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Abstract: Wedemonstrate spatial modification of the opti-
cal properties of thin-film metal oxides, zinc oxide (ZnO)
and vanadium dioxide (VO2) as representatives, using a
commercial focused ion beam (FIB) system. Using a Ga+
FIB and thermal annealing, we demonstrated variable
doping of a wide-bandgap semiconductor, ZnO, achieving
carrier concentrations from 1018 cm−3 to 1020 cm−3. Using
the same FIB without subsequent thermal annealing, we
defect-engineereda correlated semiconductor, VO2, locally
modifying its insulator-to-metal transition (IMT) temper-
ature by up to ∼25 ◦C. Such area-selective modification
of metal oxides by direct writing using a FIB provides
a simple, mask-less route to the fabrication of optical
structures, especially when multiple or continuous levels
of doping or defect density are required.
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1 Introduction
Focused ion beam (FIB) is a well-established technique
for high-resolution area-selective milling, deposition, and
imaging [1–5]. For example, FIB-assisted deposition and
milling has been broadly used for applications such as
TEM specimen preparation [6], fabrication of electronic
and photonic nanostructures [5, 7–9], failure analysis
[10], and mask repair [11]. Ion implantation using a
FIB has also been explored for fabrication of nanoscale
devices such as quantum wires [12] and single electron
transistors [13] in GaAs/AlGaAs, and Si p+-n junctions
for CMOS [14] and CCD [15] applications. Compared to
photolithography and e-beam lithography, FIB is a resist-
free technique that enables direct etching or deposition
of materials with lateral resolution comparable to e-beam
lithography (i.e., on the scale of 10–100 nm) [5, 12,
13]. In this study, we advance the use of a commercial
FIB system to locally modulate the optical properties
of metal-oxide via doping or defect engineering. Previ-
ously, spatial control of doping [16–21] or defect density
[22–28] has typically been accomplished by implanting
ions fromionaccelerators through lithographicallydefined
masks, though the FIB has been used to locally tailor
optical properties of Ge2Sb2Te5 (GST), a chalcogenide-
based phase-change material [29, 30]. Here, we extend
the use of the FIB to (a) modify the carrier concentration
of zinc oxide (ZnO), a wide-bandgap semiconducting
oxide, by area-selective doping, and (b) defect-engineer
vanadium dioxide (VO2), a prototypical insulator-to-metal
transition (IMT) material. The ability to tune the carrier
density and phase-change behavior via focused ion-beam
irradiation can enable local patterning of function in
nanostructures.
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2 Tunable carrier concentration in
FIB-doped ZnO

The carrier concentration in most semiconductors can be
tuned by orders of magnitude via in situ or ex situ doping
processes, resulting in plasma wavelengths from the near
infrared to the far infrared [16, 31–34]. Doping can be per-
formed in situ (i.e., duringmaterial growth) by tailoring the
conditions to introduce dopants during growth processes
such as sputtering [35], laser ablation [36], evaporation
[37], chemical-vapor deposition [38]. In contrast, in ex situ
doping techniques, dopants are introduced after material
growth, for example via diffusion doping [39, 40], or ion
implantation [41]. One advantage of ion implantation is
that dopants can be introduced area-selectively, such as
by implantation through lithographically defined masks,
enabling designer structures, e.g., with plasmonic reso-
nances. For example, we recently used this technique to
locally tune the optical properties of silicon to realize
all-silicon monolithic Fresnel zone plates and frequency-
selective surfaces in the mid- and far-infrared [16]. In this
section,we replace theconventionalprocessof lithography
and ion implantation with a FIB-based doping process,
realizing mask-free area-selective doping.

We chose ZnO as the host material for FIB irradiation.
Intrinsic ZnO is transparent from the visible to the mid-
infrared, and can be n-type doped using gallium (Ga) [34],
which is a common ion source in commercial FIB systems.
Ga-doped ZnO has been demonstrated as a promising
plasmonic material for infrared nanophotonics such as
subwavelength waveguides [42–44], light-emitting diodes
[45], and optical metasurfaces [46–48].

