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Collective cell migration critically depends on cell–cell interactions coupled to a dynamic
actin cytoskeleton. Important cell–cell adhesion receptor systems implicated in controlling
collective movements include cadherins, immunoglobulin superfamily members (L1CAM,
NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adap-
tive array of intracellular adapter and signaling proteins. Depending on molecular compo-
sition and signaling context, cell–cell junctions adapt their shape and stability, and this
gradual junction plasticity enables different types of collective cell movements such as
epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective
network migration, as well as coordinated individual-cell migration and streaming.
Thereby, plasticity of cell–cell junction composition and turnover defines the type of col-
lective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines
migration coordination, anchorage, and cell dissociation. We here review cell–cell adhe-
sion systems and their functions in different types of collective cell migration as key regu-
lators of collective plasticity.

M
ulticellular organisms form and maintain

their bodies through the ability of individ-
ual cells to adhere to neighbor cells by cell–cell

junctions, which are mechanically both stable

and flexible and secure cell position and func-
tion over time. Stable junctions anchor cells in

their tissue niche and define cell–cell coopera-

tion and mechanical function such as contrac-
tion or cell–cell signaling. These junctions are

the basis of all polarized epithelia, vessels, mus-

cle, neuronal tissue, as well as cell organization
in connective tissue. Dynamic cell–cell junc-

tions enable cells to change position relative to

their neighbors or as multicellular groups; they
are relevant during morphogenesis and phases

of tissue activation, for example, in response to

injury or inflammation (Collins and Nelson
2015). By regulating junction “fluidity,” the ag-
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gregate state and dynamics of cells can change

remarkably and, accordingly, alter collective
functions (Collins and Nelson 2015; Park et al.

2016).

Depending on the cell type and activation
state, a range of adhesion receptor and cytoskel-

etal adaptor systems are involved in securing

short- or long-lived, dynamic or stable cell–
cell interactions. These include cadherins and

protocadherins, immunoglobulin (Ig) super-

family members, desmosomal and tight junc-
tion (TJ) proteins, as well as integrins, selectins,

ephrin/eph receptors, and, likely, connexins,

which all directly or indirectly couple to the
intracellular cytoskeleton and mediate distinct

cell–cell adhesion types (Theveneau andMayor

2012a; Collins and Nelson 2015). Controlled by
upstream signaling, each receptor type can un-

dergo context-dependent alteration in surface

expression, ligand interaction, and cytoskeletal
coupling, and mediate a range of dedicated

types of cell–cell coupling.

Many types of collective cell–cell behaviors
depend on stable cell–cell anchorage to form

layered cell sheets or complex forms of tissue

organization, including barrier function medi-
ated by epithelia and endothelia toward the

extra- and intracorporal spaces, intercellular

signaling network functions as in neuronal net-
works, or large-scale contraction and force gen-

eration as in muscle or purse–string contrac-

tion of epithelia (Tada and Heisenberg 2012;
Sunyer et al. 2016). Most dynamic multicellular

functions, which depend on long-lived cell–cell

junctions lasting hours to days or weeks, can be
categorized as collective movements in which

clusters, sheets, or strands of cells move as a

multicellular unit across or through tissue for
developing and maintaining epithelial struc-

tures (Friedl and Gilmour 2009; Shamir and

Ewald 2015). More dynamic cell–cell junctions
lasting in the range of minutes are critical in

mediating multicellular crowd behaviors in

which groups of cells move individually, but
coordinate their directionality and speed by

less stable and comparably short-lived adhe-

sions and cell–cell sensing (Theveneau and
Mayor 2013). Last, immune cells use even

more short-lived cell–cell junctions for coordi-

nating their migration and transient clustering

with other leukocytes for signal exchange,
which depends on very dynamic physical and

chemical cell–cell interactions (Malet-Engra

et al. 2015).
By combining different adhesion systems in

a modular manner in time and space, cells re-

spond to extracellular triggers and tune their
levels of cell–cell cooperation. We here summa-

rize the range of cell–cell junction types ex-

pressed by different cell types, their morpholo-
gies and kinetics, and implications for collective

migration, anchorage, and cell dissociation. We

further review how different types of cell–cell-
interaction-based dynamics and collective cell

migration are “tunable” and allow for adaptive

strategies of cell movements for different phys-
iological and pathological contexts and discuss

their implications for classifying collective and

single-cell behaviors.

