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Tuning artificial intelligence on the de novo design
of natural-product-inspired retinoid X receptor
modulators
Daniel Merk 1, Francesca Grisoni 1,2, Lukas Friedrich 1 & Gisbert Schneider 1

Instances of artificial intelligence equip medicinal chemistry with innovative tools for mole-

cular design and lead discovery. Here we describe a deep recurrent neural network for de

novo design of new chemical entities that are inspired by pharmacologically active natural

products. Natural product characteristics are incorporated into a deep neural network that

has been trained on synthetic low molecular weight compounds. This machine-learning

model successfully generates readily synthesizable mimetics of the natural product tem-

plates. Synthesis and in vitro pharmacological characterization of four de novo designed

mimetics of retinoid X receptor modulating natural products confirms isofunctional activity of

two computer-generated molecules. These results positively advocate generative neural

networks for natural-product-inspired drug discovery, reveal both opportunities and certain

limitations of the current approach, and point to potential future developments.
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D
rug discovery progressively employs natural products
with defined bioactivities as starting points for medicinal-
chemistry-driven molecule optimization1,2. Bioactive

natural products are considered potentially superior to small
molecules of purely synthetic origin in terms of their unique
geometries and scaffolds3. However, the synthesis of structurally
intricate natural products may be challenging, rendering
structure-activity relationship studies elaborate tasks. The
computer-assisted de novo design of natural product mimetics
offers a viable strategy to reduce synthetic efforts and obtain
natural-product-inspired bioactive small molecules. This strategy
has already led to the discovery of various innovative natural
product mimetics4. Nevertheless, the current computational de
novo design methods for generating natural-product-inspired
small molecules suffer from several limitations, in particular
unsatisfactory scoring of biological activities5,6.

Contemporary applications of domain-specific artificial intel-
ligence (AI) are currently permeating early drug discovery,
including de novo design5,7. Recently, we have successfully
employed generative AI for the computer-based design of fatty
acid mimetics8 to obtain novel chemotypes of retinoid X receptor
(RXR)9 and peroxisome proliferator-activated receptor (PPAR)10

modulators11. Specifically, we developed a deep recurrent neural
network (RNN) model with long short-term memory (LSTM)
cells12 for de novo ligand generation. This ligand-based design
approach requires only a small set of known bioactive template
structures to implicitly capture relevant structural features for the
target(s) of interest. In this present study, we prospectively
expand the application of the method to the computational
design of novel bioactive mimetics of natural products with RXR
modulating activities.

Results
Tuning a generative AI-model on natural products. The deep
learning model employed for this study was initially trained to
capture the constitution of 541,555 bioactive small molecules
retrieved from ChEMBL (KD, Ki, EC50, IC50 < 1 µM) represented
as simplified molecular input line entry system (SMILES)
strings13. A key feature of this approach is fine-tuning by transfer
learning to bias the de novo molecule generation towards the
desired bioactivities of the templates11. This fine-tuning step was
employed to train the model on designing isofunctional natural
product mimetics. Known RXR ligands often suffer from poor
receptor subtype selectivity and excessive lipophilicity4,14–16, and
future RXR targeting drug discovery might considerably benefit
from natural-product-inspired leads to overcome these liabilities.

Three natural products (Fig. 1, Table 1), namely drupanin (1)17,
honokiol (2)18 and bigelovin (3)19 have been known to activate
RXRs at micromolar concentrations. We have recently discovered
RXR agonistic activity for valerenic acid (4), isopimaric acid (5)
and dehydroabietic acid (6) by computer-assisted screening4.
Notably, valerenic acid (4) was found to possess a remarkable and

unique preference for the RXRβ subtype. These natural products
served as templates for de novo design.

As a first approach to AI-designed natural product mimetics
targeting RXR, we fine-tuned our generative model on valerenic
acid (4) by transfer learning, and then used the biased model to
generate 1000 designs as SMILES strings. Out of these 1000
SMILES strings, 25% were chemically valid and 14% were unique
(Fig. 2a). The 135 unique and valid designs contained a large
proportion (22%) of close structural analogues of the template
valerenic acid (4), only differing in single methyl groups or ring
size. In addition, the model produced numerous instable
structures (36%; e.g., carbonic acid monoesters, anhydrides,
imines, acetals, antiaromatic structures), fragment-like com-
pounds with molecular weights below 150 g/mol (21%) as well
as unsubstituted linear fatty acids and hydrocarbons (14%). None
of the remaining nine compounds (7% of the designs) was
deemed a potential RXR agonist by SPiDER target prediction
software20. We concluded from this preliminary experiment that
fine-tuning of the generative AI model with a single template
structure was insufficient to obtain synthetically accessible and
stable isofunctional mimetics.

With the aim to increase the number and quality of the
designed compounds, we expanded the set of templates for
transfer learning to three templates, namely valerenic acid (4),
drupanin (1) and honokiol (2). 1000 de novo SMILES strings
were sampled, 79% of which were valid and 49% were unique
(Fig. 2b). The fractions of close analogues of the templates (18%),
instable structures (15%) and compounds with a molecular
weight below 150 g/mol (4%) dropped considerably compared to
the results obtained from the first experiment using a single
template. However, the new model revealed a tendency to sample
long alkyl chains, leading to a large fraction (90 designs, 19%) of
unsubstituted fatty acids or pure hydrocarbons. In the remaining
215 compounds (44%), a large fraction of linear alkyl chains
(≥C6) was observed (66 designs, 13%). SPiDER predicted 26 of
the 215 stable and synthetically accessible designs as potential
RXR agonists with p values < 0.1 (Fig. 3a). These positively
predicted RXR modulators were further prioritized using the
weighted atom localization and entity shape (WHALES)
descriptors, which capture partial charges and 3D molecular
shape patterns in a holistic way21. Previously, this protocol was
successfully employed to identify novel RXR ligands4,11,14. Design
7 was ranked in top position according to its WHALES similarity
to 12 known RXR binders (for details, see the experimental
section), and was selected for synthesis and biological
characterization.

