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Abstract: The power consumed by the memory hierarchy of a microprocessor can
contribute to as much as 50% of the total microprocessor system power, and is
thus a good candidate for power and energy optimizations. We discuss four
methods for tuning a microprocessors’ cache subsystem to the needs of any
executing application for low-energy embedded systems. We introduce on-
chip hardware implementing an efficient cache tuning heuristic that can
automatically, transparently, and dynamically tune a configurable level-one
cache’s total size, associativity and line size to an executing application. We
extend the single-level cache tuning heuristic for a two-level cache using a
methodology applicable to both a simulation-based exploration environment
and a hardware-based system prototyping environment. We show that a victim
buffer can be very effective as a configurable parameter in a memory
hierarchy. We reduce static energy dissipation of on-chip data cache by
compressing the frequent values  that widely exist in a data cache memory.

Key words:  Cache; configurable; architecture tuning; low power; low energy; embedded
systems; on-chip CAD; dynamic optimization; cache hierarchy; cache
exploration; cache optimization; victim buffer; frequent value.

1. INTRODUCTION

The power consumed by the memory hierarchy of a microprocessor can
contribute to 50% or more of total microprocessor system power1. Such a
large contributor to power is a good candidate for power and energy
optimization. The design of the caches in a memory hierarchy plays a major
role in the memory hierarchy’s power and performance.
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Tuning cache design parameters to the needs of a particular application
or program region can save energy. Cache design parameters include: cache
size, meaning the total number of data byte storage; cache associativity,
meaning the number of tag and data ways simultaneously read per cache
access; cache line size, meaning the number of bytes in a block when
moving data between cache and the next memory level; and victim buffer
use, meaning a small fully-associative buffer storing recently-evicted cache
data lines. Every application has different cache requirements that cannot be
efficiently satisfied with one predetermined cache configuration. For
instance, different applications have vastly different spatial and temporal
locality and thus have different requirements2 with respect to cache size,
cache line size, cache associativity, victim buffer configuration, etc. In
addition to tunable cache parameters, widely existing frequent values in data
caches for some applications can enable data encoding within the cache for
reduced power consumption. We define cache tuning as the task of
choosing the best configuration of cache design parameters for a particular
application, or for a particular phase of an application, such that
performance, power and/or energy are optimized.

New technologies enable cache tuning. Core-based processors allow a
designer to choose a particular cache configuration3-7.  Some processor
designs allow caches to be configured during system reset or even during
runtime2,8,9.

Manual tuning of the cache is hard. A single-level cache may have many
tens of different cache configurations, and interdependent multi-level caches
may have thousands of cache configurations. The configuration space gets
even larger if other dependent configurable architecture parameters are
considered, such as bus and processor parameters. Exhaustively searching
the space may be too slow even if fully automated. With possible average
energy savings of over 40% through tuning2,10, we sought to develop
automated cache tuning methods.

In this chapter, we discuss four methods of cache tuning for energy
savings. We discuss an in-system method for automatically, transparently,
and dynamically tuning a level-one cache; an automatic tuning methodology
for two-level caches applicable to both a simulation-based exploration
environment or a hardware-based prototyping environment; a configurable
victim buffer; and a data cache that encodes frequent data values.
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2. BACKGROUND – TUNABLE CACHE
PARAMETERS

Many methods exist for configuring a single level of cache to a particular
application during design time and in-system during runtime. Cache
configuration can be specified during design time for many commercial soft
cores from MIPS6, ARM5, and Arc4 and for environments such as Tensilica’s
Xtensa processor generator7 and Altera’s Nios embedded processor system3.

Configurable cache hardware also exists to assist in cache configuration.
Motorola’s M*CORE9 processors offer way configuration which allows the
ways of a unified data/instruction cache to individually be specified as either
data or instruction ways. Additionally, ways may be shut down entirely.
Way shut-down is further explored by Albonesi8 to reduce dynamic power
by an average of 40%. An adaptive cache line size methodology is proposed
by Veidenbaum et al.11 to reduce memory traffic by more than 50%.

Exhaustive search methods may be used to find optimal cache
configurations, but the time required for an exhaustive search is often
prohibitive. Several tools do exist for assisting designers in tuning a single
level of cache. Platune12 is a framework for tuning configurable system-on-
a-chip (SOC) platforms. Platune offers many configurable parameters
beyond just cache parameters, and prunes the search space by isolating
interdependent parameters from independent parameters. The level one
cache parameters, being dependent, are explored exhaustively.