CELL–CELL ADHESION SYSTEMS

Common to all adhesion systems is the require-

ment for an initial interaction between trans-

membrane cell-surface receptors on adjacent
cells, which usually are followed by the recruit-

ment of intracellular adaptor and cytoskeletal

proteins. This complex regulates the shape and
mechanical stability of the adhesion junction,

its interaction with intracellular effectors, and

adhesion-mediated activation of downstream
signaling pathways. Typically, cells use several

complementary adhesion systems in parallel,

resulting in a cell–cell interactome (Porterfield
and Prescher 2015).

Adherens junctions (AJs). AJs are protein
complexes found at cell–cell junctions of epi-

thelial and endothelial tissues that connect the

actin cytoskeleton of adjacent cells (Shapiro and
Weis 2009). AJs depend on the homophilic

bindingof calcium-dependent cadherins,which

interact via their intracellular domains with sev-
eral regulatory and cytoskeletal proteins such as

p120-, a-, b-, g-catenin, and vinculin, among

others (Harris and Tepass 2010). Although AJs
are usually associated with epithelial and endo-

thelial tissues, it has been shown thatmesenchy-
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mal cells form transient adhesion complexes in

which type I N-cadherin, together with the full
repertoire of intracellular adhesion proteins

(p120, a-, b-, g-catenin, and vinculin), are en-

gaged (Theveneau and Mayor 2012a). Both E-
and N-cadherin-based AJs control apicobasal,

as well as front–rear, polarity of interacting cells

(Venhuizen and Zegers 2016).
The main functional difference between ep-

ithelial and mesenchymal AJs is their stability:

epithelial junctions tend to be more stable (in
the range of hours to days), whereas mesenchy-

mal junctions are transient (minutes to hours)

(Scarpa et al. 2015). The stability of AJs is con-
trolled by several mechanisms, including endo-

cytosis and cytoskeletal regulation. Endocytosis

of AJ receptors and adapters occurs both by
clathrin-dependent and -independent mecha-

nisms (Delva and Kowalczyk 2009; Schill

and Anderson 2009), which cooperate with reg-
ulation by Rho family GTPases. For example,

Cdc42 works upstream of Par6/aPKC and

Cdc42-interacting protein 4 (CIP4), which con-
trol actin dynamics at the internalization site

(Harris and Tepass 2010). Besides controlling

the stability of cell–cell interactions, Rho
GTPases, via PAK and bPIX, are reciprocally

controlled by AJs in which they play an essential

role on actin dynamics (Zegers et al. 2003;
Zegers and Friedl 2014). Interaction between

cadherin–catenin clusters leads to the recruit-

ment of the Rac guanine nucleotide exchange
factor (GEF) TIAM1, which activates the Rho

GTPase Rac1, and the activation of Rac1 in lead-

er cells is, in turn, required for the formation of
cell protrusions and traction forces observed at

the edge of a cell cluster during collective cell

migration (Hordijk et al. 1997; Kovacs et al.
2002; Mertens et al. 2005). Another activator

of Rho GTPases within the AJ is Nectin, and

Nectin-like proteins, a family of Ig-like cell ad-
hesionmolecules (CAMs) (Takai et al. 2008). To

aid the formation of AJ, nectin recruits afadin

and ponsin, which lead to the activation of
Cdc42 and Rac and cytoskeletal remodeling at

the site of cell–cell contact (Fukuyama et al.

2006). The interaction between AJs and actin
is mutual, leading to an increase in the stability

of cortical actin toward the maturing AJ com-

plex (Baum andGeorgiou 2011). Consequently,

AJ are central hubs controlling cell–cell cohe-
sion and collective cell migration underlying

tissue dynamics and remodeling.