After fine-tuning on one and three RXR modulating natural
products, respectively, we further expanded the set of template
compounds for transfer learning and included all six known
natural products that activate RXR, namely valerenic acid (4),
drupanin (1), honokiol (2), bigelovin (3), isopimaric acid (5) and
dehydroabietic acid (6). Again, 1000 SMILES strings were
sampled from this fine-tuned model. Although the fraction of
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Fig. 1 Natural products with known modulatory activity on RXRs. Compounds 1–6 are known to activate RXRs at micromolar concentrations
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valid chemical structures (79%) did not further increase
compared to the three-template case, the portion of unique
SMILES strings generated was markedly higher (74%, Fig. 2c).
Moreover, the fractions of close template analogues (2%) and low
molecular weight compounds (<1%) decreased noticeably.
Despite the considerable number of instable (25%) and non-
functionalized (18%) structures, 491 compounds (54%) appeared
to be suitable for synthesis. Of these designs, 201 were predicted
as RXR agonists with p < 0.1 by SPiDER (Fig. 3b) and ranked
using the WHALES descriptors. The 50 best-ranked compounds
were visually inspected for synthetic accessibility and building
block availability, and the designs 8–10 were selected for synthesis
and in vitro characterization.

Analysis of AI-designed compounds inspired by natural pro-
ducts. The compounds designed by the AI model possess a dif-
ferent scaffold distribution than the RXR binders from ChEMBL
(EC50/IC50 < 50 µM, N= 521)14, and the NP templates utilized
for fine-tuning (Fig. 4). This result highlights the ability of the AI
approach to generate innovative molecular cores, thereby
exploring novel regions of the chemical space.

The de novo designs were significantly superior compared to
the compounds retrieved from ChEMBL in terms of their natural

product likeness22 but less natural-product-like than dictionary of
natural products (DNP)23 entries (Fig. 5; 30,000 randomly
selected compounds each, p < 0.001, Kruskal-Wallis with post-
hoc analysis and Bonferroni correction). These results show that
the generative AI model successfully produced molecules that
possess features of the synthetic ChEMBL compounds used for
model training and the natural products used for transfer
learning. The number of molecular targets predicted by SPiDER
(p < 0.05) for the designed molecules correlates with the number
of targets predicted for the respective templates and significantly
differs between the sample sets (Fig. 6). Apparently, the
generative model captures the bioactivity of the template(s) but
a sufficient number of structurally distinct molecules that share a
bioactivity is required for fine-tuning on a selected target activity.

Synthesis of AI-designed compounds. Designs 7–10 were pre-
pared according to Fig. 7. Reaction of alkylamine 11 and alkyl-
bromide 12 under microwave irradiation in DMF with
triethylamine as base afforded aminoacid 7 in moderate yield.
Design 8 was available in a four-step procedure from 6-hydro-
xyquinazolin-4(3H)-one (13), which was protected with tert-
butyldimethylchlorosilane and subsequently reacted with 3-
formyl-4-methylphenylboronic acid (15) to 16 under adapted
Chan-Lam conditions24, using copper(II)acetate as catalyst and
triethylamine as ligand. Microwave irradiation of 16 in pyridine/
piperidine in presence of malonic acid produced deprotected
cinnamic acid derivative 17 which was treated with acryloyl
chloride to afford 8. Amide coupling of 4-aminophenol (18) and
4-iso-propyloxybenzoic acid (19) to 20 using EDC*HCl/4-DMAP
and subsequent ester formation of phenol 20 and acryloyl
chloride produced design 9. Williamson ether formation between
3,4-dihydroxybenzaldehyde (21) and 1-bromodecan (22) to 23
followed by Knoevenagel condensation of benzaldehyde 23 with
malonic acid in pyridine/piperidine under microwave irradiation
yielded design 10.
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Fig. 2 Characteristics of the designs sampled by differentially fine-tuned AI-models: a With only one single natural product (4) as template, the model

generates only a minor fraction of valid and unique designs. Moreover, close analogues of the template, instable structures, unfunctionalized fatty acids and

very small molecules dominate the few unique and valid samples. b With an expanded collection of three templates (1, 2, and 4), the proportion of valid

samples is markedly increased but again many duplicate designs are produced and template analogues as well as instable or unfunctionalized structures

constitute relevant fractions. c With a set of six templates (1-6) sharing a certain bioactivity, the model generates a favorable proportion of valid structures

and duplicates are reduced to a minor fraction. Moreover, close analogues of the individual templates were almost eliminated from the samples when six

template structures were u-However, there still is a considerable number of non-functionalized or chemically instable designs

