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Abstract—The reported method of Equivalent transfer 

function(ETF) method for PI/PID decoupled controller 

design of multi-input multi-output square systems (Xiong, et 

al., 2007) is extended to non-square systems. This method is 

applied by simulation to Example considered by Ogunnaike 

and Ray (1994) given by 2×3 system. Simulation studies 

have been carried out for servo problem and regulatory 

problems. Robust performance (10% increase in each 

process gain, 10% increase in each time delay, and 10% 

decrease in each time constant) of servo problem and 

regulatory problem are also checked. The improvement of 

performance of non-square controller compared with that 

square controller is evaluated. The performance is evaluated 

in terms of ISE. 

 

Index Terms—ETF, decoupled controller, servo, non square, 

ISE 

 

I. INTRODUCTION 

Most of the large and complex industrial processes are 
naturally multi-input multi-output (MIMO) systems. 
Processes with unequal number of input variables 
(manipulated variables) and output variables (controlled 
variables) often arise in many industries. These systems 
are known as non-square systems. Such a systems may 
have either more outputs than inputs or more inputs than 
outputs. Some examples, for non-square systems with 
more inputs than outputs, are mixing tank process 
(Reeves, et al. 1989) 2  3 system [2], shell control 
problem (Vlachos et al. 1999) 7 5 system [3], etc. A 
common approach towards the control of non-square 
processes is to first square up or to square down the 
system through the addition or removal of appropriate 
inputs or outputs in order to obtain a square system. But 
none of the alternates is desirable. Adding unnecessary 
outputs to be measured can be costly, while deleting 
inputs leaves fewer variables to be automatically 
manipulated in achieving the desired control. This may 
result in excessive variations in the manipulated variable. 
Similarly, reducing the number of measured outputs 
decreases the amount of feedback information available 
to the system, and arbitrarily adding new manipulated 
inputs can incur unnecessary cost. Hence superior 
performance can be achieved by the original non-square 
system. 

Two PI/PID based control schemes: multi-loop control 
and decoupling control. In multi-loop control, the multi-
input multi-output (MIMO) processes are treated as a 
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collection of multi-single loops, and a controller is 
designed and implemented on each loop by taking loop 
interactions into account. The multi-loop controller 
design method may fails to give acceptable responses if 
there exist severe loop interactions. For multi-input multi-
output (MIMO) processes with severe loop interactions, 
the decoupling control schemes are often preferred. The 
decoupling control usually requires two steps: (1) design 
of the de-coupler to minimize the interactions among 
loops; and (2) design of the main loop controllers for 
overall system performance [5]. 

II. EQUIVALENT TRANSFER FUNCTION (ETF) 

METHOD FOR PI/PID DECOUPLING CONTROLLER 

DESIGN 

Equivalent transfer function method for PI/PID 
decoupled controller design of multi-input multi-output 
systems[1] include three steps: (1) using the concepts of 
energy transmission ratio to obtain the effective relative 
gain, relative gain and relative frequency of a given 
transfer function matrix; (2) using the information 
obtained in the first step to obtain an equivalent transfer 
function matrix for closed loop system; and (3) designing 
the off-diagonal controllers based on interaction analysis 
and the diagonal controllers for original transfer functions 
of main loops. 

A. General Formulation of Multi-Input Multi-Output 

Control 

Consider an open loop stable multivariable system 

with n-inputs and n-outputs as shown in Fig. 1, where ir , 

i = 1, 2, ..., n are the reference inputs; iu , i = 1, 2, ..., n 

are the manipulated variables; iy , i = 1, 2, ..., n are the 

system outputs, 

 
Figure 1. Closed loop multivariable control system. 