Tight junctions (TJs). TJs are adhesion com-

plexes in which the plasma membranes of adja-

cent cells become closely associated, forming an
impermeable barrier within the tissue. TJs are

indispensable for creating a barrier between dif-

ferent regions of the body, and their main role is
to function as paracellular gates that restrict dif-

fusion on the basis of size and charge. TJs are

composed of transmembrane proteins (claudin,
occludin, tricellulin, and marveld3) that seem

sufficient to trigger at least some of the aspects

required in TJ formation, including mechanical
junction stability and apicobasal polarity of

connected cells (Zihni et al. 2016). Other TJ

transmembrane adhesion proteins comprise
the junctional adhesion molecules (JAMs),

which enhance TJ stability and turnover (Ebnet

et al. 2004; Luissint et al. 2014). The intracellu-
lar function of TJs depends on a dense network

of proteins, composed of ZO1, ZO2, ZO3, plus

a large number of other adaptor proteins (Van
Itallie and Anderson 2014). By binding several

transmembrane and adaptor proteins, TJs con-

trol various signaling pathways involved in actin
organization, cell polarity, as well as transcrip-

tional regulation (Gonzalez-Mariscal et al.

2014). The interaction of TJ proteins with the
actin cytoskeleton seems to be essential for

junction formation and turnover. For example,

myosin light chain kinase stimulates TJ remod-
eling and occludin internalization during

inflammation (Herrmann and Turner 2016).

Rho GTPase signaling is also controlled by TJ-
associated proteins: RhoA, Cdc42, and Rac are

regulated by GEFs recruited to cingulin, ZO1,

and tricellulin (Otani et al. 2006; Terry et al.
2011; Oda et al. 2014). Thereby, TJs form a cen-

tral hub between cell–cell interactions and actin

dynamics (Balda and Matter 2016).

Gap junctions (GJs). GJs are intercellular

membrane channels made up of a multigene
family, called connexins in vertebrates (Willecke

et al. 2002). GJs are specialized junctions char-

Collective Cell Migration by Cell–Cell Junction Regulation
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acterized by close apposition of the plasma

membranes between neighboring cells and con-
tain a hydrophilic channel that mediates the

intercellular passage of molecules .1 kDa in

size. The extracellular domains of connexins
form a tight connection between adjacent cells

contributing to cell-cell adhesion. Connexins

interact with several proteins to formmultipro-
tein complexes, which are important in cell-cell

junction stability and function. For example,

Cx43 interacts with N-cadherin and other
members of the AJ complex (Xu et al. 2001),

as well as cytoskeletal proteins such as microfil-

aments and microtubules (Wei et al. 2004).
Phosphorylation of the cytoplasmic domain

of connexin is critical in regulating GJ assembly,

trafficking, channel gating, and turnover. GJs
contribute to cell migration during develop-

ment and in homeostatic processes such as

wound healing (Kotini and Mayor 2015), and
it has been proposed that their channel activity

could be important for cell coupling and coor-

dination during migration (Lorraine et al.
2015).

IgCAMs. IgCAMs correspond to immuno-
globulin-like cell-adhesion molecules contain-

ing one or more Ig-like domains in their extra-

cellular regions. IgCAMs are expressed in awide
variety of cell types, such as cells of the nervous

system, leukocytes, and epithelial and endothe-

lial cells (Cavallaro and Christofori 2004). By
homophilic and heterophilic interactions of

their Ig-like domains IgCAMsmediate adaptive

cell–cell interactions and play an important role
in cell migration (Cavallaro and Christofori

2004). IgCAM adhesion is regulated by lateral

oligomerization, which in turn depends on
phosphorylation of their Ankyrin-binding do-

main (Garver et al. 1997). A secondmechanism

that controls IgCAMs-mediated adhesion is
based on their internalization or recycling

from the plasma membrane; for example, the

internalization of aplysia cell adhesionmolecule
(apCAM) is controlled by phosphorylation by

mitogen-associated protein (MAP) kinase (Bai-

ley et al. 1997). A third mechanism that regu-
lates IgCAM-based cell adhesion is their proteo-

lytic cleavage. For example, the leukocyte

adhesionmolecule L-selectin is cleaved by shed-

dases of the metalloprotease and ADAM fami-
lies, and is protected from this cleavage by in-

tracellular regulators, which engage with its

cytoplasmic domain, including calmodulin
and moesin (Kahn et al. 1998; Ivetic et al.