Heuristic methods exist to prune the search space of the configurable
cache. Palesi et al.13 improves upon the exhaustive search used in Platune by
using a genetic algorithm to produce comparable results in less time. Zhang
et al.14 presents a cache configuration exploration methodology wherein a
cache exploration component searches configurations in order of their
impact on energy, and produces a list of Pareto-optimal points representing
reasonable tradeoffs in energy and performance. Ghosh et al.15 uses an
analytical model to efficiently explore cache size and associativity and
directly computes a cache configuration to meet the designers’ performance
constraints.

Few methods exist for tuning multiple levels of a cache hierarchy.
Balasubramonian et al.10 proposes a hardware-based cache configuration
management algorithm to improve memory hierarchy performance while
considering energy consumption. An average reduction in memory hierarchy
energy of 43% can be achieved with a configurable level two and level three
cache hierarchy coupled with a conventional level one cache.
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3. A SELF-TUNING LEVEL ONE CACHE
ARCHITECTURE

Tuning a cache to a particular application can be a cumbersome task left
for designers even with the advent of recent computer-aided design (CAD)
tuning aids. Large configuration spaces may take a designer weeks or
months to explore and with a small time-to-market, lengthy tuning iterations
may not be feasible. We propose to move the CAD environment on-chip,
eliminating designer effort for cache tuning. We introduce on-chip hardware
implementing an efficient heuristic that automatically, transparently, and
dynamically tunes the cache to the executing program to reduce energy16.

3.1 Configurable Cache Architecture

The on-chip hardware tunes four cache parameters in the level-one cache:
cache line size (64, 32, or 16 bytes), cache size (8, 4, or 2 Kbytes),
associativity (4, 2, or 1-way), and cache way prediction (on or off). Way
prediction is a method for reducing set-associative cache energy, in which
one way is initially accessed, and other ways accessed only upon a miss.

 I$ 

Tuner 

D$ 

Micro-
processor 

Off chip 
Memory 

Figure 6-1. Self-tuning cache architecture

The exploration space is quite large, necessitating an efficient exploration
heuristic implemented with specialized tuning hardware, as illustrated in
Figure 6-1. The tuning phase may be activated during a special software-
selected tuning mode, during startup of a task, whenever a program phase
change is detected, or at fixed time intervals. The choice of approach is
orthogonal to the design of the self-tuning architecture itself.

The cache architecture supports a certain range of configurations2. The
base level-one cache of 8 Kbytes consists of four banks that can operate as
four ways. A special configuration register allows the ways to be
concatenated to form either a direct-mapped or 2-way set associative 8
Kbyte cache. The configuration register may also be configured to shut
down ways, resulting in a 4 Kbyte direct-mapped or 2-way set associative
cache or a 2 Kbyte direct-mapped cache. Specifically, due to the bank layout
for way shut down, 2 Kbyte 2- or 4-way set associative and 4 Kbyte 4-way
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set associative caches are not possible using the configurable cache
hardware.

3.2 Heuristic Development Through Analysis

A naïve tuning approach would simply try all possible combinations of
configurable parameters in an arbitrary order. For each configuration, the
miss rate can be measured and used to estimate the energy consumption of
the particular cache configuration. After all configurations are executed, the
approach would simply choose the configuration with the lowest energy
consumption. However, such an exhaustive method may involve the
inspection of too many configurations. Therefore, we wish to develop a
cache tuning heuristic that minimizes the number of configurations explored.

When developing a good heuristic, the parameter (cache size, line size,
associativity, or way prediction) with the largest impact in performance and
energy would likely be the best parameter to search first. We analyzed each
parameter to determine the parameter’s impact on miss rate and energy by
fixing three parameters and varying the third.

We observed that varying the cache size had the largest average impact
on energy and miss rate – changing the cache size can impact the energy by
a factor of two or more. From our analysis, we developed a search heuristic
that first determines the best cache size, determines the best line size, then
the best associativity, and finally, if the best associativity is greater than one,
our heuristic determines whether to use way prediction or not.

3.3 Search Heuristic

The heuristic developed based on the importance of parameters is
summarized below:

1. Begin with a 2 Kbyte, direct-mapped cache with a 16 byte line size.
Increase the cache size to 4 Kbytes. If the increase in cache size causes a
decrease in energy consumption, increase the cache size to 8 Kbytes.
Choose the cache size with the best energy consumption.

2. For the best cache size determined in step 1, increase the line size from
16 bytes to 32 bytes. If the increase in line size causes a decrease in
energy consumption, increase the line size to 64 bytes. Choose the line
size with the best energy consumption.