Table 1 In vitro potencies of RXR modulating natural

products

Natural product EC50 RXRα EC50 RXRβ EC50 RXRγ

Drupanin (1)17 2.1 ± 0.1 µM 4.6 ± 0.3 µM 7.0 ± 0.3 µM
Honokiol (2)18 11.8 µM — —

Bigelovin (3)19 4.9 µM — —

Valerenic acid (4)4 27 ± 3 µM 5.2 ± 0.4 µM 43 ± 1 µM
Isopimaric acid (5)4 26 ± 1 µM 32 ± 1 µM 33 ± 1 µM
Dehydroabietic acid (6)4 42 ± 3 µM 42 ± 1 µM 42 ± 1 µM
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Biological characterization of AI-designed compounds. The
computationally designed compounds 7–10 were characterized
in vitro for RXR modulatory potency on all three RXR subtypes
up to a concentration of 50 µM in specific hybrid reporter gene
assays. These in vitro test systems employ chimera receptors
composed of the human ligand binding domain of the nuclear
receptor in question and the DNA binding domain of the Gal4
receptor from yeast. A Gal4-responsive firefly luciferase construct
served as reporter gene and a constitutively expressed Renilla
luciferase was used to normalize on transfection efficiency and
observe test compound toxicity25,26. Designs 7–10 were tested for
both agonistic and competitive antagonistic activity.

Single-point evaluation at 50 µM revealed design 7 (obtained
from model fine-tuning on three templates) and design 8 (fine-
tuning on six templates) as inactive on RXRs, whereas the designs
9 and 10 obtained from the latter model were confirmed as RXR
agonists (Table 2). Full dose-response characterization revealed
double-digit micromolar potency on all three RXR subtypes for
compound 9, without apparent subtype preference and moderate
transactivation efficacy. Design 10 possessed full agonistic activity
on RXRα and RXRβ with low micromolar EC50 values, while its

ChEMBL RXR binders

De novo design — valerenic acid

De novo design — 3 templates

De novo design — 6 templates

NP templates

8% 8%

5%

2% 2%

2%4%7%17%

17% 17%17%17%33%

2% 1% 1%

4% 3%

3%

3%

3% 2%13%

27%

Fig. 4 Scaffold analysis: most frequently occurring graph scaffold amongst ChEMBL RXR binders (EC50/IC50 < 50 µM, 521 compounds), NP templates and the

designs generated by the LSTM machine learning model. Percentage indicates the frequency of occurrence of the graph scaffold among the considered set

Predicated as RXR agonist (p < 0.1)

3 natural product templates 6 natural product templates

12%

41%

a b

Fig. 3 Predicted activities of sample sets on RXRs: The valid and unique

designs obtained from the AI model that was fine-tuned on three natural

product templates (1, 2, 4) were predominantly not recognized by the

target prediction software SPiDER as putative RXR modulators (12%, a. In

contrast, the proportion of the designs predicted as RXR modulators by

SPiDER increased considerably for the AI model that had been fine-tuned

on six natural product templates (41%, b)
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potency on the RXRγ subtype was markedly weaker. Thus, design
10 possesses distinctive subtype preference for RXRα and RXRβ.

Model evaluation and summary. The experimental results con-
firm the suitability of the generative AI model for the de novo
design of natural product mimetics. A certain number of bioac-
tive templates appears to be required for model fine-tuning to
obtain synthetically accessible bioactive mimetics. After fine-
tuning on valerenic acid (4) as the sole template, the model
primarily generated chemically invalid SMILES, and the small
fraction of unique and valid entries was dominated by instable
structures, close analogues of the template and very small com-
pounds. Thus, fine-tuning on a single natural product template
failed to achieve the objective of generating bioactive natural
product mimetics. With three templates for fine-tuning, the
model performance improved and the percentages of instable
structures, close analogues of the templates and very small
compounds dropped markedly. However, computational predic-
tion of RXR modulation (SPiDER software) suggested only 12%
of the synthetically accessible samples as potential RXR mod-
ulators with a p value < 0.1 (10% false-positive estimation, Fig. 3).
Notably, not a single design obtained from this model was pre-
dicted as RXR agonist with p < 0.05. Ranking of the samples using
holistic WHALES descriptors, which previously proved useful in

the identification of RXR ligands4, revealed design 7 as the
highest ranked candidate for RXR modulation, but synthesis and
in vitro characterization failed to confirm activity. The poor
activity prediction and the experimentally confirmed inactivity of
design 7 suggest that transfer learning with three natural products
was insufficient to tune the network model towards designing
isofunctional natural product mimetics.

With a set of six natural products sharing a bioactivity on
RXRs as templates for fine-tuning, the model not only produced a
high proportion of valid, stable and innovative structures but also
captured the bioactivity of the templates as indicated by almost
50% of the stable samples being positively predicted as RXR
agonists by SPiDER (Fig. 3). This estimation was confirmed
experimentally, as two out of three designs selected from the top-
50 ranking samples according to the WHALES descriptors
possessed RXR agonistic activity in the same potency range as the
natural product templates. Thus, with sufficient data available for
the crucial target-focused fine-tuning step, the model was able to
autonomously generate isofunctional mimetics of the given
templates, while conserving their bioactivity on the shared
biological target.

To characterize the novelty of the selected designs, we utilized
four benchmark fingerprint descriptors for virtual screening27

(AtomPairs fingerprints28, Morgan fingerprints29, RDKit finger-
prints, MACCS keys30) to determine the structural similarity to
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known binders annotated in ChEMBL (EC50, IC50 < 50 µM). The
maximum and the average Jaccard-Tanimoto similarity index,
which ranges from 0 to 1 (greater values indicate higher
molecular similarity), was computed between each designed
compound and the known RXR ligands annotated in ChEMBL
(Table 3). Designs 7–10 revealed a low similarity to known RXR
actives, especially in terms of the presence of branched atom-
centered fragments (as encoded by Morgan fingerprints),
suggesting structural novelty.