2002). IgCAMs have been reported to associate

with a range of other proteins at the cell mem-
brane, including growth-factor receptors, integ-

rins, and cadherins, and with intracellular pro-

teins, such as effectors of signal transduction
pathways and cytoskeletal proteins (Juliano

2002), and thus contribute to a range of signal-

ing programs involved in cell adhesion and mi-
gration.

Slit/Robo. Slit/Robo corresponds to the
Roundabout receptors (Robo) and their Slit li-

gand. Robo receptors belong to the superfamily

of IgCAMs and engage in both homophilic and
heterophilic interactions (Hivert et al. 2002).

Slits are the principal ligands for the Robo re-

ceptors (Kidd et al. 1999), which, together with
heparan sulphates, form a ternary complex re-

quired for signaling (Ypsilanti et al. 2010). The

cytoplasmic domains of Robo do not possess
catalytic activities and, therefore, interact with

different signaling molecules to exert their spe-

cific effects; these include netrin and several
GTPase activating proteins (GAPs) and GEFs

that control actin cytoskeletal dynamics by reg-

ulating the activity of RhoA, Rac1, and Cdc42
(Ypsilanti et al. 2010). The activity of Slit/Robo,
including adhesion, is controlled by transcrip-

tional regulation and endocytosis and degrada-
tion (Keleman et al. 2005). Slit–Robo interac-

tion typically mediates cell repulsion, but in

some cases also supports cell–cell adhesion.
The formation of cranial ganglia requires the

adhesion to different cell types, and increased

adhesion between neural crest and placodes is
promoted by an interaction between Robo2/
Slit1, which increases the N-cadherin-depen-

dent adhesion between these cells (Shiau and
Bronner-Fraser 2009). Slit/Robo interactions

are also involved in collective cell migration

of neural crest cells during development and
endothelial cells in angiogenesis (Legg et al.

2008).
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Ephrin/Eph receptor. Ephrin/Eph receptor
corresponds to a pair of ligands and receptors

involved in short-distance cell–cell signaling.

Eph are Tyr kinase receptors and ephrins are
membrane-tethered ligands, which can elicit

signaling that affects the cytoskeleton, mediat-

ing primarily cell repulsion but, depending on
context, also cell–cell adhesion (Kania and

Klein 2016). Phosphorylation of the intracellu-

lar domains of Ephs regulates the recruitment of
effector proteins, such as the noncatalytic re-

gions of Tyr kinase adaptor protein 1 (Nck1)

and Nck2, Vav2 and Vav3, Src, a2-chimerin,
and ephexins, which directly regulate actin or

modulate the activity of the small GTPases

RhoA and Rac1 (Kania and Klein 2016). Nor-
mal morphogenesis of the neural tube and neu-

ral progenitors requires ephrin-dependent cell–

cell adhesion (Arvanitis et al. 2013), and alter-
native usage of different splice forms of Eph

receptor was implicated in mediating cell–cell

coupling during embryonic development. Eph
signaling promotes the formation of AJ through

interaction with E-cadherin and TJs via the in-

teraction with claudin (Dravis and Henkemeyer
2011). Likely, the consequences of Ephrin/Eph
interactions for cell–cell contact stability de-

pend on the overall junction protein repertoire
expressed by the cell. Ephrin/Eph has been

shown to be important for collectivemovement;

for example, the formation of the thymus anlage
requires EphB/ephrin B, which seems to sup-

port collective mobility by a collective separa-

tion mechanism (Foster et al. 2010).

Integrins. Integrins are transmembrane

proteins that connect the cytoskeleton with
the extracellular matrix (ECM). ECM ligands

for integrins include fibronectin, vitronectin,

collagen, and laminin, among others, which,
beyond their well-established function as

structural connective tissue scaffolds, also

may be located between cells and contribute
to cell–cell interactions (Barczyk et al. 2010).

Integrins interact with F-actin and intermedi-
ate filaments allowing a mechanical coupling

between the cytoskeleton and the ECM, and

act as important transducers of mechanical
forces (Fagerholm et al. 2005). Integrin en-

gagement results in the formation of focal ad-

hesion complexes of varying sizes and func-
tions, which interact with F-actin and recruit

FAK and Src, leading to the activation of sig-

naling pathways involving extracellular signal–
regulated kinase (ERK), c-Jun N-terminal ki-

nase (JNK), and small GTPases (Bouvard et al.