G(s) and )(sGc
 are process transfer function matrix 

and full dimensional controller matrix expressed by Eq. 
(1) and Eq. (2) respectively. 
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Process transfer function is considered as a second 
order pulse time delay system 

e
ss

sl

ijij

ij

ij

ij

aa

g
sg






1

)0(
)(

,1

2

,2

           (3) 

B. Dynamic Relative Gain Array 

When a MIMO control system is closed, there exist 
interactions among loops as a result of the existence of 
non-zero off-diagonal elements in the transfer function 
matrix. The interactions can be dynamically measured by 
the dynamic relative gain defined by 
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where )(sg
ij



 is the equivalent close loop transfer 

function of )(sg ij
when all other loops are closed. For 

overall system, the above equation can be written in a 
matrix form which results in the dynamic relative gain 
array (DRGA), 
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Substituting Eq. (4) into (5) results in 
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where the operator  is the hadamard product. Since 

)(sg
ij



 is controller dependant, it is impossible to 

compute K(s) without first knowing the controller 
parameters. By assuming the process is under perfect 
control, however, a simple computational algorithm for 
K(s) can be obtained to calculate the relative gains at  
each frequency point; 
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C. Energy Transmission Ratio 

Express the energy transmission ratio of )(sg ij
 as 
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We approximate the integration of ije  by a rectangle 

area, i.e., 

ijcijij ge ,)0(  , i, j=1, 2, …, n         (11) 

where cij  is the critical frequency of the transfer 

function )(sg ij
 which can be defined in two ways: 

1) bijcij   , where bij  for i,j = 1, 2, ..., n is the 

bandwidth of the transfer function )(
0

j
ij

g  and 

determined by the frequency where the magnitude plot of 
frequency response reduced to 0.707 time, i.e., 

)0(707.0)( , ijijbij gjg 
             (12)

 

2) cij  = uij , where uij  for i, j = 1, 2, ..., n is the 

ultimate frequency of the transfer function 
)(

0

j
ij

g  and 
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determined by the frequency where the phase plot of 
frequency response across – , i.e., 

  )(arg ,ijuij jg 
               (13)

 

For transfer function matrices with some elements 
without phase crossover frequencies, such as first order or 
second order without time delay, it is necessary to use 
corresponding bandwidths as critical frequencies to 

calculate 
ije . However, it is worth to point out that the 

phase cross over frequency information, i.e., ultimate 
frequency (

uij ) is recommended if applicable for 

calculation of 
ije , since it is closely linked to system 

dynamic performance and control system design. we will 
use 

uij  as the bases for the following development. 

For the frequency response of )( jg ij
, 

ije  is the area 

covered by )( jg ij
 up to 

uij . Since |
)(

0

j
ij

g | 

represents the magnitude of the transfer function at 

various frequencies, 
ije  is considered to be the energy 

transmission ratio from the manipulated variable 
ju  to 

the controlled variable iy . 

For the overall system, the energy transmission ratio 
can be expressed by effective energy transmission ratio 
array and given by 
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where Eq. (15) and Eq. (16)are the steady state gain array 
and the critical frequency array, respectively. 
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and Ω=
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D. Effective Relative Gain Array 

The effective relative gain, ij , between output 

variable iy  and input variable ju  is define as the ratio 

of two effective energy transmission ratio: 
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where ije


 is the effective energy transmission ratio 

between output variable iy  and input variable 
ju  when 

all other loops are closed. When the effective relative 
gains are calculated for all the input/output combinations 
of a multivariable process, it results in an array, ERGA, 
which can be calculated by 
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The ERGA based loop pairing rules requires that 
manipulated and controlled variables in the main loop be 
paired by those pairs whose ERGA values are positive 
and closest to 1.0. 

E. Relative Frequency Array 

According to Effective relative gain array, Place the 
qualified pairs to the diagonal position and rewrite Eq. 
(17) as  
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Which can be calculated by Eq. (8) with s = 0, 

 G





















nnnn

n

n

T
G






....

................

....

....