3. For the best cache size determined in step 1 and the best line size
determined in step 2, increase the associativity to 2 ways. If the increase
in associativity causes a decrease in energy consumption, increase the
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associativity to 4 ways. Choose the associativity with the best energy
consumption.

4. If step (3) determined the best associativity to be greater than 1,
determine if enabling way prediction results in energy savings.

The cache tuning heuristic can be implemented in either software or
hardware. In a software-based approach, the system processor would execute
the search heuristic. Executing the heuristic on the system processor would
not only change the runtime behavior of the application but also affect the
cache behavior, possibly resulting in the search heuristic choosing a non-
optimal cache configuration. Therefore, we prefer a hardware-based
approach that does not significantly impact overall area or power.

3.4 Experiments and Results

We simulated numerous Powerstone9 and MediaBench18 benchmarks
using SimpleScalar19, a cycle-accurate simulator that includes a MIPS-like
microprocessor model, to obtain the number of cache accesses and cache
misses for each benchmark and configuration explored.

For power dissipation, we considered both static power dissipation due to
leakage current and dynamic power dissipation due to logic switching
current and the charging and discharging of the load capacitance. We obtain
the energy of a cache hit from our own CMOS 0.18 µm layout of our
configurable cache (we found our energy values correspond closely with
CACTI values). We obtain the off-chip memory access energy from a
standard Samsung memory, and the stall energy from a 0.18 µm MIPS
microprocessor. Furthermore, we obtained the power consumed by our cache
tuner, through simulation of a synthesized version of our cache tuner written
in VHDL.

Table 6-1.  Results of search heuristic. Ben. is the benchmark considered, cfg. is  the cache
configuration selected, No. is the number of configurations examined by our heuristic, and
E% is the energy savings of both the I-cache and D-cache.

Ben. I-cache cfg No. D-cache cfg No. I-cache E% D-cache E%
padpcm 8K_1W_64B 7 8K_1W_32B 7 23% 77%

crc 2K_1W_32B 4 4K_1W_64B 6 70% 30%
auto 8K_2W_16B 7 4K_1W_32B 6 3% 97%
bcnt 2K_1W_32B 4 2K_1W_64B 4 70% 30%
bilv 4K_1W_64B 6 2K_1W_64B 4 64% 36%

binary 2K_1W_32B 4 2K_1W_64B 4 54% 46%
blit 2K_1W_32B 4 8K_2W_32B 8 60% 40%
brev 4K_1W_32B 6 2K_1W_64B 4 63% 37%
g3fax 4K_1W_32B 6 4K_1W_16B 5 60% 40%

fir 4K_1W_32B 6 2K_1W_64B 4 29% 71%
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Ben. I-cache cfg No. D-cache cfg No. I-cache E% D-cache E%
jpeg 8K_4W_32B 8 4K_2W_32B 7 6% 94%
pjpeg 4K_1W_32B 6 4K_1W_16B 5 51% 49%

optimal 4K_2W_64B
ucbqsort 4K_1W_16B 6 4K_1W_64B 6 63% 37%

tv 8K_1W_16B 7 8K_2W_16B 7 37% 63%
adpcm 2K_1W_16B 5 4K_1W_16B 5 64% 36%

epic 2K_1W_64B 5 8K_1W_16B 6 39% 61%
g721 8K_4W_16B 8 2K_1W_16B 3 15% 85%

pegwit 4K_1W_16B 5 4K_1W_16B 5 37% 63%
mpeg2 4K_1W_32B 6 4K_2W_16B 6 40% 60%

optimal 8K_2W_16B
Average 5.8 Average: 5.4 45% 55%

Table 6-1 shows the results of our search heuristic, for instruction and
data cache configurations. Our search heuristic is quite effective: it searches
on average only 5.8 configurations, compared to 27 configurations for an
exhaustive approach. Furthermore, our heuristic finds the optimal
configuration in nearly all cases. For the two data cache configurations
where the heuristic does not find the optimal, pjpeg  and mpeg2, the
configuration found is only 5% and 12% worse than the optimal,
respectively. On average, the dynamic self-tuning cache can reduce memory-
access energy by 45% to 55%. Additionally, be observed that way prediction
is only beneficial for instruction caches and that only a 4-way set associative
instruction cache has lower energy consumption when way prediction is
used. However, for the benchmarks we examined, the cache configurations
with the lowest energy dissipation were mostly direct mapped caches where
way prediction is not applicable.

