and in an alignment window. These methods solve
this problem in linear time. Navarro’s counting algorithm is based on a sliding window
approach. Alg. 1 presents the main loop of Navarro’s algorithm called Count in the
following. The variable C' holds the additive inverse of the number of wrong or extra
characters in an alignment window of m characters. The initial value of C' is —m.
The array A maintains the character counts of the alignment window such that A[c]
is cc(ti—my1 - - - ti,) — cc(P, ¢). Before the main loop, the character counts of the first
alignment window are collected to A, and the variable C' is updated respectively.

T. Chhabra et al.: Tuning Algorithms for Jumbled Matching 59

Alg. 1 (The main loop of Count)
while ¢ < n do
if C > 0 then report occurrence
if Afti—m]>0then C <+ C—1
if Aft;] > 0then C <+ C+1
141+ 1

Grossi & Luccio’s solution maintains a queue of characters which grows with
acceptable characters until the length is m which means that an occurrence of P has
been found. Another counting algorithm has been proposed by Grabowski et al. [12].

In addition to exact jumbled matching, Navarro’s and Grossi & Luccio’s algo-
rithms can directly be applied to approximate jumbled matching as well, because a
match candidate for the £ mismatches problem is a k-approximate permutation of P.
The initial value of C' in Count is £ — m in the approximate case.

Besides a single pattern algorithm, Navarro [16] also presented a multipattern
variation for patterns of equal length. Alg. 2 shows the main loop of this algorithm
called Mcount in the following. Each pattern has a count variable (or a bin) of its own,
and a field of d + 1 bits is allocated for it in D, a bitvector of w bits. The bitvector
Elc] holds a field of d+ 1 bits for each pattern. The initial values of fields in E[c| and
D are 2%+ cc(Pj,c¢) — 1 and 2% — (m — k), respectively, for the jth pattern. Before the
main loop, the character counts of the first alignment window are collected to F, and
D is updated respectively. During scanning, the value for the field of F[c] for the jth
pattern is 27+ cc(Pj, ¢) — cc(ti—m+1 - - - ti, ¢) — 1. The bit mask F holds one in the most
significant bit of every field in D. The bit mask I holds one in the least significant
bit of every field in E[c|. The operation (E[c] >> d) & I extracts the most significant
bits of E[c|. The condition D & F # 0 means that at least one overflow bit is set in
D, i.e. m — k acceptable characters of at least one pattern have been found. In the
case of a single pattern, this is enough to recognize an occurrence. In the case of two
or more patterns, a verification step is needed because the condition D & F' # 0 does
not specify which pattern matches.

Alg. 2 (The main loop of Mcount)
while 7 < n do

if D& F # 0 then verify occurrence

cé—ti_m

Elc] + E[c]+ I

D+ D—(Elc]>d) &I

c+—t;

D+ D+ (Elc]>d) &I

Elc] < Elc] -1

ti+1

Cantone and Faro [6] presented the BAM algorithm (Bit-parallel Abelian Matcher)
which applies bit-parallelism and backward scanning of the alignment window. Alg. 3
shows the main loop of BAM. A field of g(c¢) = [logcc(P, ¢)] + 2 bits is reserved for
each character ¢ appearing in P. As in Mcount, the most significant bit of each field
is a kind of overflow bit. The initial value of the field is 29¢)=1 — c¢(P,¢) — 1 which
means that cc(P,c) + 1 occurrences trigger the overflow bit. The adaptive width of
bit fields make possible to handle longer patterns than a fixed width. Moreover, there

60 Proceedings of the Prague Stringology Conference 2015

is a special field of one bit for characters not present in P. The bit mask M|c] holds
one in the least significant bit of the field of character c¢. The bit mask I holds the
initial values of the fields, and the bit mask F' holds one at each overflow bit.

Alg. 3 (The main loop of BAM)
while 1 <n —m do
D+«1I;j+i+m-—1
while j > i do
if D& F # 0 then break
Jei—1
if j < then
report occurrence
14— 1+1
else i<+ j+1

Ejaz [9] proposed several algorithms for jumbled matching. One of them utilizes
backward scanning of the alignment window. Moreover, Burcsi et al. [4] introduced
a light indexing approach with linear construction time and with sublinear expected
query time.

3 New solutions

We have designed various solutions for the exact and approximate jumbled matching.
We explain them in the following subsections. Most of the algorithms are variations
of Count, Mcount, or BAM.