Given the limited availability of active templates (sparse data
situation), this machine learning approach seems to reach its limit
of applicability. The number of known actives required for
successfully introducing the desired target-bias into the model
may depend on the structural complexity of the actives and their
structural difference to the ChEMBL library that was employed
for training the basic AI model. With sufficient data, particularly
bioactive natural products sharing a common molecular target,
this generative model was proven suitable to generate

isofunctional de novo natural-product-mimetics. These designs
differ significantly from the ChEMBL training data in terms of
greater natural-product-likeness. This approach, therefore, holds
potential for de novo molecular design not only of bioactive new
chemical entities but also in tuning them towards natural
product-like properties.

Discussion
AI methods bear potential for early drug discovery and
computer-assisted medicinal chemistry. In de novo molecular
design, generative machine learning methods, particularly gen-
erative neural networks, have been shown competent to auton-
omously design new chemical entities with inherited bioactivities
from the given templates11. Here, we have demonstrated that
small sets of templates can be sufficient for model fine-tuning on
certain target spectra. However, as for virtually all methods in
computational de novo molecular design, the generative neural
networks employed for this task suffer from the need to score and
rank the designs. A suitable and validated predicted bioactivity is
crucial for meaningful compound selection from the set of new
molecules generated. Although the results of this present study
indicate that AI-driven de novo design with sufficient data can
provide exceptionally high proportions of actives, the model
output appears restricted to the quality of its input, and retrieving
samples with bioactivities that exceed the potency of the tem-
plates seems unlikely. Despite these apparent limitations, how-
ever, the results of this study corroborate the ability of the method
to generate synthetically accessible small molecule designs that
populate uncharted regions of chemical space at the interface of
bioactive natural products and druglike compounds.
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Table 2 In vitro activity of designs 7–10 on RXRs

ID EC50 (fold activation)

RXRα RXRβ RXRγ

7 Inactive at 50 µM Inactive at 50 µM Inactive at 50 µM
8 Inactive at 50 µM Inactive at 50 µM Inactive at 50 µM
9 29 ± 5 µM (10 ± 1) 27 ± 1 µM (11 ± 1) 19.1 ± 0.1 µM (6.1 ± 0.1)
10 16.9 ± 0.6 µM (66 ± 4) 15.7 ± 0.8 µM (59 ± 5) >50 µM

Data represents mean ± SEM of at least two independent experiments in duplicates.
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In contrast to several of the previously published rule-based de
novo design approaches5–7, the deep learning concept presented
here is not specifically meant to design mimetics of a single
template. The technique requires a set of several template struc-
tures that share a common biological target. If the model is fine-
tuned on a single template it will sample almost exclusively this
template structure and structurally close compounds, which is the
effect of the neural network minimizing its error function. When
the exact template structure is generated, the error reaches its
minimum. Therefore, one cannot expect this method to generate
mimetics of a single reference compound without artificially
increasing the tolerance of the structure generator. Judging from
the preliminary results obtained here, even with three template
compounds, the generative model has not reached its full
potential.

The attractiveness of this new de novo design approach lies in
its ability to generate isofunctional new chemical entities (NCEs)
to a set of bioactive small molecules. When natural products are
used for the fine-tuning step that introduces the target focus, the
model is capable of generating NCEs that populate the chemical
space at the border of synthetic bioactive molecules (ChEMBL)
and natural products. With these characteristics, generative AI for
de novo molecular design has the potential to play a key role at
the interface of computer-assisted drug discovery and natural-
product-inspired medicinal chemistry.

Methods
Data preparation. Salts and stereochemistry information were removed, and
compound structures were represented in their neutral state. Molecular structures
were represented as simplified molecular input line entry system (SMILES) strings
and converted to canonical SMILES with RDKit (Open-source cheminformatics;
http://www.rdkit.org).

Generative machine learning model. All scripts were written in Python (Version
3.6), using RDKit (www.rdkit.org), Tensorflow (v1.2, www.tensorflow.org) and
Keras (v2.0, https://keras.io) packages. The generative long short-term memory
deep learning model trained on bioactive molecules from the ChEMBL database
(ChEMBL22, pAffinity > 6) was used as previously published12. The model was re-
trained (fine-tuning step) with datasets containing valerenic acid (set 1), valerenic
acid, drupanin and honokiol (set 2) or valerenic acid, drupanin, honokiol, bige-
lovin, isopimaric acid and dehydroabietic acid (set 3). For this fine-tuning step, the
model was trained for five epochs. 1000 SMILES strings were sampled from the
fine-tuned models with a softmax temperature of 0.75 (see ref. 12 for technical
details).

Similarity searching with holistic molecular descriptors. The similarity between
the unique and valid molecules generated by the generative model and the sets of
known RXR actives was calculated using weighted holistic atom localization and
entity shape (WHALES) descriptors21. Molecular geometry was optimized using
the MMFF9431 force field with 1000 iterations and 10 starting conformers for each
compound with RDKit; the minimum energy conformation was chosen for
descriptor calculation. WHALES 3D descriptors were computed with freely-
available software (https://github.com/grisoniFr/whales_descriptors), using
Gasteiger-Marsili32 partial charges as weighting scheme. RXR query structures of
binders were retrieved from ChEMBL as the 12 most potent annotated ligands
according to EC50/Ki. For each dataset, every compound in turn was used as a

query to perform similarity ranking on the basis of their Euclidean distance on
Gaussian-normalized WHALES descriptor values. The results of the individual
virtual screenings on each compound were merged according to the sum of their
reciprocal ranks33. WHALES reference compounds can be found in Supplementary
Data 1.