To determine the area and power overhead of our cache tuner, we
designed the cache tuner hardware using VHDL and synthesized the tuner
using Synopsys Design Compiler. The total tuner size was about 4,000 gates,
or 0.039 mm2 in 0.18 µm CMOS technology. Compared to the reported size
of the MIPS 4Kp with caches20, this represents an increase in area of just
over 3%. The power consumption of the cache tuner is 2.69 mW at 200
MHz, which is only 0.5% of the power consumed by a MIPS processor.
Furthermore, we only use the tuning hardware during the tuning stage; the
tuner can be shutdown after the best configuration is determined, thereby
minimizing the effects of additional static power dissipation due to the tuner.
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4. AUTOMATIC TUNING OF A TWO-LEVEL
CACHE ARCHITECTURE – THE TCAT

In the previous section, we described an automatic method for tuning a
single level of cache in system during run-time. We extend the single level
cache tuner to tune two-level caches to embedded applications for reduced
energy consumption21. This method is applicable to both a simulation-based
exploration environment and a hardware-based prototyping environment.
We present the two-level cache tuner, or TCaT – a heuristic for searching the
huge solution space of possible configurations. The heuristic interlaces the
exploration of the two cache levels and searches the various cache
parameters in a specific order based on their impact on energy.

4.1 Configurable Cache Architecture

The configurable caches in each of the two cache levels explored here are
based on the configurable cache architecture described for a single level
configurable cache in Section 3.1. The target architecture for our two-level
cache tuning heuristic contains separate level one instruction and data caches
and separate level two instruction and data caches. For the first level cache,
we explore the same search space as the single level cache tuner: cache line
size (64, 32, or 16 bytes), cache size (8, 4, or 2 Kbytes), and associativity (4,
2, or 1-way). For the second level of cache, we expand the cache size to a
possible 64, 32, or 16 Kbytes while the line size and associativity parameters
are the same. We do not explore way prediction with the TCaT.

An exhaustive exploration of all cache configurations for a two level
cache hierarchy is too costly. For a single level separate instruction and data
cache design, an exhaustive exploration would explore a total of 28 different
cache configurations. However, the addition of a second level of hierarchy
raises the number of cache configurations to 432.

Nevertheless, for comparison purposes, we determined the optimal cache
configuration for each benchmark by generating exhaustive data. It took over
one month of continual simulation time on an UltraSparc compute server to
generate the data for our nine benchmarks.

In addition, we have chosen a base cache hierarchy configuration
consisting of an 8 Kbyte, 4-way set associative level-one cache with a 32
byte line size, and a 64 Kbyte 4-way set associative level two cache with a
64 byte line size – a reasonably common configuration.
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4.2 Initial Two-Level Cache Tuning Heuristic – Search
Each Level Independently

Initially, we extended the heuristic described in Section 3.3 for a two-
level cache by tuning the level-one cache while holding the level-two cache
at the smallest size, then tuning the level-two cache using the same heuristic.

We applied the initial heuristic to the benchmarks and found that this
heuristic did not perform well for two levels (the original heuristic was
intended for only one level, where it works well). The cache configuration
determined by our initial heuristic consumed, on average over all
benchmarks, 1.41 times more energy than the optimal configuration. In the
worst case, our initial heuristic found a cache configuration using 2.7 times
more energy than the optimal configuration. In one benchmark, the initial
heuristic found a cache configuration that was worse than the base cache.

The naïve assumption that the two levels of cache could be configured
independently was the reason that our initial heuristic did not perform well
for a two level system. In a two-level cache hierarchy, the behavior of each
cache level directly affects the behavior of the other level. For example, the
miss rate of the level one cache does not solely determine the performance of
the level two cache. The performance of the level two cache is also
determined by what values are missing in the level one cache. To fully
explore the dependencies between the two levels, we decided to explore both
levels simultaneously.

4.3 The Two-Level Cache Tuner - TCaT

To more fully explore the dependencies between the two cache levels, we
expanded our initial heuristic to interlace the exploration of the level one and
level two caches. Instead of entirely configuring the level one cache before
configuring the level two cache, the interlaced heuristic explores one
parameter for both levels of cache before exploring the next parameter,
while adhering to the parameter ordering of the initial heuristic. The basic
intuition behind our heuristic is that interlacing the exploration allows for
better modeling and tuning of the interdependencies between the different
levels of cache hierarchy. We applied the interlaced heuristic to the
benchmarks and found that the interlaced heuristic performed much better
than the initial heuristic, but there was still much room for improvement.