3.1 Variations of BAM

If the pattern is long, w bits is not enough to hold a distinct bin for each character
appearing in the pattern. We made BAMSs, a variation of BAM where some bins
are shared. In BAMs, characters for bins are selected circularly from the pattern in
the right-to-left order. This is a kind of alphabet reduction. Then instead of “report
occurrence” in Alg. 3, each match candidate should be verified.

Then we present two other algorithms that are modifications of BAM (Alg. 3).
Alg. 4 is approximate BAM (ABAM for short) and Alg. 5 is enhanced BAM with
2-grams (BAM2 for short), respectively. In ABAM, F'[c| is the overflow bit of char-
acter c. The variable C' counts errors. The width of the field for the character c is
[log(max(cc(P, c),k))| + 2. The width of the field for characters not present in P is
[log k| + 2. M|c] and I are the same as in BAM. The enxpression “if D& F[t;] # 0
then 1 else 0” can be implemented as (D & F[t;]) && 1 in C.

T. Chhabra et al.: Tuning Algorithms for Jumbled Matching 61

Alg. 4 (The main loop of ABAM)
while 1 <n —m do
D« I;C+0;j«<i+m-—1
while j > i do
D+ D+ M[tj]
C <« C+ (it D& F[t;] # 0 then 1 else 0)
if C' > k then break
Jei—-1
if j < then
report, occurrence
1 1+1
else i+ j+1

Alg. 5 shows the main loop of BAM2 for patterns of even length. BAM2 handles
a 2-gram at a time. BAM2 has a separate loop for patterns of even and odd lengths.
The loop for patterns of odd length has two lines more because the remaining leftmost
character of the alignment window must be handled in a different way. Typically g-
grams are used in string matching to process the right end of the alignment window.
BAM2 processes the whole window with 2-grams (except the leftmost character in the
case of odd m). This is beneficial because the alignment window is scanned on average
further to the left in jumbled matching than in ordinary string matching. Moreover,
2-grams instead of single characters are read in our implementation of BAM2.

Alg. 5 (The main loop of BAM2)
while 1 <n —m do

j—i+m-—3
D < I+ Matji1,t)42]
do

D <+ D+ Mg[tj_l,tj]
if D& F' = 0 then break
JJj—2

until j >4

if j < ¢ then
report occurrence
11+ 1

else i < j

BAM2 reads four characters before testing D. As a consequence, the minimum
width of a bit field is four bits instead of two. The width of the field for characters
not present in P is three bits. The array My is precomputed as follows: Mas[cy, co] =
Mler] + Mes).

For small alphabets we use BAM2 as presented in Alg. 5. For large alphabets we
use BAM2 with the same bin sharing technique as applied in BAMs.

3.2 Other variations

Alg. 6 presents the main loop of EBL (short for “Exact Backward for Large alpha-
bets”). EBL is based on SBNDM2 [§], which is a sublinear bit-parallel algorithm
for exact string matching. Instead of representing occurrence vectors of characters,
the array B states if the character c¢ is present in the pattern: Ble] = 1 if ¢ is
present, otherwise Blc] = 0. As in SBNDM2, two characters are read before the
first test in an alignment window. The update step of the state variable D is simply
D = D & Bltiyj_1]. When the alignment window contains only acceptable characters,

62 Proceedings of the Prague Stringology Conference 2015

the window is a match candidate, which should be verified. Whenever a forbidden text
character is found, the alignment window is moved forward over that text position.

Alg. 6 (The main loop of EBL)
while 1 <n —m do
j¢<m—1
D = Blti1;] & Blti4;+1]
while D # 0 and 5 > 0 do
D+ D& B[tiJrj,l]
Je=g—1
if D =1 then verify occurrence
i—1+75+1

Alg. 7 presents the main loop of EFS (short for “Exact Forward for Small al-
phabets”). Like in Count and other algorithms of forward type, the first alignment,
window is processed before the main loop. The bitvector D has a field of d bitd]
initially 2971 — cc(P, ¢) — 1 for each character ¢ appearing in P. The characters not
in P have a joint field of one bit. Like in BAM, D is tested with a mask F' which has
one at each overflow bit. M|[c] is a bit mask having one at the least significant bit of
the field of character c.

Alg. 7 (The main loop of EFS)

while 7 < n do
if D& F = 0 then report occurrence
D+ D+ M[t;] — M[ti—m)]
1—1+1

Alg. 8 presents the main loop of AFL (short for “Approximate Forward for Large
alphabets”). AFL is a modification of Mcount tuned for a single pattern. The array
E is the same as in Mcount in the case of a single pattern as well as the offset d. The
initial value of the counter C'is k — m. Like in the other algorithms of forward type,
the first alignment window is processed before the main loop.