Self-organizing map consensus for target prediction. The bioactivities of all
unique and valid molecules generated by the generative model were predicted with
SPiDER software20. CATS2 descriptors34 and the two-dimensional MOE descrip-
tors (The Chemical Computing Group, Montreal, Canada; MOE2016.08; MOE
descriptors KNIME node; forcefield: MMFF94*) were calculated for all generated
molecules. The SPiDER results were filtered for compounds predicted to be active
on RXR with p < 0.1. In addition, the number of targets with a predicted activity (p
< 0.05) was retrieved for all templates and designs (Fig. 5).

Scaffold and similarity analysis. Molecular and graph scaffolds were computed
with “RDKit Find Murcko Scaffolds” node in KNIME35 (v. 3.6.1). Benchmark
fingerprints were computed with the “RDKit Fingeprints” node in KNIME35 v
3.6.1, with default settings (AtomPairs: NumBits= 1024, MinPathLength= 1,
MaxPathLength= 30, UseChirality= False, RootedFingerprint= False; RDKit:
NumBits= 1024, MinPathLength= 1, MaxPathLength= 7, UseChirality= False,
RootedFingerprint= False; Morgan: NumBits= 1024; Radius= 2; UseChirality=
False; MACCS: UseChirality= False).

Hybrid reporter gene assays for RXRα/β/γ activation. Gal4 hybrid reporter
gene assays were performed as described previously25,26. Plasmids: The Gal4-fusion
receptor plasmids pFA-CMV-hRXRα-LBD26, pFA-CMV-hRXRβ-LBD26, and pFA-
CMV-hRXRγ-LBD26 coding for the hinge region and ligand binding domain
(LBD) of the canonical isoform of the respective nuclear receptor have been
reported previously. pFR-Luc (Stratagene) was used as reporter plasmid and pRL-
SV40 (Promega) for normalization of transfection efficiency and cell growth. Assay
procedure: HEK293T cells were grown in DMEM high glucose, supplemented with
10% FCS, sodium pyruvate (1 mM), penicillin (100 U/ml) and streptomycin
(100 μg/ml) at 37 °C and 5% CO2. The day before transfection, HEK293T cells were
seeded in 96-well plates (2.5·104 cells/well). Before transfection, medium was
changed to Opti-MEM without supplements. Transient transfection was carried
out using Lipofectamine LTX reagent (Invitrogen) according to the manufacturer’s
protocol with pFR-Luc (Stratagene), pRL-SV40 (Promega) and pFA-CMV-hRXR-
LBD. 5 h after transfection, medium was changed to Opti-MEM supplemented
with penicillin (100 U/ml), streptomycin (100 μg/ml), now additionally containing
0.1% DMSO and the respective test compound or 0.1% DMSO alone as untreated
control or bexarotene (1 µM) and 0.1% DMSO as positive control. Each con-
centration was tested in duplicates and each experiment was repeated indepen-
dently at least two times. Following overnight (12-14 h) incubation with the test
compounds, cells were assayed for luciferase activity using Dual-Glo™ Luciferase
assay system (Promega) according to the manufacturer’s protocol. Luminescence
was measured with an Infinite M200 luminometer (Tecan Deutschland GmbH).
Normalization of transfection efficiency and cell growth was done by division of
firefly luciferase data by renilla luciferase data and multiplying the value by 1000
resulting in relative light units (RLU). Fold activation was obtained by dividing the
mean RLU of a test compound at a respective concentration by the mean RLU of
untreated control. All hybrid assays were validated with reference agonist bexar-
otene which yielded EC50 values in agreement with literature.

General chemical methods. All chemicals and solvents were reagent grade and
used without further purification, unless specified otherwise. All reactions were
conducted in oven-dried glassware under argon-atmosphere and in absolute sol-
vents. NMR spectra were recorded on a Bruker AV 400 spectrometer (Bruker
Corporation, Billerica, MA, USA). Chemical shifts (δ) are reported in ppm relative
to TMS as reference; approximate coupling constants (J) are shown in Hertz (Hz).
Mass spectra were obtained on an Advion expression CMS (Advion, Ithaka, NY,
USA) equipped with an Advion plate express TLC extractor (Advion) using

Table 3 Similarity of de novo designs 7–10 to ChEMBL bioactives (EC50, IC50 < 50 µM)

AtomPairs RDKit Morgan MACCS

ID average max average max average max average max

7 0.26 0.37 0.25 0.34 0.14 0.25 0.31 0.52
8 0.39 0.49 0.49 0.63 0.16 0.23 0.35 0.59
9 0.32 0.42 0.35 0.41 0.15 0.24 0.32 0.52
10 0.28 0.43 0.32 0.41 0.17 0.33 0.36 0.70

The Jaccard-Tanimoto similarity index was computed for four types of molecular fingerprints to quantify structural molecular similarity. Both the average and maximum similarity values to the ChEMBL
RXR binders are reported for each de novo design.
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electrospray ionization (ESI). High-resolution mass spectra were recorded on a
Bruker maXis ESI-Qq-TOF-MS instrument (Bruker). Melting points were deter-
mined on a Büchi M-560 (Büchi Labortechnik, Flawil, Switzerland). Compound
purity was analyzed by HPLC on a VWR LaChrom ULTRA HPLC (VWR, Radnor,
PA, USA) equipped with a MN EC150/3 NUCLEODUR C18 HTec 5 µ column
(Machery-Nagel, Düren, Germany) using a gradient (H2O/MeCN 95:5+ 0.1%
formic acid isocratic for 5 min to H2O/MeCN 5:95+ 0.1% formic acid after
additional 25 min and H2O/MeCN 5:95+ 0.1% formic acid isocratic for additional
5 min) at a flow rate of 0.5 ml/min and UV-detection at 245 nm and 280 nm. All
final compounds for biological evaluation had a purity > 95% (area-under-the-
curve for UV245 and UV280 peaks).