We examined the cases where the interlaced heuristic did not yield the
optimal solution. We discovered that in these cases, the optimal was not
being reached for two reasons. First, the initial heuristic did not fully explore
each parameter. For instance, if an increase from a 2 Kbyte to 4 Kbyte cache
size did not yield an improvement in energy, an 8 Kbyte cache size was not
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examined. The second reason the optimal configuration was not being found
was not due to a failure in the heuristic, but rather due to the limitations set
on certain cache configurations by the configurable cache itself. For
example, in the level two cache, if a 16 Kbyte cache is chosen as the best
size, the only associativity available is a direct-mapped cache. With no
energy improvement by increasing the cache from a 16 Kbyte direct-mapped
to a 32 Kbyte direct-mapped cache, no other associativities are searched by
the previous heuristics. To allow for all associativities to be searched, we
added a final adjustment to the associativity search step of the interlaced
heuristic with full parameter exploration. The final adjustment allows the
cache size to be increased for both the level one and level two caches in
order to search larger associativities. We refer to this final heuristic as the
two-level cache tuner - the TCaT.

4.4 Experiments and Results

The experimental setup and energy calculations are the same as those
described in Section 3.4. We explored nine different benchmarks obtained
from MediaBench18 and EEMBC22 benchmarks suites.

0
0.2
0.4
0.6
0.8

1
1.2

g7
21

ra
w

ca
ud

io

pe
gw

it

A
IF

F
T

R
01

A
IF

IR
F

01

B
IT

M
N

P
01

ID
C

T
R

N
01

P
N

T
R

C
H

01

T
T

S
P

R
K

01

av
er

ag
e

Base Cache

Initial Heuristic

TCaT

Optimal

Figure 6-2. Energy consumption for the initial heuristic cache configuration, the TCaT cache
configuration, and the optimal cache configuration, normalized to the base cache

configuration for each benchmark.

Figure 6-2 shows the results for the initial heuristic and the TCaT for
each benchmark. The energy consumptions have been normalized to the base
cache configuration for each benchmark’s cache hierarchy. The results show
that the TCaT finds the optimal cache configuration in most cases.
Compared to the base cache configuration and averaged over all
benchmarks, the initial heuristic achieves an average energy savings of 32%
while the TCaT achieves an average energy savings of 53%. Additionally,
we found that for every benchmark, there is no loss of performance due to
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cache configuration for optimal energy consumption. In fact, the benchmarks
receive an average of a 28% speedup, which we found was due to the tuning
of the cache line size.

Furthermore, the TCaT reduces the configuration search space
significantly. The exhaustive approach for separate instruction and data
caches for a two level cache hierarchy explores 432 cache configurations.
The improved heuristic explores only 28 cache configurations, or only 6.5%
of the search space. This reduction in the search space speeds up both a
simulation approach and a hardware-based prototyping platform approach.

5. USING A VICTIM BUFFER IN AN APPLICATION
SPECIFIC MEMORY HEIRARCHY

In addition to tuning cache parameters such as cache size, line size, and
associativity, the cache subsystem can include a configurable victim buffer
which can be beneficial in systems with a direct-mapped cache. Direct-
mapped caches are popular in embedded microprocessor architecture due to
their simplicity and good hit rates for many applications. A victim buffer is a
small fully-associative cache, whose size is typically 4 to 16 cache lines,
residing between a direct-mapped L1 cache and the next level of memory.
The victim buffer holds lines discarded after an L1 cache miss. The victim
buffer is checked whenever there is an L1 cache miss, before going to the
next level memory. If the desired data is found in the victim buffer, the data
in the victim buffer is swapped back to the L1 cache. Jouppi23 reported that a
four-entry victim buffer could reduce 20% to 95% of the conflict misses in a
4 Kbyte direct-mapped data cache. Albera and Bahar24 evaluated the power
and performance advantages of a victim buffer in a high performance
superscalar, speculative, out-of-order processor. They showed that adding a
victim buffer to an 8 Kbyte direct-mapped data cache results in 10% energy
savings and 3.5% performance improvements on average for the Spec95
benchmark suite.

A victim buffer improves the performance and energy of a direct-mapped
cache on average, but for some applications, a victim buffer actually
degrades performance without much or any energy savings, as we will show
later. Such degradation occurs when the victim buffer hit rate is low.
Checking a victim buffer requires an extra cycle after an L1 miss. If the
victim buffer hit rate is high, that extra cycle actually prevents dozens of
cycles for accessing the next level memory. But if the buffer hit rate is low,
that extra cycle does not save much and thus is wasteful. Whether a victim
buffer’s hit rate is high or low is dependent on what application is running.
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Such performance overhead may be one reason that victim buffers are not
always included in embedded processor cache architectures.