2013). Interaction of integrins with cadherins
and selectins has been proposed to be required

for the participation of integrins in cell–cell

adhesion (Bouvard et al. 2013).

CELL–CELL ADHESION STATES AND
DYNAMICS

The type and durability of cell–cell adhesion

and cytoskeletal interaction systems that are en-
gaged by stationary and moving cells provide a

range of adhesion strategies between cells,

which jointly define the level of collective adhe-
sion and polarity, junction dynamics, and the

type of collective migration. The spectrum of

tissue fluidity can be found to vary, in a cell-
and context-dependent manner, from fully

immobilized, highly contractile to loosely con-

nected but highly mobile collective cell–cell or-
ganizations and kinetics (Fig. 1).

Myoblast fusion and myofiber formation.

Myofibers are multicellular syncytia that de-

velop by the fusion of individual myoblasts.

Rather than forming a collectively migrating
group, myoblasts remain stably anchored to

the substrate while establishing stable cell–cell

junctions that enable contractility across many
cells but show little junction dynamics. Myo-

blast interactions engage multiple receptor

systems in parallel, including focalized high-
density accumulation of M- and N-cadherin,

neural cell adhesion molecule (NCAM), vascu-

lar cell adhesion molecule (VCAM-1), meltrin,
and integrins (Fig. 1A) (Charrasse et al. 2006;

Abmayr and Pavlath 2012; Ozawa 2015). Once

myoblasts connect with each other, individual
mobility is largely disabled, whereas collective

contractility and force transmission across

cell–cell junctions are gained, particularly
through the actomyosin cytoskeleton, which

develops prominent stress fibers under the

Collective Cell Migration by Cell–Cell Junction Regulation
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control of RhoA and bridges multiple cell bod-

ies for coordinated rhythmic contractility of
the multicellular ensemble (Charrasse et al.

2006). Thus, in fusing myoblasts high junction

stability mediated through overlapping adhe-
sion systems and cytoskeletal linkages support

mechanically very stable junctions, which me-

diate collective contractility and eventually cell
fusion, but discourage position change of the

group as a whole and individual cells within

the group.

Epithelial sheet migration.Mature monolay-

ered epithelia display stable cell–cell in-
teractions, established by E-cadherin- and

b-catenin-based AJs, combined with apical

desmosomal junctions and TJs; these jointly
mediate mechanically robust multicellular

integrity, apicobasal polarity, and barrier

function (Wong et al. 1998; Takeichi 2014).
Whereas the epithelium as tissue remains an-

atomically stable to sustain live-long mechan-

ical and functional integrity, epithelial renewal
in several tissues, including the intestine and

the epidermis, depends on constitutive collec-

tive sheet migration coupled to cell prolifera-
tion and sheet expansion (Wong et al. 1998;

Nanba et al. 2015). The renewal of the gut

epithelium is initiated by releasing precursor
cells from the stem cell pool, which resides at

the bases of the crypts, and that then change

position and move upward along the basement
membrane toward the tips of the villi (Ritsma

et al. 2014). Because moving cells remain fully

coupled to their neighbors by lateral junctions
and the intestinal basement membrane via

their basal plane, they move as cohesive sheets

in the upward direction (Fig. 1B) and, addi-
tionally, undergo a controlled number of cell

divisions (Wong et al. 1998; Nanba et al. 2015).

The mechanics of lateral sheet migration is
not fully resolved. Likely, cryptic lamellipodia

generate traction force toward the substrate

along the sheet, whereas the apical cell–cell
junctions transmit collective actomyosin con-

tractility to enable slow movement along the

basement membrane (Farooqui and Fenteany
2005; Zegers and Friedl 2014; Bazellieres et al.

2015), but the role of additional rotational

and turbulent movements remains to be clari-

fied (Nanba et al. 2015). By coupling apico-
basal polarity with high junction stability,

sheet migration along a two-dimensional

(2D) substrate layer as guidance cue is a
conserved and important type of collective mi-

gration of a mature epithelium. Accelerated

variants of epithelial sheet migration are ob-
served as sheet migration during the wound

closure of epithelial defects and epithelial mor-

phogenesis.