The schematic of our FIB-assisted doping process is
shown in Figure 1a: The ZnO wafer is bombarded by a
30-keV focused Ga ion beam, resulting in the implantation

of Ga atoms into the top ∼30 nm of the ZnO lattice,
but also resulting in lattice damage. A subsequent high-
temperature annealing process is necessary for healing
the damaged lattice and activating the dopants. As a
result, an n-type Ga-doped ZnO layer is formed. The
penetration depth profile of Ga ions into ZnO (Figure 1b)
was estimated using aMonte-Carlo code, Transport of Ions
in Matter (TRIM) [49], and verified in our samples using
Auger electron spectroscopy (AES, Varian Inc.) and X-ray
photoelectron spectroscopy (XPS; K-Alpha, Thermo Fisher
Scientific) depth profiling (see Section 1 in Supporting
Information).

The optical properties ofmetals andmetal-likemateri-
als can often be approximated using the Drudemodel [50].
For Ga-doped ZnO, we anticipate that the Drude model
should work well in the near-to-mid infrared, with the
exception of wavelengths ∼20–25 μm, where there is a
strong vibrational resonance that is intrinsic to ZnO [51]. In
the Drude model, the complex permittivity (�̃�) is given by

�̃�(𝜔) = 𝜀real + i𝜀imag = 𝜀∞

(
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where 𝜀∞ is the high-frequency permittivity, 𝜔p is the
screened plasma frequency, which also corresponds to a
plasmawavelength (𝜆p),ne is the carrier concentrationand
𝜇 is the carrier mobility determined by the scattering rate
(𝜏), the effective mass of the free carriers (m∗), and the
unit charge (q). The plasma wavelength is the wavelength
at which the real part of the permittivity approaches zero,
resulting in metal-like behavior at longer wavelengths. As
shown in Figure 1c, we used the Drude model (Eqs. (1)
and (2)) to calculate the complex permittivity (�̃�) of the
Ga-doped ZnO for carrier concentrations from 5 × 1019 to

Figure 1: Mechanisms of tuning carrier density in ZnO using a focused ion beam (FIB).
(a) Schematic of FIB-assisted doping process: The surface of a single-crystalline ZnO substrate can be doped using FIB implantation and
subsequent high-temperature annealing. (b) Depth profile of 30-keV Ga ions impinging into crystalline ZnO, simulated using TRIM. (c)
Calculated real and imaginary parts of the complex permittivity of Ga-doped ZnO with varying carrier concentrations.
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1 × 1021 cm−3, in which the plasma wavelength is blue-
shifted toward the near infrared as the carrier concentra-
tion increases.

We irradiated several single-crystalline (0001) ZnO
substrates (10 × 10 mm2, CrysTec GmbH) with 30-keV Ga
ions at room temperature using a commercial FIB system
(FEI 600i nanoLab). On each sample, five 200-by-200 μm
areas were homogenously implanted with ion fluences
of 3.6 × 1014, 6 × 1014, 1.2 × 1015, 3.6 × 1015, and 6
× 1015 cm−2 (corresponding to Ga peak concentrations
of 0.31, 0.52, 1, 3.1, and 5.2 at.%, respectively), which
are close to and above the solid solubility limit of Ga in
ZnO [52–54]. Note that we irradiated 200-by-200 μm areas
to enable far-field optical characterization; in principle,
nanometer-scale (10–100 nm) lateral resolution can be
achieved for the implantation process in a commercial FIB
system if diffusion can be avoided. To heal the damaged

lattice and activate the Ga dopants, we then performed
40-minute thermal annealing treatments in air of the irra-
diated samples. Each sample was annealed at a different
temperature ranging from 600 to 1000 ◦C, respectively
(complete data and plots for all annealing temperatures
can be found in the Supporting Information Section 2).