In this section, we will show that treating the victim buffer as a
configurable memory parameter to a direct-mapped cache is superior to
either using a direct-mapped cache without a victim buffer or using a direct-
mapped cache with an always-on victim buffer25. Furthermore, we show that
a victim buffer parameter is even useful with a cache that itself is highly
parameterized.

5.1 Victim Buffer as a Cache Parameter

We consider adding a victim buffer to both core-based and pre-fabricated
platform based design situations.

A core-based approach involves incorporating a processor (core) into a
chip before the chip has been fabricated, either using a synthesizable core
(soft core) or a layout (hard core). In either case, most core vendors allow a
designer to configure the level 1 cache’s total size (typical sizes range from
no cache to 64 Kbyte), associativity (ranging from direct mapped to 4 or 8
ways), and sometimes line size (ranging from 16 bytes to 64 bytes). Other
parameters include use of write through, write back, and write allocate
policies for writing to a cache, as well as the size of a write buffer. Adding a
victim buffer to a core-based approach is straightforward, involving simply
including or not including a buffer into the design.

A pre-fabricated platform is a chip that has already been designed, but is
intended for use in a variety of possible applications. To perform efficiently
for the largest variety of applications, recent platforms come with
parameterized architectures that a designer can configure for his/her
particular set of applications. Recent architectures include cache
parameters2,8,9 that can be configured by setting a few configuration register
bits. We therefore developed a configurable victim buffer that could be
turned on or off by setting bits in a configuration register.

5.2 Experiments and Results

The experimental setup and energy calculations are the same as those
described in Section 3.4. The benchmarks examined include programs from
the Powerstone9, MediaBench18, and Spec200026 benchmark suites.

5.2.1 Victim Buffer with a Direct-Mapped Cache

Figure 6-3 shows the performance and energy improvements when
adding an always-on victim buffer to a direct-mapped cache. Performance is
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the program execution time. Energy is estimated as described in section 3.4.
0% represents the performance and energy consumption of an 8 Kbyte
direct-mapped cache. From Figure 6-3, we see that a victim buffer improves
both performance and energy for some benchmarks, like mpeg, epic, and
adpcm. For other benchmarks, energy is not improved but performance is
degraded, as for vpr, fir, and padpcm. A victim buffer should be excluded or
turned off for these benchmarks. Some benchmarks, like jpeg, parser, and
auto2, yield some energy savings at the expense of some performance
degradation using a victim buffer – a designer might choose whether to
include/exclude or turn on/off the buffer in these cases depending on
whether energy or performance is more important.
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Figure 6-3. Performance and energy improvements when adding a victim buffer to an 8 Kbyte
direct-mapped cache. Positive values mean the victim buffer improved performance or
energy, with 0% representing an 8 Kbyte direct-mapped cache without a victim buffer.
Benchmarks with both bars positive should turn on the victim buffer, while those with
negative performance improvement and little or no energy improvement should turn off the
victim buffer.

5.2.2 Victim Buffer with a Parameterized Cache

Figure 6-4 shows the performance and energy improvement of adding a
victim buffer to a parameterized cache having the same configurability
described by Zhang et. al2. 0% represents the performance and energy of the
original configurable cache when tuned optimally to a particular application.
The bars represent the performance and energy of the configurable cache
when optimally tuned to an application assuming a victim buffer exists and
is always on. The optimal cache configurations for a given benchmark are
usually different for each of the two cases (no victim buffer versus always-
on victim buffer).
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We see that, even though the configurable cache already represents
significant energy savings compared to either a 4-way or direct-mapped
cache2, a victim buffer extends the savings of a configurable cache by a large
amount for many examples. For example, a victim buffer yields an
additional 32%, 43%, and 23% energy savings for benchmarks adpcm, epic,
and mpeg2. The savings of adpcm and epic come primarily from the victim
buffer that reduces the visits to off-chip memory. The saving of epic comes
primarily from the victim buffer enabling us to configure the configurable
cache to use less associativity without increasing accesses to the next
memory level. Yet, for other benchmarks, like adpcm, auto2 and vpr, the
victim buffer yields performance overhead with no energy savings and thus
should be turned off.
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Figure 6-4. Performance and energy improvements when adding a victim buffer to an 8 Kbyte
configurable cache. 0% represents a configurable cache without a victim buffer, tuned
optimally to the particular benchmark.

6. LOW STATIC-POWER FREQUENT-VALUE
DATA CACHES

Recently, a frequent value (FV) low power data cache design was
proposed based on the observation that a major portion of data cache
accesses involves frequent values, which can be dynamically captured27.
Frequent values are encoded in the cache, occupying only a few bits.