Alg. 8 (The main loop of AFL)

while ¢ < n do
if C > 0 then report occurrence
C+C+ (E[tl] >> d) — (E[ti,m] >> d)
E[ti] — E[ti] —1
141+ 1

Alg. 9 presents the main loop of ABS (short for “Approximate Backward for Small
alphabets”). The bitvector D holding the counters (or bins) of characters is initialized
for each alignment window. D has a field of d bits initially 247! — cc(P, ¢) — 1 for each
character ¢ appearing in P and a joint field for characters not in P. The offset o[c] is
used to move the overflow bit of the corresponding counter to the right end of a word.
M |c] is a bit mask having one at the least significant bit of the field of character c.

1 All the algorithms of Section were implemented before the appearance of [6]. So we use here
bit fields of fixed width. When shared bins are used, the benefit of adaptive width is smaller than
without them.

T. Chhabra et al.: Tuning Algorithms for Jumbled Matching

Alg. 9 (The main loop of ABS)
while ¢ < n do
D« I;C+0;j<i—m
while C < k and ¢ > j do
D+ D+ M[tl]

C <+ CH(D>>olt]) &1
1—1—1

if C' < k then report occurrence

1+—1+m+1

63

ABL (short for “Approximate Forward for Large alphabets”) is a slight modifi-
cation of ABS. If there are not enough bins for all the characters of the pattern, we
apply the same sharing technique as in BAMs. Then instead of “report occurrence”

on the last but one line of Alg. 9, each match candidate should be verified.

4 Experiments

m|k|Count Mcount BAM BAMs BAM2a ABAM EBL AFL ABL
5(0[2.370 1.960 1.183 1.206 0.749 1.420 [0.739] 1.781 1.482
100/ 2.370 1.960 0.861 0.863 [0.297] 1.021 0.638 1.778 1.067
20(0[2.376 1.962 0.564 0.582 [0.247] 0.689 0.544 1.779 0.701
30(0(2.373 1.959 0.449 0.427 [0.261] 0.514 0.488 1.778 0.514
5000/ 2.377 1.958 — 0.301 [0.234] — 0.524 1.778 0.413
1000/ 2.378 1.964 — 0204 [0.157] — 1360 1.779 0.360
5112373 1960 — — 3500 — [L779] 4.231
10/1(2.373 1963 — — — 1844 — [1.783] 2.230
20[1|2.377 1968 — — — — 1777 1.257
30/1)2.377 1961 — — — — — 1779 [0.978
50(1(2.374 1960 — — — — — 1774 [0.780
100[1/2.378 1961 — — — — — 1778 [0.736
522373 1961 — — — 6763 — [L779] 9.438
102/2.370 1961 — — — 3372 — [1.777] 5.070
202/ 2.376 1964 — — — 1778 2510
302(2.374 1966 — — — — — [L779] 1.944
5012/12.380 1960 — — — — — 1779 [1.582
1002(2.379 1964 — — — — — 1.779 [1.596
532370 1964 — 8698 — [L781]14.790
10/3(2.374 1959 — — — 5840 — |1.780|11.043
203/2.376 1956 — — — — — [L779] 5.747
303/2.376 1958 — — — — — [1.780] 4.604
5013/ 2.374 1961 — — — — — [L779] 3.563
10032379 1962 — — — — — [1779] 3.520

Table 1. Execution times of algorithms (in seconds) for English data.

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory. All the
algorithms were implemented in C and run in the 64-bit mode in the testing framework
of Hume and Sunday [14]. Three types of texts were used for testing: English and
protein representing large alphabets as well as DNA representing small alphabets.

64 Proceedings of the Prague Stringology Conference 2015

m|k|Count Mcount BAM BAM2 ABAM EFS AFL
50/2.724 2.321 3.279 1.559 3.987 [1.138] 2.150
100]2.722 2.326 2.851 1.761 3.511 [I1.118] 2.151
20(0]2.721 2.324 2.419 1.626 3.184 [L.118] 2.154
30(012.722 2.330 2.091 1.430 2.902 [1.126] 2.159
50(012.720 2.324 2.060 1.297 3.074 2.153
100(0]| 2.727 2.327 2.240 1.276 3.632 2.160
5/112.723 2378 — — 8250 — [2.154
10{1]2.721 2.326 — — 7.483 —
20(1|2.718 2323 — — 6.318 —
30(112.719 2330 — — 5204 —
50/1/2.721 2.323 — — 4.833 —
100{1|2.719 2.324 — — 4841 —
512/2.720 2.322 — — 9.907 — [2.146
102/ 2.720 2.324 — — 11.593 —
201212.724 2326 — — 10.857 —
301212.723 2329 — — 8836 —
50(1212.721 2323 — @ — 7.762 —
100(2| 2.712 2324 — — 6.734 —
513/2.727 2322 — — 8.638 — [2.154
10(3]2.720 2.324 — — 14.146 — [2.154
2013/2.723 2323 — — 15888 —
30/3/2.712 2327 — — 13558 —
50(13/2.724 2322 — — 11.582 —
100(3|2.720 2.324 — — 9443 — [2.153