To study the changes in optical properties caused
by various doping concentrations and annealing treat-
ments at different temperatures, we performed reflectance
measurements on each of these FIB-ZnO regions using
a Fourier-transform infrared (FTIR) spectrometer (Bruker
Vertex 70) outfittedwith an infraredmicroscope (Hyperion
2000). For the unannealed Ga:ZnO samples (Figure 2a),
we observed increasing reflectance with respect to
increasing Ga ion fluence, which we attribute to the
partial activation of Ga dopants evenwithout an annealing
treatment. Our assumption is supported by a comparison

Figure 2: Measured normal-incidence reflectance for undoped ZnO, and FIB-irradiated ZnO regions with different ion fluences.
(a) without annealing treatment, (b) followed by annealing in air at 800 ◦C and (c) 900 ◦C, respectively, for 40 min. (d) SIMS depth profiles of
the Ga concentration in the samples implanted using an ion accelerator (not a FIB, to enable very large area implantation for infrared
ellipsometry and SIMS). The ion energy was identically 30 keV and the peak doping concentration was chosen to be 3.1 at.%. The inset is the
schematic showing the three-layer depth profile of thermal annealed FIB-ZnO. (e-j) The experimental (discrete points) and model fitted (solid
curves) ellipsometric parameters (Ψ andΔ) and normal-incidence reflectance for the 3.1 at.% sample annealed at 800 ◦C (e-g) and for the
other one annealed at 900 ◦C (h-j).
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Table 1: Drude-fitting parameters of the two 3.1 at.% samples annealed at 800 ◦C and 900 ◦C, respectively.

3.1 at.% Ga:ZnO High carrier concentration layer Diffusion layer

Thickness, nm ne, cm−3 𝝁, cm2/V·s Thickness, nm ne, cm−3 𝝁, cm2/V·s

800 ◦C 8.0 1.25 × 1020 19.94 205.4 1.23 × 1018 316.47
900 ◦C 8.0 2.16 × 1020 17.80 1008.3 2.40 × 1018 232.59

with ZnO substrates that were implanted with Kr ions (see
details in Supporting Information Section 3).

As observed in Figure 2b and c, the increase of
the reflectance versus doping concentration at longer
wavelengths (>8 μm) is as expected due to the activation
of dopants. The reduction of the reflectance at shorter
wavelengths is likely due to the diffusion of Ga during
the annealing treatments which can result in μm-thick
doped layers, causing Fabry–Pérot (F-P) fringes at shorter
wavelengths (<8 μm).

To quantitatively extract physical properties such as
carrier concentration and mobility, we performed spectro-
scopic ellipsometry analysis, which requires centimeter-
scale irradiation areas. Therefore, we prepared another set
of ZnO substrates irradiated by comparable ion fluences
and identical ion energy of 30 keV using an ion implanter,
enabling us to homogeneously implant an entire 1-by-1 cm
ZnO substrate. Then, we performed spectroscopic ellip-
sometry (IR-VASEMark II, J.A.WoollamCo.)measurements
for wavelengths from 2 to 20 μm and built a model using
ellipsometry analysis software (WVASE, J. A. Woollam
Co.) to fit the data. Our assumption about diffusion was
confirmed by secondary ion mass spectrometry (SIMS,
implemented by Qspec Technology, Inc.) depth profiles
as shown in Figure 2d. We found∼0.2 and∼1 μmplateaus
in the 3.1 at.% samples annealed at 800 ◦C and 900 ◦C,
respectively, which are clear evidence of the diffusion of
Ga dopants. Therefore, we built a three-layer model, con-
sisting of a semi-infinite single-crystalline ZnO substrate,
one diffusion layerwith low carrier concentration, and one
top-surface layer with high carrier concentration (inset in
Figure 2d). In ourmodel, we first characterized the pristine
ZnO substrate using seven Gaussian oscillators, and for
the Ga-doped ZnO (both the top-surface layer and the
diffusion layer), an additional Drude oscillator function
was added into the oscillator functions of pristine ZnO,
to account for the induced carrier concentration due to
the doping (see details in Supporting Information Section
4). Therefore, the fitting parameters for each sample were
the thicknesses, carrier concentrations, and mobilities for
the two layers. Note that we kept the seven Gaussian

oscillators fixed and only the Drude term was fitted. We
used prior knowledge about the thickness of the diffusion
layer from SIMS data (Figure 2d) to constrain the fitting
for just that parameter; specifically, we constrained the
diffusion-layer thickness from 180 to 250 nm for the 800 ◦C
annealed sample, and 0.9–1.1 μm for the 900 ◦C annealed
sample.