)0(

21

22221

11211

           (21) 

We obtain 
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Which can also be expressed in matrix form, i.e., 
relative frequency array (RFA), and calculated by 
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where  is the hadamard division, ij  and ij  are the 

steady state relative gain and relative critical frequency of 
loop i - j, respectively. 
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F. Equivalent Transfer Function of Closed Loop System 

and Parameterization of Controllers 

Using 
ij  and 

ij , we can now determine the 

equivalent transfer function )(sg
ij



. Rewrite )( jg ij
 as 
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sgegsg ij
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where )0(ijg , 
ijl  and )(0

sg ij
 are steady state gain, time 

delay and normalized transfer function of )(sg ij
 

excluding time delay, i.e., )0(0
ijg = 1, respectively. As 

control loop transfer functions when other loops closed 
will have similar frequency properties with when other 
loops open if it is well paired , we can let the effective 
transfer functions have the same structures as the 
corresponding open loop transfer functions but with two 
different parameters, i.e., 
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In Eq. (24), )0(


ijg  reflects the gain change and can be 

determined by Eq. (20), while 


ijl reflects the change in 

critical frequency. Although the critical frequency is 
generally be affected by both time constant and time 
delay, they are exchangeable by linear approximation, it 
is reasonable to change only time delay to reflect the 
phase changes in the low frequency range which is given 
by 
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The design of full dimensional PI/PID controller 
consists of two parts: 

1) Off-diagonal controllers: The main task of the off 
diagonal controllers is to minimize the interactions 
among loops. 

2) Diagonal controllers: The diagonal controllers are 
to provide the desired performance of the closed 
loop control system. 

We use the gain and phase margins approach to design 
the controller. 

Theoretically, any SISO controller design approach 

can be employed. This is because the interaction is 

already approximately considered into the equivalent 

transfer functions. The gain and phase margins approach 

is selected because it provides good performance in terms 

of robustness with respect to the uncertainties in both 

process model and disturbance, and might be more 

acceptable by process control engineers. 
The standard PID controller is adopted as 
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where 
jijiijijipjijid kkandCkkBkkA //,/ ,,,   by 

selecting 1, ,1,2  andcaBaA ijij
. 

The forward transfer function according to Eq. (3), Eq. 
(25) and Eq. (28) becomes 
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Denoting the gain and phase margin specifications as 

ijmA ,
 and 

ijm, , and their crossover frequencies as 
ijg ,  

and 
ijp, , respectively, we have 
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By substitution and simplification to above equations, 
we obtain 
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Considering Eq. (20) and Eq. (26), the PID parameters 
are given by 
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Once loop interactions are dealt with by the off-
diagonal decoupling controllers, the diagonal loops can 
be considered as n independent loops. Each controller can 
thus be independently designed by single loop approaches 
based on the corresponding diagonal transfer functions, 
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Again, following the gain and phase margins approach, 
the controller parameters of main loops are given as 
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III. EXTENSION OF ETF METHOD TO NON-SQUARE 

SYSTEMS 

In the present work the Equivalent transfer function 
method by Xiong, et al., (2007) [1] for PI/PID decoupled 
controller design of multi-input multi-output square 
systems is extended to non-square systems. This method 
has been applied to an example considered by Ogunnaike 
and Ray (1994) [4] given by 2×3 system Simulation 
studies have been carried out for this example for servo 
problem, and regulatory problems. Robust performance 
(10% increase in each process gain, 10% increase in each 
time delay, and 10% decrease in each time constant) of 
servo problem, and regulatory problem is also checked. 
The improvement of performance of non-square 
controller compared with that square controller is 
evaluated. The performance is evaluated in terms of ISE. 

Example: considered by Ogunnaike and Ray, 1994. 
The vector form of transfer function model is 

Y(s) = G(s) * U(s)                        (43) 

where 
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The steady state gain matrix is 












001.0003.0004.0

04.007.05.0
)0(G

              (47) 

As inverse does not exist for non-square systems. 
Moore -Penrose pseudo-inverse is used for non-square 
systems. The pseudo-inverse of G(0) is 




















5310.907736.0

3312.2479603.1

8688.416637.1
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Transpose of pseudo-inverse of G(0) is 

1.6637 1.9603 0.7736
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Dynamic relative gain array (DRGA) is  given by 

(0) ( (0)) 'DRGA G pinvG    (50) 











0905.07420.01675.0

0309.01372.08318.0               (51) 

Critical frequency array (Ω) is 











27.44.83.4

5245.58               (52) 

Effective energy transmission ratio array (E) is 
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Effective relative gain array (ERGA) is 

T
EEERGA

                      (55) 











0485.07979.01536.0

2694.00368.06938.0
                  (56) 

Effective relative gain array is positive and nearly 

equal to unity for best pairing. So 1y  is paired with 1u
 

and 3u  and 2y  is paired with 2u . 