We improve upon previous FV data caches by reducing static power by
shutting off the unused bits in the larger sub-array for encoded frequent
values28. Since frequent values are stored in encoded form using only the
few bits in the smaller sub-array, the remaining bits in the larger sub-array
serve no purpose as long as the value stays frequent. Such shutoff may be
beneficial since FVs occupy many words in data caches27.

Furthermore, the original FV low power cache design suffers from an
extra cycle when reading non-FVs27, which account for 68% of all data
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cache accesses, resulting in a 5% increase in execution time. We used circuit
design to remove the extra cycle.

6.1 Overview of Original FV Cache Design

In this section, we give a brief overview of the original FV data cache
designed by Yang and Gupta27.

The FV cache was proposed based on the observation that a small
number of distinct frequently occurring data values often occupy a large
portion of program memory data spaces and therefore account for a large
portion of memory accesses27. This frequent value phenomenon was
exploited in designing a data cache that trades off performance with energy
efficiency.

From the perspective of the frequent value cache, data values are divided
into two categories: a small number of frequent values, in our case 32 FVs,
and all remaining values that are referred to as non-frequent values. The
frequent values are stored in encoded form and therefore can be represented
in 5 bits; the non-frequent values are stored in unencoded form in 32 bit
words. Additionally, a flag bit is needed for each word in the cache to
determine if the value stored in that location is encoded or not. The set of
frequent values remains fixed for a given program run.

When reading a word from the cache, initially we simply read from the
low-bit array. Since every word read out contains a flag bit, the flag is
examined to determine what comes next. The flag being 1 means the desired
word is in un-encoded form, so the remaining bits should be read out from
the high-bit array to form the original value. On the other hand, the flag
being 0 means that the desired word is a frequent value and stored in
encoded form. In this case, the access proceeds to decode the value. Since
the access to the high-bit array is avoided, cache activity is reduced.

A write to the FV cache is performed as follows. Before a value is
written, it is first encoded through an encoder. If encoding is successful, it
means that the value is a frequent value and thus a 5-bit code is stored in the
low-bit array and the flag bit is cleared. In this case, accessing the high-bit
array is avoided. If the encoding fails, the value to be written is a non-
frequent value and thus both low-bit and high-bit data arrays are accessed as
well as the flag bit being set. Note that writing non-FVs does not need to
take two cycles as does reading non-FVs, because the value is encoded early
in the pipeline and thus the decision of driving one array or two is clear
before the access.
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6.2 Improving the FV Cache Design

The FVs are not only accessed frequently, but also distributed widely in
caches29. This phenomenon provides a good opportunity for reducing static
power. Our approach is the following. Since the 32-bit FVs are encoded in 5
bits, the remaining 27 bits do not store any useful information. Therefore,
they can be shut down to save static power and as long as a value stays
frequent, static power is saved. The overall savings depend on the occupancy
of FVs in the cache. Our studies show that on average nearly half of the
cache content contains FVs, which indicates the benefit of reducing static
power through finding FVs.

The flag bits are initially set to 1, which means initially all words are
non-FVs. Any data to the data cache is checked with the FV encoder. If the
word is an FV, the corresponding flag bit is set to 0 and this cache word is
encoded and stored in the 5-bit array. At the same time, the flag bit turns off
the 27-bit portion of the word. Similarly, on reading FVs, only the 5-bit
portion is read and the 27-bit portion is gated off using the flag bit. On a
non-FV read or write, the flag bit is set to 0 and the original 32 bits are
written into the cache as usual. Our new circuit design improves the original
FV cache design in that there is no extra delay in determining accesses of the
27-bit portion.

6.3 Designers’ Choices of Using the FV Cache

We have described a low static power FV cache. When utilized into a
processor system, the FV cache can be designed with different degrees of
complexity and flexibility. In this section, we provide three approaches that
are suitable for a variety of processors targeting different types of
applications. Essentially, the complexity comes from how FVs are identified
and if they are allowed to vary for different applications. As always, the
more flexibility the processor provides, the more complex the FV cache is.

The first approach is appropriate to application specific processors. Since
only a single type of application runs on the processor, its FVs tend to be
stable over time. In such cases, the FVs can be first obtained from a profiling
run through simulations, and then synthesized into the cache as part of the
cache data storage. The advantage of this approach is that once the FVs are
hard coded on-chip, the cache does not perform operations other than reads.
Thus, the logic of this component is simple and can be designed to consume
minimum power.