Synthesis of 7-((2-(o-Tolyloxy)ethyl)amino)heptanoic acid (7): 2-(2-
Methylphenoxy)ethylamine (11, 76 mg, 0.50 mmol, 1.00 eq) and 7-
bromoheptanoic acid (12, 105 mg, 0.50 mmol, 1.00 eq) were dissolved in DMF
(abs., 1.0 ml) and triethylamine (abs., 0.2 ml) was added. The mixture was stirred
under microwave irradiation at 80 °C for 120 min. The solvents were then
evaporated, and the crude product was purified by column chromatography using
methylene chloride/methanol (9:1) as mobile phase. The product was then
dissolved in methylene chloride and hydrochloric acid (4 M in dioxane, 0.25 ml)
was added to precipitate the hydrochloride as colorless solid (28 mg, 18%). Mp
(hydrochloride): >400 °C. 1H NMR (400 MHz, D2O) δ= 1.23–1.38 (m, 5H),
1.47–1.58 (m, 2H), 1.61–1.73 (m, 2H), 2.17 (s, 3H), 2.24–2.34 (m, 2H), 3.07–3.13
(m, 2H), 3.44–3.49 (m, 2H), 4.23–4.28 (m, 2H), 6.90–6.98 (m, 2H), 7.15–7.23 (m,
2H) ppm. 13C NMR (101MHz, D2O) δ= 11.88, 25.15, 25.23, 27.56, 33.48, 47.63,
48.04, 52.07, 70.96, 112.09, 131.02, 131.23, 143.00, 155.27, 166.48 ppm. HRMS (ESI+):
m/z 280.1907 calculated for C16H26NO3, found 280.1907 ([M+H]+).

Synthesis of 6-((tert-Butyldimethylsilyl)oxy)quinazolin-4(3H)-one (14): 6-
Hydroxyquinazolin-4(3H)-one (13, 1.00 g, 6.17 mmol, 1.00 eq) was dissolved in
DMF (abs., 20 ml) and triethylamine (2.0 ml), and TBDMS-Cl (1.20 g, 8.00 mmol,
1.30 eq) were slowly added. The resulting mixture was stirred at room temperature
for 24 h. Aqueous hydrochloric acid (1M, 50 ml) and ethyl acetate (50 ml) were
then added, phases were separated, and the aqueous layer was extracted twice with
ethyl acetate (2 × 50 ml). The combined organic layers were dried over magnesium
sulfate and the residue was reduced to approx. 10 ml in vacuum. The crude product
was precipitated by the addition of 50 ml water and recrystallized from hexane to
yield the title compound as colorless solid (1.26 g, 74%). 1H NMR (400MHz,
chloroform-d) δ= 0.20 (s, 6H), 0.95 (s, 9H), 7.25 (dd, J= 8.8, 2.8 Hz, 1H), 7.60 (d,
J= 2.4 Hz, 1H), 7.61 (d, J= 3.4 Hz, 1H), 7.93 (s, 1H), 10.75 (s, 1H) ppm. 13C NMR
(101MHz, chloroform-d) δ=−4.27, 18.37, 25.77, 114.92, 123.74, 128.89, 129.50,
141.34, 143.76, 155.18, 182.38 ppm. MS (ESI+): m/z no molecular ion.

Synthesis of 5-((6-((tert-Butyldimethylsilyl)oxy)quinazolin-4-yl)oxy)-2-
methylbenzaldehyde (16): 14 (550 mg, 2.00 mmol, 1.00 eq) was dissolved in
methylene chloride (abs., 40 ml) and 3-formyl-4-methylphenylboronic acid (15,
600 mg, 3.00 mmol, 3.00 eq), molecular sieves (4 Å), triethylamine (2.08 ml, 3.04 g,
30.0 mmol, 15.00 eq) and copper(II)acetate (360 mg, 2.00 mmol, 1.00 eq) were
added sequentially. The mixture was stirred at room temperature in an open flask
for 4 h. Evaporated solvent was replaced every 60 min. The solvents were then
evaporated in vacuum and the crude product was purified by column
chromatography using methylene chloride/methanol (98:2) and hexane/ethyl
acetate (2:1) as mobile phase. Recrystallization from methanol yielded the title
compound as colorless solid (741 mg, 94%). 1H NMR (400 MHz, chloroform-d)
δ= 0.19 (s, 6H), 0.94 (s, 9H), 2.69 (s, 3H), 7.26 (dd, J= 8.7, 2.8 Hz, 1H), 7.39
(d, J= 8.1 Hz, 1H), 7.50 (dd, J= 8.1, 2.4 Hz, 1H), 7.62 (d, J= 8.7 Hz, 1H), 7.66
(d, J= 2.8 Hz, 1H), 7.80 (d, J= 2.4 Hz, 1H), 7.95 (s, 1H), 10.25 (s, 1H) ppm. 13C
NMR (101MHz, chloroform-d) δ=−4.42, 18.25, 19.21, 25.63, 115.53, 128.55,
129.25, 129.55, 131.94, 133.11, 135.03, 141.53, 143.26, 143.48, 155.50, 191.13 ppm.
MS (ESI+ ): m/z no molecular ion.