Relative frequency array (RFA) is 

DRGA

ERGA
RFA                            (57) 











5359.00753.19170.0

7184.82682.08340.0
RFA

          (58) 

The gain margin for all loops are specified as 
dbA ijm 50, 

 Full dimensional controller matrix is 
obtained by using gain and phase margin approach. 

Controllers are designed by gain and phase margin 
approach using the following controller parameters. 

Parameters of main loop controllers are 
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Parameters of decoupling controllers are 
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1824.031 pk

     

8.2/1824.031 ik

    

   

88.1332 pk
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Full dimensional controller matrix is 
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IV. SIMULATION RESULTS 

A. Servo Responses 

Fig. 2 shows the response of y1 and interaction in y2 
for unit step change in set point r1. Fig. 3 shows the 
response of y2 and interaction in y1 for unit step change 
in set point r2.  Interaction in y2 due to step change in r1 
is less compared to interaction in y1 due to step change in 
r2. 

 
Figure 2. Response of y1 and interaction in y2 due to step change in r1 

 
Figure 3. Interaction in y1 and response of y2 due to step change in r2 

B. Regulatory responses 

Fig. 4, Fig. 5 & Fig. 6 shows the responses of the 
designed controllers due to change in load variables d1, 
d2, d3 respectively. It is assumed that the load transfer 
function matrix is same as that of process transfer 
function matrix. 

 
Figure 4. Response of y1 and interaction in y2 due to step change in 

d1 

 

 

Figure 5. Response of y1 and interaction in y2 due to step change in 
d2 
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Figure 6. Response of y1 and interaction in y2 due to step change in 

d3 

C. Robustness Studies 

Model parameters like process gain, time delay and 
time constant are consider to design any control system. 
Once controller designed the system performance will be 
satisfactory in simulation but not in real time due to 
model mismatch. But if we design a robust controller by 
considering same model parameters with deviation the 
system performance will be satisfactory in both 
simulation and real time. 

Robustness studies can be carried out for the perturbed 
system by 

a. Considering the 10% deviation in the time delay. 
b. Considering the 10% deviation in time constant. 
c. Considering the 10% deviation in the gain. 

Controllers designed by decoupling technique are 
giving the similar results for the predicted model and the 
actual plant model. 

1) Servo responses 

Fig. 7 shows the comparison of response of y1 and 
interaction in y2 for unit step change in set point r1 when 
10% increase in gain, 10% increase in time delay and 
10% decrease in time constant with original response. Fig. 
8 shows the comparison of response of y2 and interaction 
in y1 for unit step change in set point r2 when 10% 
increase in gain, 10% increase in time delay and 10% 
decrease in time constant with original response. Almost 
all responses are similar. So decoupling controllers 
achieve robust performance. 

2) Regulatory responses 

Fig. 9, Fig. 10 & Fig. 11 shows the comparison of 
response of y1 and interaction in y2 for unit step change 
in d1, d2 and d3 respectively when 10% increase in gain, 
10% increase in time delay and 10% decrease in time 
constant with original response.. Almost all responses are 
similar. So Decoupling controller achieve robust 
performance. 

 

 

Figure 7. Comparison of response of y1 and interaction in y2 due to 
step change in r1 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 
response 

 

 

Figure 8. Comparison of interaction in y1 and response of y2 due to 
step change in r2 when 10% increase in gain, 10% increase in 

time delay and 10% decrease in time constant with original 
response 

 

 
Figure 9. Comparison of response of y1 and interaction in y2 due to 

step change in d1 when 10% increase in gain, 10% increase in 
time delay and 10% decrease in time constant with original 

response 
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Figure 10. Comparison of response of y1 and interaction in y2 due to 

step change in d2 when 10% increase in gain, 10% increase in 
time delay and 10% decrease in time constant with original 

response 

 

 
Figure 11. Comparison of response of y1 and interaction in y2 due to 

step change in d3 when 10% increase in gain, 10% increase in 
time delay and 10% decrease in time constant with original 

response 

D. Manipulated Variables Time Behaviour 

Fig. 12 and Fig. 13 shows the manipulated variables 
time behaviour due to step change in r1 and r2 
respectively. 