Table 2. Execution times of algorithms (in seconds) for DNA data.

The English text is the KJV Bible (3.9 MB), the DNA text is 4.4 MB long and the
protein text is 3.6 MB long. All the texts were taken from the Smart corpus [I1]. For
each text we had six sets of 200 patterns with lengths: m = 5,10, 20, 30, 50, and 100.

As reference methods we used Count and Mcount [16] as well as BAM [6]. Mcount
was run only with a single pattern. We have not shown the results of Grossi & Luccio’s

algorithm [I3] because it was clearly slower than Count. Likewise, we did not test
GFG [12] and SBA [9], because they were mostly slower than BAM in tests of [6].

Tables [1l 2 and [3] represent the average execution times in seconds for English,
DNA, and protein data respectively, for £ = 0, 1,2, and 3. The results were obtained
as an average of nine runs. The best time for each combination of m and k has
been boxed. An empty cell means that 64 bits was not enough to hold the necessary
counters at least for one of the 200 patterns.

From the results for English data in Table [Il it can be seen that EBL is fastest
for shorter pattern length and BAM2a is fastest for remaining pattern lengths in the
exact case (k = 0). For k = 1,2, AFL is the fastest for short patterns and ABL
for long patterns. As an exception, ABAM is fastest for £k = 1 and m = 20. For
k = 3, AFL is the fastest. Note that EBL gets its best time for m = 30. Its speed
is decreasing for longer patterns because longer patterns produce more false matches
which increase verification time.

From the results for DNA data in Table 2 it can be seen that EFS is clearly the
fastest in the exact case and AFL in the approximate case. EFS works in a double
speed when compared with the previous algorithms. Observe also that BAM2 is faster
than BAM, even with a wide margin.

T. Chhabra et al.: Tuning Algorithms for Jumbled Matching 65

m[k[Count Mcount BAM BAMs BAM2a ABAM EBL AFL ABL
5/0/1.928 1.596 0.711 0.733 0.581 0.853 [0.471] 1.451 0.909
10/0/1.932 1.601 0.591 0.611 0.702 0.481 1.452 0.764
20(0/1.934 1.599 0.427 0.582 [0.168] 0.521 0.662 1.451 0.582
30(0/1.934 1.592 0.321 0.331 0.426 1.939 1.451 0.542
50(0/1.934 1.598 — 0.254 — — 1.451 0.691
100[0[1.934 1.598 — 0.247 — — 1.449 0.231
5(1[1.931 1.599 — — — 2131 — [L.451] 2.346
101/1.933 1.602 — — — — 1.452 1.461
20(1/1.931 1597 — — — — 1451 1.071
30{1/1.931 1.602 — — — — 1.451 1.116
50(1/1.938 1.598 — — — — — 1.591
100(1]1.932 1.602 — — — — — 3.449
5(2[1.932 1.602 — — — 4351 — [1.454] 5.179
1012/1.929 1.598 — — — 2077 — 2.826
20(2/1.933 1.606 — — — — 1.448 2.067
30(2/1.938 1.649 — — — — — 2.301
50(2/1.938 1.598 — — — — — 3.396
1002/ 1.938 1.599 — — — — — 3.163
5[3/1.931 1.603 — — — 6.466 — [1.454] 8.754
10/3]1.931 1.601 — — — 3377 — 5.907
20(3/1.933 1.598 — — — — — 4.338
30(3/1.936 1599 — — — — — 4.756
50(3/1.939 1.601 — — — — — 6.737
1003/ 1.937 1.598 — — — — — [1.453]10.737

Table 3. Execution times of algorithms (in seconds) for protein data.

The results in Table [3 for protein data do not differ much from Table [l EBL
was very slow for m > 30 (results not shown), because then the number of forbidden
characters is low.

The current implementation of ABAM does not contain shared bins. The test
results suggest that ABAM with shared bins could be the winner with some new
parameter combinations.