As shown in Figure 2e–j, ourmodel fittedwellwith the
experimental data (Ψ andΔ) acquired using spectroscopic
ellipsometry. Note that we excluded the data between 12
and 17 μm in the fitting to avoid non-physical spikes in
Ψ and Δ, which result from the low reflectivity of our
samples within that wavelength range (more discussion
can be found in Supporting Information Section 5). The
carrier concentration of the 3.1-at.% samples annealed at
800 ◦C and 900 ◦C reached 1020 cm−3 in the top-surface
layer, while the carrier concentrations in the diffusion
layers underneath are two orders of magnitude lower
(Table 1). These fitting results agreed with our SIMS
characterizations that the Ga dopants were diffusing from
the implantation profile during the annealing process,
resulting in a much thicker diffusion layer with a much
lower carrier concentration. For most applications, such
diffusion layers are unwanted since they trade off pattern-
ingresolutionsandoptical contrastbetweenFIB-irradiated
and pristine regions. Since the diffusion layer is highly
correlated to the annealing conditions (i.e., annealing
temperature and annealing time), plausible methods to
decrease the annealing time such as flash lamp annealing
[55, 56] and laser annealing [57–59] could be useful for
suppressing the diffusion.

3 Tunable phase-transition
characteristics in FIB-engineered
VO2

In the previous section, we demonstrated that optical
properties such as carrier density and mobility of an oxide
semiconductor (here, ZnO) can be locally modified via a
simple stepofmask-free FIB-assisted ion implantation, fol-
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lowed by a thermal annealing process.We can also use FIB
implantation (without annealing) to intentionally intro-
duce structural defects into a material, and the induced
defect density can be continuously controlled by varying
the ion fluence. Such defect-engineering techniques can
be useful for modulating physical properties of materials,
especially for strongly correlated electron systems inwhich
electronic properties are very sensitive to changes in the
lattice parameters [22, 60–72]. In this section, we show
that such FIB-assisted defect-engineering can be used to
locally modulate the IMT temperature of thin-film VO2,
an electron-correlated material that undergoes an IMT
at ∼70 ◦C [73, 74] and features an orders-of-magnitude
change in carrier density. The IMT temperature of VO2 is
determined by the stability of the electron hybridization,
which is very sensitive to the strain environment in the thin
film [22, 23, 75–77]. We previously demonstrated that the
IMT temperature can be tuned by introducing structural
defects in the VO2 film via high-energy ion irradiation
performed using an ion accelerator, where we found the
change in optical properties and IMT temperature of VO2
depend on the density of generated defects, but not on the
particular ion species (Ar or Cs), and the generated defects
introduce more strain to the surrounding and lower the
IMT temperature [22].

Here, we show that high-resolution mask-free defect
engineering can be accomplished using a commercial
FIB system. Similar to the FIB irradiation of ZnO (before
annealing), here structural defects are introduced by the
collision cascades of impinging ions and lattice atoms
(V and O) (Figure 3a), causing changes in the strain
environment in the film and thus the IMT temperature is
expected to bemodulated to different extent depending on
the ion fluence.

We deposited a ∼50-nm VO2 film on c-plane sapphire
via magnetron sputtering [74, 78]. Then, twelve 200-by-
200 μm regions were irradiated using focused 30-keV Ga
ions at room temperature with varying ion fluences up to 2
× 1014 cm−2, as shown in Figure 3b. The density of induced
structural defects is proportional to the density of Ga ions
implanted into the VO2 film, which we estimated using
TRIM simulations (Figure 3c).

To investigate the irradiation-induced changes in the
optical properties of the pure insulator- and metal-phase
VO2, we first performed reflectance measurements on
each of these FIB-irradiated VO2 regions using our FTIR
spectrometer with microscope, for temperatures of 25 ◦C
(i.e., VO2 in the pure insulating phase for all the irradiated
regions) and 100 ◦C (i.e., VO2 in the puremetallic phase for
all the irradiated regions), as shown in Figure 3d and e.