Fig. 14 and Fig. 15 shows the comparison of 
manipulated variables time behaviour due to step change 
in r1 and r2 respectively when 10% increase in gain, 10% 

increase in time delay and 10% decrease in time constant 
with original behaviour.. Almost all time behaviours are 
similar. So decoupling controller achieve robust 
performance. 

 

 
Figure 12. Manipulated variables time behaviour due to step change in 

r1 

 

 

 

Figure 13. Manipulated variables time behaviour due to step change in 
r2 
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Figure 14. Comparison of manipulated variables time behaviour due to 

step change in r1 when 10% increase in gain, 10% increase in 
time delay and 10% decrease in time constant with original 

response 

 
Figure 15. Comparison of manipulated variables time behaviour due to 

step change in r2 when 10% increase in gain, 10% increase in 
time delay and 10% decrease in time constant with original 

response 

V. COMPARISION WITH SQUARE SYSTEMS 

To bring down the system to a square form, the input 
(u3) is neglected. The resulting system is given by 



























ss

ss

e
s

e
s

e
s

e
ssG

2.04.0

3.02.0

1

003.0

15.1

004.0
15.2

07.0

13

5.0

)(
 

The steady state gain matrix is 












003.0004.0

07.05.0
)0(G

                      (62) 

Dynamic relative gain array (DRGA) is given by 

( ) (0) ( (0)) 'DRGA G invG                  (63) 











8427.01573.0

1573.08427.0
DRGA

                   (64) 

Critical frequency array (Ω) is 











4.83.4

45.58                    (65) 

Effective energy transmission ratio array is 

 )0(GE                        (66) 












0252.00172.0

3815.04
E

                   (67) 

Effective relative gain array (ERGA) is 

T
EEERGA

 *.)(                  (68) 











9389.00611.0

0611.09389.0
ERGA

                  (69)

 

Effective relative gain array is positive and nearly 

equal to unity for best pairing. So 1y  is paired with 1u
 

and 2y  is paired with 2u . 

Relative frequency array (RFA) is 

 RFA  









1141.13884.0

3884.01141.1

             (70) 
The gain margin for all loops are specified 

as
dbA ijm 50, 

. Full dimensional controller matrix is 
obtained by using gain and phase margin approach. 
Controllers are designed by gain and phase margin 
approach using the following controller parameters. 

Parameters of main loop controllers are 
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7.011 pk

       

3/7.011 ik

   

  

9695.1822 pk

         

9695.1822 ik
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Parameters of decoupling controllers are 
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641.412 pk

      

5.1/641.412 ik

     

    

8266.021 pk

      

5.2/8266.021 ik

 Full dimensional controller matrix is

 






















)
1

1(9695.18)
5.2

1
1(8266.0

)
5.1

1
1(641.4)

3

1
1(7.0

)(

ss

sssGc

         (73) 

A. Comparison of Servo Responses of Non-Square 

System with Square System 

Fig. 16 compares the response of y1 and interaction in 
y2 for unit step change in set point r1. Fig. 17 compares 
the response of y2 and interaction in y1 for unit step 
change in set point r2. It is clear that Settling time is less 
for non-square system compared to square system. 

 
Figure 16.  Comparison of response of y1 and interaction in y2 of non-

square system with square system due to step change in r1 

 

 
Figure 17.  Comparison of interaction in y1 and response of y2 of non-

square system with square system due to step change in r2 

B. Comparison of Manipulated Variables Time 

Behaviour of Non-Square System with Square System 

Fig. 18 compares the manipulated variables time 
behaviour of non-square system with square system due 
to step change in r1. Fig. 19 compares the manipulated 
variables time behaviour of non-square system with 
square system due to step change in r2. It is clear that 
Non-square system gives better manipulated variables 
time behaviour compared with square system. 