For all types of data, Mcount is considerably faster than Count. The obvious
reason is that the main loop of Mcount contains only one if statement whereas the
main loop of Count contains three. Relatively, the conditional instructions are slow
in modern processors.

5 Concluding remarks

We introduced new variations jumbled matching algorithms. All the forward algo-
rithms are clearly linear. The speed of their approximate versions do not depend
on the value of k. It is not difficult to show that the backward algorithms are sub-
linear on average for small k and large m. The experimental results show that our
algorithms are competitive with previous solutions. In almost every tested case, the
best of our algorithms was faster than any previous solution, and in many cases even
doubling the speed of the best previous solution. Especially the technique of shared
bins showed to be useful for jumbled matching. We believe that there is still room to
improve our results. E.g. more sophisticated character selection for shared bins may
lead to faster solutions.

66 Proceedings of the Prague Stringology Conference 2015

References

1. G. BENSON: Composition alignment, in Proc. of the 3rd International Workshop on Algorithms
in Bioinformatics 2003, pp. 447—461.

2. S. BOCKER: Sequencing from compomers: Using mass spectrometry for DNA de novo sequencing
of 200+ nt. Journal of Computational Biology, 11 (6) 2004, pp. 1110-1134.

3. S. BOCKER: Simulating multiplezed SNP discovery rates using base-specific cleavage and mass
spectrometry. Bioinformatics, 23 (2) 2007, pp. 5-12.

4. P. Burcsl, F. CICcALESE, G. Fic1, AND Zs. LIPTAK: Algorithms for jumbled pattern matching
in strings. Int. J. Found. Comput. Sci. 23 (2) 2012, pp. 357-374.

5. P. BUurcsl, F. CICALESE, G. FIcI, AND ZS. LIPTAK: On approxzimate jumbled pattern matching
in strings. Theory Comput. Syst. (MST) 50 (1) 2012, pp. 35-51.

6. D. CANTONE AND S. FARO: Efficient online Abelian pattern matching in strings by simulating
reactive multi-automata, in J. Holub and J. Zdarek, eds., Proc. PSC 2014, pp. 30-42.

7. F. CICALESE, G. FicI, AND Zs. LIPTAK: Searching for jumbled patterns in strings, in J. Holub
and J. Zdarek, eds., Proc. PSC 2009, pp. 105-117.

8. B. DURIAN, J. HoLUB, H. PELTOLA, AND J. TARHIO: Improving practical exact string match-
ing. Information Processing Letters 110 (4) 2010, pp. 148-152.

9. E. EJAzZ: Abelian pattern matching in strings. Ph.D. Thesis, Dortmund University of Technology
2010, http://d-nb.info/1007019956.

10. R. EREs, G. M. LANDAU, AND L. PARIDA: Permutation pattern discovery in biosequences.
Journal of Computational Biology, 11 (6) 2004, pp. 1050-1060.

11. S. Faro AND T. LEQROC: Smart: string matching algorithms research tool, 2015,
http://www.dmi.unict.it/~faro/smart/

12. S. GRABOWSKI, S. FARO, AND E. GIAQUINTA: String matching with inversions and transloca-
tions in linear average time (most of the time). Information Processing Letters 111 (11) 2011,
pp- 516-520.

13. R. GRossI AND F. Luccio: Simple and efficient string matching with k mismatches. Information
Processing Letters 33 (3) 1989, pp. 113-120.

14. A. HUME AND D. SUNDAY: Fast string searching. Software—Practice and Experience, 21 (11)
1991, pp. 1221-1248.

15. P. JOKINEN, J. TARHIO, AND E. UKKONEN: A comparison of approximate string matching
algorithms. Software-Practice and Experience 26 (12) 1996, pp. 1439-1458.

16. G. NAVARRO: Multiple approzimate string matching by counting, in R. Baeza-Yates, ed., Proc.
4th South American Workshop on String Processing 1997, pp. 125-139.

17. G. NAVARRO AND M. RAFFINOT: Flexible pattern matching in strings: Practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, New York, NY, 2002.

18. H. PeLTOLA AND J. TARHIO: Alternative algorithms for bit-parallel string matching, in
Proc. 10th International Symposium on String Processing and Information Retrieval, vol. 2857
of Lecture Notes in Computer Science, 2003, pp. 80-93.

19. A. SaLoMAA: Counting (scattered) subwords. Bulletin of the European Association for Theo-
retical Computer Science (EATCS) 81, 2003, pp. 165-179.

http://d-nb.info/1007019956
http://www.dmi.unict.it/~faro/smart/