The second approach extends the first one with the ability of changing
the FVs according to different applications. This approach is suitable for a
multi-task environment in which the processor runs multiple programs
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instead of single program. Each program’s FVs are still obtained off-line.
Instead of synthesizing the FVs on-chip, a register file may be used to store
FVs so that they can be rewritten on each activation of a different program.
The size of the register file depends on the number of FVs of interest to the
designer, which is heavily dependent on each program’s behavior.

The third approach provides the maximum flexibility in maintaining FVs.
According to a previous study29, some programs’ FVs are sensitive to
different inputs. This suggests that another dimension of varying FVs might
be added into the design. Since it is infeasible to profile every program on all
possible inputs to catch FVs, detecting FVs on-line would be useful. Thus,
on top of the second approach, the register file could be extended to
dynamically capture FVs using extra logic. In the scheme proposed by Yang
and Gupta27, an inexpensive hardware FV finder was developed that
monitored cache accesses. The FV finder was turned on for only the first 5%
of memory accesses assuming that the total memory access numbers are
known a priori. After that, the FVs were captured in the finder and
transmitted to the cache so that the cache starts operating as an FV cache.
The energy overhead of the finder was estimated to be 0.3%-6.1% of the L1
D-cache (8 Kbyte to 64 Kbyte caches were tested). The area overhead is
similar to our second approach, and thus modest. One potential issue is that
the FV finder described detects frequently accessed values, which may or
may not correspond to frequently distributed values in memory, though they
usually are the same. We leave an FV finder for frequently distributed values
for future work.

6.4 Experiments and Results

To determine the benefits of our FV cache architecture in reducing static
energy, we ran 11 SPEC200026 benchmarks through the SimpleScalar tool
set19. We used a 4-issue out-of-order processor simulator with a 32 Kbyte L1
instruction and data cache. The benchmarks were fast-forwarded for 1 billion
instructions and executed for 500 million instructions afterwards, using
reference inputs.

6.4.1 Static Energy Savings

Our main goal is to reduce the static energy consumed by the data cache
without losing performance. As mentioned earlier, the overall static energy
saving depends on the average coverage of FVs inside data cache. Through
experiments, we found that there are abundant FVs in the L1 data cache at
any time for Spec 2000 benchmarks, as shown in Figure 6-5. The percentage
shown is the average for the 500 million instructions execution time. On
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average, 49.2% of the total words are FVs, with the highest being 77.0% for
benchmark mcf and the lowest 9.4% for benchmark ammp. The static energy
savings are proportional to the number of FVs in the data cache. Thus, the
corresponding static energy savings on average are 35%
(49.2%_27/33_86%) considering that 27 bits out of 33 bits (we need a flag
bit per 32-bit word) are shut off and 86% of static power can be saved using
a pMOS Gated-Vdd. When compared with the conventional 32-bit per word
cache, the static energy savings can be calculated as 100%- (100%-
35%)*33/32 = 33%.
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Figure 6-5. Percentage of data cache words that are FVs

6.4.2 Performance Improvement

Our second achievement is the performance improvement over the
original FV data cache design. Recall that the original FV cache
performance overhead was due to the prolonged non-FV accesses. The more
non-FV accesses, the slower the execution and the less the overall power
savings (less energy savings), since the system would consume more energy
when the program runs longer. We measured the average percentage of
cache hits that are FVs, as shown in Figure 6-6(a). On average, the hit rate
on data FVs is 32% with the highest being 62.7% for votex and the lowest
11.4% for mcf. Therefore, we can see that on average, 68% of cache accesses
are non-FVs.
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Figure 6-6. (a) Hit rate of FVs in data cache; (b) Performance (IPC) degradation of two-cycle
FV cache
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With our improved circuitry (1-cycle latency for non-FVs as well as for
FVs), we are able to maintain the same execution speed as the base case. To
see how much performance we have gained over the original FV cache, we
measured the IPCs for a normal cache and a 2-cycle FV cache and plot them
in Figure 6-6(b). The IPC for our improved design is the same as the normal
cache. Figure 6-6(b) shows the slowdowns of the original FV cache design,
which is the same value as our performance improvement. We can see that
there is a 5.2% difference in the averaged IPCs between the original FV
cache and our improved version. This also means that in addition to the
static energy we saved by shutting off partial FV words, we also saved more
dynamic energy than the original FV cache design.

Another feature in our new design is that it is safe in the sense that it does
not increase power consumption significantly even when FVs are not
abundant. Thus, our improved FV cache design is an appealing approach in
reducing both static and dynamic energy of caches.
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