C. Comparison of Servo Responses of Robustness 

Problem of 

 

Non-Square System with Square System 

Fig. 20 compares the response of y1 and interaction in 
y2 for unit step change in set point r1 of perturbed non-
square system with perturbed square system. Fig. 21 
compares the response of y2 and interaction in y1 for unit 
step change in set point r2 of perturbed non-square 
system with perturbed square system. Non-square system 
gives better responses than square down the system. 

 

 
Figure 18.  Comparison of manipulated variables time behaviour of 

non-square system with square system due to step change in r1

 

 

 
Figure 19.  Comparison of manipulated variables time behaviour of 

non-square system with square system due to step change in r2 
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Figure 20.  Comparison of response of y1 and interaction in y2 of 

robustness problem (10% increase in each process gain, 10% increase in 
each time delay and 10% decrease in each time constant) of non-square 

system with square system due to step change in r1 

 

 
Figure 21.  Comparison of interaction in y1 and response of y2 of 

robustness problem (10% increase in each process gain, 10% increase in 
each time delay and 10% decrease in each time constant) of non-square 

system with square system due to step change in r2 

D. Comparison Manipulated Variables Time Behavior 

of Robustness Problem of 

 

Non-Square System with 

Square System 

The manipulated variables time behaviour of non-
square system with square system due to step change in 
r1 and r2 of perturbed system (10% increase in each 
process gain, 10% increase in each time delay and 10% 
decrease in each time constant ) is compared. Non-square 
system gives better manipulated variables time behaviour 
compared with square system. 

 
Figure 22. Comparison of manipulated variables time behaviour of 

robustness problem ( 10% increase in each process gain, 10% increase 
in each time delay and 10% decrease in each time constant ) of non-

square system with square system due to step change in r1. 

 

 
Figure 23.  Comparison of manipulated variables time behaviour of 

robustness problem (10% increase in each process gain, 10% increase in 
each time delay and 10% decrease in each time constant) of non-square 

system with square system due to step change in r2 

VI. COMPARISON OF ISE VALUES OF NON-SQUARE 

CONTROLLER WITH SQUARE CONTROLLER 

Table I compares the ISE values of non-square 

controller with square controller. ISE values of perfect 

non-square model and perturbed non-square model are 

low compared with ISE values of perfect square model 

and perturbed square model. ISE values of non-square 

system is nearly 45% of the ISE values of the square 

system. So control of non-square system is better rather 

than squaring down the system. 
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TABLE I.  COMPARISON OF ISE VALUES OF NON-SQUARE 

CONTROLLER WITH SQUARE CONTROLLER. 

System 
Step 

change in 
ISE values for 

output y1 
ISE values for 

output y2 
Sum of ISE 

values 

Perfect model 
Non-square 

systems 

r1 2.34 0 2.34 

r2 3.29 4.555 7.845 

Perfect model 
square 

systems 

r1 4.97 0.49 5.46 

r2 1.23 7.936 9.166 

Perturbed 
model 

Non-square 
systems 

r1 2.46 0 2.46 

r2 3.32 4.69 8.01 

Perturbed 
model 
square 

systems 

r1 5.03 0.61 5.64 

r2 1.29 8.173 9.463 

 

VII. CONCLUSION 

Equivalent transfer function method for PI/PID 
decoupled controller design of multi-input multi-output 
square systems is extended to non-square systems. This 
method has been applied to an example considered by 
Ogunnaike and Ray (1994) given by 2×3 system. 
Simulation studies have been carried out for servo 
problem, and regulatory problems. Robust performance 
(10% increase in each process gain, 10% increase in each 
time delay, and 10% decrease in each time constant) of 
servo problem, and regulatory problem is also checked 
for the example. The improvement of performance of 
non-square controller compared with that square 
controller is evaluated. Simulation results show that non-
square controllers gives better response compared with 
square controllers. ISE values of non-square system are 
nearly 45% of ISE values of square system (Example 
considered by Ogunnaike and Ray). So significant 
improvements in the performance and robustness are 
obtained when the non-square system is controlled in its 
original form rather than squaring it down. 
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