Figure 3: FIB-induced changes in the optical refractive index of VO2.
(a) Ion irradiation of VO2 using a FIB system, with an inset schematic of the defect-engineering process, showing a collision cascade in the
VO2 lattice initiated by an energetic Ga ion. (b) SEM image of the FIB-irradiated VO2 regions with the corresponding ion fluences listed. (c)
Simulated depth profile of 30-keV Ga ions into a VO2 thin film using TRIM. (d, e) The symbols are FTIR reflectance measurements on pristine
VO2 and regions irradiated with ion fluences of 4 × 1013, 6.7 × 1013, 9.3 × 1013, 20 × 1013 cm−2, for temperatures at 25 ◦C (all regions in pure
insulating phases) and 100 ◦C (all regions in pure metallic phases), respectively. The solid curves are the model fits to the FTIR
measurements, where the underlying model was created based on ellipsometry of pristine VO2. The insulator-phase (f, g) and metal-phase
(h, i) refractive indices were extracted from the fittings shown in (d) and (e).
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Then, we fitted the measured reflectance by adjusting
the parameters of a model that we previously built to
characterize refractive indices of intrinsic thin-film VO2
[74]. As shown in the inset of Figure 3d, the model
consisted of a semi-infinite anisotropic c-plane sapphire
[74], a VO2 layer, and surface roughness (50% air + 50%
of the material underneath). For the insulating phase,
the dielectric function of the VO2 layer is a series of
Lorentzian oscillators. For the metallic phase, we also
used Drude functions to capture the contribution of the
free carriers (more details can be found in ref. [74]). The
thicknesses of VO2 and surface roughness were set to 52
and 5 nm, respectively, based on SEM imaging of the cross
section (Supporting Information Section 6). We were able
to fit our reflectance measurements (Figure 3d and e) by
only adjusting the line shapes, amplitudes, and spectral
positions of the Lorentz and Drude functions. Therefore,
the complex refractive indices of VO2 for different ion
fluences can be extracted, as plotted in Figure 3f-i.

Then, we investigated FIB-induced modulation of
the IMT temperature and width by a combination of
temperature-dependent FTIR reflectance measurements
and effective-medium theory, as schematically shown in
Figure 4a. FTIR reflectancemeasurements were performed
on all irradiated regions for temperatures increasing from
10 to 120 ◦C, in steps of 2 ◦C. We observed that the
phase transition shifted to lower temperatures as the
ion fluence increased, which agrees with our previous
observations for defect-engineered VO2 irradiated using
an ion accelerator [22]. To quantitatively study the changes
of IMT characteristics with respect to the FIB fluence, we

used the Looyenga effective-medium theory formalism [59]
to approximate the refractive indices of the irradiated VO2
at intermediate temperatures [74, 79]:

�̃�
1∕3
eff = (1− f )�̃�1∕3i + f �̃�1∕3m (3)

where �̃� = ñ2 = (n+ i𝜅)2 is the complex dielectric function
ofVO2 and f is the temperature-dependent volume fraction
of the metal-phase VO2 domains within the film. The
co-existence of insulating and metallic domains can be
understood as a first-order equilibrium distribution, and
therefore f (T) can be expressed as [22, 80]:

f (T) = 1
1+ exp [E∕kB (1∕T − 1TIMT)]

(4)

where E is an energy scale that determines the sharpness
of the IMT (i.e., inversely proportional to the IMT width).
TIMT is the temperature where 50% of VO2 transformed to
the metallic phase in a heating process.

For given E and TIMT, we used Eqs. (3) and (4) to
obtain the temperature-dependent refractive indices and
then calculated the optical reflectance of each irradiated
region using the transfer-matrix method. As shown in
Figure 4a, by sweeping E and TIMT, we achieved good
agreement between the calculation (solid curves) andFTIR
measurements (dotted lines). The fitted IMT temperature
and width as a function of ion fluence are shown in
Figure 4b. The IMT width is defined to be the temperature
interval between where 3% of VO2 is in the metallic phase
and where 97% of VO2 is in the metallic phase. Note that
due to thehysteresis inVO2, the value ofTIMT is different for
heatingandcooling [74,81].Once f (T)wasdetermined,we