Synthesis of (E)-3-(5-((6-Hydroxyquinazolin-4-yl)oxy)-2-methylphenyl)
acrylic acid (17): 16 (395 mg, 1.00 mmol, 1.00 eq) was dissolved in pyridine (abs.,
5.0 ml), malonic acid (105 mg, 1.00 mmol, 1.00 eq) and piperidine (0.5 ml) were
added and the mixture was stirred at 100 °C under microwave irradiation for
30 min. After cooling to room temperature, 50 ml 10% aqueous sodium hydroxide
solution were added, and the aqueous layer was washed with ethyl acetate
(3 × 50 ml). The aqueous layer was then brought to pH 7 by the addition of 1M
aqueous hydrochloric acid and the precipitate was filtered off. The filter residue was
washed with methanol (20 ml) and acetone (20 ml) to yield the title compound as
colorless solid (309 mg, 96 %). 1H NMR (400MHz, DMSO-d6) δ= 2.47 (s, 3H),
6.53 (d, J= 15.8 Hz, 1H), 7.38 (dd, J= 8.8, 2.8 Hz, 1H), 7.41–7.49 (m, 2H), 7.53 (d,
J= 2.8 Hz, 1H), 7.62 (d, J= 8.8 Hz, 1H), 7.82 (d, J= 15.9 Hz, 1H), 7.89 (d, J= 1.9
Hz, 1H), 8.22 (s, 1H) ppm. 13C NMR (101MHz, DMSO-d6) δ 19.42, 109.91,
122.04, 123.28, 124.51, 125.76, 129.11, 129.19, 131.83, 134.30, 136.56, 138.16,
140.47, 140.88, 144.63, 157.39, 167.82, 207.05 ppm. MS (ESI+): m/z 322.9 (M+H)+.

Synthesis of (E)-3-(5-((6-(Acryloyloxy)quinazolin-4-yl)oxy)-2-methylphenyl)
acrylic acid (8): 17 (65 mg, 0.20 mmol, 1.00 eq) was dissolved in chloroform (abs.,
4.0 ml) and DMF (abs., 1.0 ml), triethylamine (0.10 ml) was added and acryloyl
chloride (50 µl, 54 mg, 0.60 mmol, 3.00 eq) was slowly added under vigorous
stirring. The resulting mixture was stirred at room temperature for 2 h. Methanol
(10 ml) was added and the mixture was stirred for another 10 min. The solvents
were then evaporated in vacuum and the crude product was purified by column
chromatography using methylene chloride/methanol (95:5) as mobile phase. The

product was crystallized from hexane/methylene chloride to yield the title
compound as pale yellow solid (17 mg, 23%). Mp: 344–348 °C (decomposition). 1H
NMR (400MHz, methanol-d4) δ= 2.43 (s, 3H), 6.03 (dd, J= 10.4, 1.3 Hz, 1H),
6.33 (dd, J= 17.3, 10.4 Hz, 1H), 6.40 (d, J= 15.9 Hz, 1H), 6.55 (dd, J= 17.3, 1.3 Hz,
1H), 7.30–7.39 (m, 2H), 7.59 (dd, J= 8.8, 2.7 Hz, 1H), 7.70 (d, J= 2.1 Hz, 1H), 7.73
(d, J= 8.9 Hz, 1H), 7.89 (d, J= 15.9 Hz, 1H), 7.95 (d, J= 2.6 Hz, 1H), 8.22 (s, 1H)
ppm. 13C NMR (101MHz, methanol-d4) δ= 18.08, 118.40, 120.69, 124.83, 127.23,
128.10, 128.48, 128.76, 128.92, 131.53, 131.70, 131.99, 132.48, 132.64, 134.52,
137.38, 142.26, 146.86, 149.71, 162.25, 192.63 ppm. HRMS (ESI+ ): m/z 377.1132
calculated for C21H17N2O5 found 377.1127 ([M+H]+).

Synthesis of N-(4-Hydroxyphenyl)-4-isopropoxybenzamide (20): 4-
Aminophenol (18, 210 mg, 2.00 mmol, 1.00 eq), 4-isopropyloxybenzoic acid (19,
360 mg, 2.00 mmol, 1.00 eq) and 4-DMAP (245 mg, 2.00 mmol, 1.00 eq) were
dissolved in CHCl3 (abs., 20 ml) and EDC·HCl (575 mg, 3.00 mmol, 1.50 eq) was
added. The mixture was stirred under reflux for 16 h. After cooling to room
temperature, hydrochloric acid (1M, 20 ml) and ethyl acetate (2 ml) were added,
phases were separated, and the aqueous layer was extracted twice with ethyl acetate
(2 × 20 ml). The combined organic layers were dried over magnesium sulfate and
the solvents were evaporated in vacuum. The crude product was purified by
column chromatography using hexane/ethyl acetate (3:1) as mobile phase to yield
the title compound as colorless solid (426 mg, 79%). 1H NMR (400 MHz, DMSO-
d6) δ= 1.30 (d, J= 6.0 Hz, 6H), 4.73 (hept, J= 6.0 Hz, 1H), 6.66–6.78 (m, 2H),
6.96–7.06 (m, 2H), 7.45–7.57 (m, 2H), 7.85–7.95 (m, 2H), 9.24 (s, 1H), 9.84 (s, 1H)
ppm. 13C NMR (101MHz, DMSO-d6) δ= 22.20, 69.86, 115.37, 119.98, 122.70,
127.27, 129.86, 131.31, 153.96, 160.39, 164.85 ppm. MS (ESI-): m/z 270.2 ([M-H]-).

Synthesis of 4-(4-Isopropoxybenzamido)phenyl acrylate (9): 20 (135 mg, 0.50
mmol, 1.00 eq) and was dissolved in THF (abs. 10 ml), pyridine (1 ml) was added
and acryloyl chloride (60 µl, 68 mg, 0.75 mmol, 1.50 eq) was added dropwise. The
mixture was stirred at room temperature for 2 h. Hydrochloric acid (1M, 20 ml)
and ethyl acetate (20 ml) were then added, phases were separated, and the aqueous
layer was extracted twice with ethyl acetate (2 × 20 ml). The combined organic
layers were dried over magnesium sulfate and the solvents were evaporated in
vacuum. The crude product was purified by column chromatography using
hexane/ethyl acetate (5:1) as mobile phase to yield the title compound as colorless
solid (108 mg, 66%). Mp: 172–174 °C. 1H NMR (400MHz, chloroform-d) δ= 1.30
(d, J= 6.1 Hz, 6H), 4.57 (hept, J= 6.1 Hz, 1H), 5.95 (dd, J= 10.5, 1.3 Hz, 1H), 6.25
(dd, J= 17.3, 10.4 Hz, 1H), 6.54 (dd, J= 17.3, 1.3 Hz, 1H), 6.85–6.92 (m, 2H),
7.03–7.11 (m, 2H), 7.54–7.63 (m, 2H), 7.68 (s, 1H), 7.71–7.78 (m, 2H) ppm. 13C
NMR (101MHz, chloroform-d) δ= 21.92, 70.14, 115.52, 121.03, 122.03, 126.47,
127.89, 128.89, 132.61, 135.87, 146.77, 161.03, 164.65, 165.16 ppm. HRMS (ESI+ ):
m/z 326.1387 calculated for C19H20NO4, found 326.1386 ([M+H]+).

Synthesis of 3-(Decyloxy)-4-hydroxybenzaldehyde (23): 3,4-
Dihydroxybenzaldehyde (21, 290 mg, 2.10 mmol, 1.05 eq) was dissolved in DMF
(abs., 5 ml), potassium carbonate (290 mg, 2.10 mmol, 1.05 eq) and 1-bromodecan
(22, 442 mg, 2.00 mmol, 1.00 eq) were added and the mixture was stirred at room
temperature for 4 h. Hydrochloric acid (1 M, 25 ml) and ethyl acetate (25 ml) were
added, phases were separated and the aqueous layer was extracted twice with ethyl
acetate (2 × 25 ml). The combined organic layers were dried over magnesium
sulfate and the solvents were evaporated in vacuum. The crude product was
purified by column chromatography using ethyl acetate/hexane (1:3) as mobile
phase to yield the title compound as a colorless (transparent) solid (216 mg, 39%).
1H NMR (400 MHz, chloroform-d) δ= 0.81 (t, J= 6.8 Hz, 3H), 1.18–1.33 (m,
10H), 1.35–1.45 (m, 2H), 1.49–1.52 (m, 2H), 1.75–1.83 (m, 2H), 4.06 (q, J= 7.2 Hz,
2H), 5.69 (s, 1H), 6.88 (d, J= 8.3 Hz, 1H), 7.34 (dd, J= 8.3, 2.0 Hz, 1H), 7.37
(d, J= 1.8 Hz, 1H), 9.77 (s, 1H) ppm. 13C NMR (101MHz, chloroform-d) δ=
14.11, 22.68, 25.93, 29.00, 29.30, 29.53, 31.88, 69.33, 110.87, 114.06, 124.47, 130.49,
146.20, 148.85, 191.01 ppm. MS (ESI+): m/z 279.3 ([M+H]+).

Synthesis of (E)-3-(3-(Decyloxy)-4-hydroxyphenyl)acrylic acid (10): 23
(139 mg, 0.50 mmol, 1.00 eq) and malonic acid (52 mg, 0.50 mmol, 1.00 eq) were
dissolved in a mixture of pyridine (1.0 ml) and piperidine (0.10 ml). The
mixture was stirred at 100 °C under microwave irradiation for 30 min. After
cooling to room temperature, 10% aqueous hydrochloric acid (25 ml) were added,
and the mixture was extracted three times with ethyl acetate (3 × 25 ml). The
combined organic layers were dried over magnesium sulfate and the solvents
were evaporated in vacuum. The crude product was recrystallized from hexane/
ethyl acetate and water/acetone to yield the title compound as pale yellow solid
(82 mg, 51%). Mp: 141–143 °C. 1H NMR (400MHz, chloroform-d) δ= 0.81 (t, J=
7.0 Hz, 3H), 1.13–1.33 (m, 12H), 1.34–1.43 (m, 2H), 1.76 (quin, J= 6.7 Hz, 2H),
4.01 (t, J= 6.6 Hz, 2H), 6.22 (d, J= 15.9 Hz, 1H), 6.77 (d, J= 8.4 Hz, 1H), 6.97 (dd,
J= 8.4, 2.1 Hz, 1H), 7.09 (d, J= 2.1 Hz, 1H), 7.61 (d, J= 15.9 Hz, 1H) ppm. 13C
NMR (101MHz, chloroform-d) δ= 14.11, 22.67, 25.96, 29.08, 29.31, 29.54,
31.89, 69.11, 111.30, 113.14, 114.92, 122.21, 127.53, 146.01, 146.87, 148.32,
171.29 ppm. HRMS (ESI+ ): m/z 321.2060 calculated for C19H29O4, found
321.2059 ([M+H]+).

Data availability
The datasets and code used, generated or analyzed during the current study are
available from the corresponding authors on reasonable request.
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