Figure 4: FIB-induced changes in phase-transition temperature and width of VO2.
(a) Temperature-dependent optical characterization of the FIB-irradiated VO2. First, we measured temperature-dependent reflectance across
the IMT for each irradiated region. Then, we applied effective-medium theory to approximate the refractive indices at intermediate
temperatures and calculate the temperature-dependent reflectance. By sweeping the parameters of T IMT and E—which determine the IMT
width and temperature, respectively—in Eq. (4), we found the best fit between the FTIR measurements and calculation, enabling us to extract
the IMT temperature and width for each irradiation ion fluence, as plotted in (b). (c) Extracted temperature-dependent refractive indices of
the defect-engineered VO2 irradiated by different ion fluences. Here we plot the results for a single wavelength of 9 μm to clearly show the
evolution of refractive-index values versus temperature and ion fluence.
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were able to obtain the temperature-dependent refractive
indices across the IMT for each irradiated region, as shown
in Figure 4c. Here, we only plot the results for a single
wavelength (𝜆 = 9 μm) to better show the evolution of
the refractive indices with respect to both the temperature
and the FIB fluence. The full dataset for wavelengths from
6 to 14 μmcan be found in Supporting Information Section
7.

As shown in Figure 4b, there are three distinct ion
fluence regimes (labeled in the figure as I, II, and III),
in which the IMT characteristics evolve differently. For
ion fluences <5 × 1013 cm−2, the IMT temperature grad-
ually decreases with fluence, with a reduction of ∼15 ◦C
for 5 × 1013 cm−2 and no substantial changes in either
the refractive index of the two pure phases or in the
IMT width. At higher ion fluences between 5 × 1013 and
1.1 × 1014 cm−2, we observed that the IMT temperature
could be further shifted to lower temperatures, but the
shift was accompanied by a significant broadening in the
IMT width and a reduction in the refractive-index contrast
between the two pure phases (Figure 4c).

We attribute such distinct phenomena to the different
defect morphologies induced by different levels of ion
fluence. At low ion fluences, the impinging ions mostly
cause point defects that can reduce the transition temper-
ature due to local compressive strain [22, 77]. Such point
defects are in much smaller than the probing wavelengths
of our FTIR measurements. The strain induced by the
point defects can be redistributed and partially relaxed
at room temperature after irradiation [82, 83], resulting
in a homogeneous strain environment in the film. This
understanding is consistent with the lack of broadening
in the IMT width in the low-fluence irradiation regions
in Figure 4. As the ion influence increases, point defects
are expected to accumulate and form nanometer-sized
defect complexes that can affect the IMT temperature in
microscopic scales, thus resulting in apparent broadening
of the IMT in regions irradiated with high fluence.

When the ionfluence surpasses∼1.1 × 1014 cm−2, both
the IMTtemperatureandwidthbecameconstantversus the
increasing ionfluence, likelydue to the limitedpenetration
depth of the 30-keV Ga ions in the VO2 film. At these
high ion fluences, we expect the density of the induced
structural defects complexes to saturate (i.e., complete
amorphization occurs [22]) within the depth of ∼30 nm
fromtheVO2 surface,while leavinga less-affectedVO2 layer
underneath, as shown in our TRIM simulation (Figure 3c).

4 Summary
We have shown that the optical properties of two oxide
materials, zinc oxide (ZnO) and vanadium dioxide (VO2),
can be locally modulated by doping or defect engineering
using a commercial focused ion beam (FIB) with gallium
ions. Using the FIB,wemodified the carrier concentrations
in initially undoped ZnO, reaching carrier concentrations
as high as 1020 cm−3, and reduced the temperature of the
insulator-to-metal transition (IMT) in VO2 by as much as
∼25 ◦C. The FIB process does not require any lithography
or masking, and only requires one additional annealing
step in the case of doping. Due to the versatility of
commercial FIBs, this technique can be used to modify
and engineer materials with high resolution even for the
case of irregularly shaped materials where conventional
lithography is challenging. The ability to dope and defect-
engineer certain oxides using a commercial FIB provides
functionalities beyond the more-common FIB milling and
deposition, and may enable the direct fabrication of a
broader rangeof infrareddevicesbasedonsemiconducting
oxides.
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