Sprouting strands. When invading 3D tis-

sues, epithelial and endothelial cells typically
move collectively to form linear, branched,

or network-like strands (Fig. 1C). Collective

sprouting underlies the branching morphogen-
esis of epithelial tissue and organs with

branched or lobular structure, including the

trachea, kidney, thymus, and the mammary
gland (Gray et al. 2010). Sprouting hemo- or

lymphangiogenesis occurs during revasculari-

zation of tissue after injury (Senger and Davis
2011). As a biomechanical principle of sprout-

ing in differentiated endothelia and epithelia,

one or several leader cells form a leading tip or
terminal end bud that protrudes forward,

whereas the rear cells undergo apicobasal polar-

ization to form avascular lumen or duct (Hueb-
ner et al. 2016). The cell–cell junctions of in-

vading epithelial strands are dependent on E-

cadherin-based AJs, desomosomal, and TJs
(Shamir and Ewald 2015), whereas vascular

strands depend on VE-cadherin and TJs (Sen-

ger and Davis 2011). Commonly, these cell
strands preserve apicobasal polarity, form lumi-

na, and deposit an abluminal basement mem-

brane as theymove, as has been observed during
vascular, mammary gland, kidney, and tracheal

development (Riggins et al. 2010; Nguyen-

Ngoc et al. 2012). When apicobasal polarity is
lacking, as in dedifferentiated tumor cells, col-

lective strand invasion occurs as solid finger-like

multicellular protrusions with no lumen
formed (Wolf et al. 2007; Nguyen-Ngoc et al.

2012).

Moving sheets and clusters. In morphogen-

esis and during cancer invasion, cell sheets and
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detached groups of variable size, which retain

cohesive cell–cell junctions between cells, mi-
grate along 2D and three-dimensional (3D) tis-

sue scaffolds (Fig. 1D) (Friedl et al. 1995; Alex-

ander et al. 2008; Montell et al. 2012). Epithelial
sheet movement is initiated by a row of leader

cells coupled to follower cells by AJs containing

E- or P-cadherin (Chapnick and Liu 2014;
Plutoni et al. 2016), and sheet displacement

depends on coordinated traction force genera-

tion between leader and follower cells, which are
distributed across cell–cell junctions by the

actomyosin cytoskeleton (Brugues et al. 2014;

Reffay et al. 2014; Bazellieres et al. 2015). Mov-
ing clusters can be epithelial, such as the

border cells moving along the boundaries of

large nurse cells of the developing Drosphila

ovary, or mesenchymal, such as moving neo-

plastic sheets in rhabodomyosarcoma explant

culture (Friedl et al. 1995). The activity of leader
cells depends on extracellular stimuli, such as

ECM ligand or soluble factors (e.g., transform-

ing growth factor b, TGF-b), inducing MAP
kinase signaling and downstream Rac1 for pro-

trusion formation and direction sensing (Khalil

and Friedl 2010; Chapnick and Liu 2014). Lead-
er cell polarity is further supported by AJ sig-

naling, which controls leader cell polarization

and anterior protrusion dynamics (Khalil and
Friedl 2010; Mayor and Etienne-Manneville

2016). In contrast to homeostatic sheet migra-

tion, which forms a continuumwithout leading
and trailing edges, the mechanisms defining re-

traction of the rear cells in moving clusters re-

main unclear.

Moving cell networks. A more flexible type

of collective migration, used by neural crest and
other mesenchymal cells, as they move in a co-

ordinatedmanner as loosely cohesive group in a

cell-type and context-dependent way, with a
variable tendency to individualize (Fig. 1E)

(Scarpa et al. 2015). Examples are the migration

of neural crest cells in developing embryos, neu-
ronal/astrocyte networks (Scarpa et al. 2015),

glioma cells retaining filamentous cell–cell in-

teractions while moving through complex brain
parenchyma (Osswald et al. 2015), and mesen-

chymal tumor cells moving through confining

tissue (Ilina et al. 2011; Haeger et al. 2014).

Collectively, moving loose networks are medi-
ated by complex morphological junctions me-

diated by N-cadherin for cell–cell adhesion and

additional receptors mediating repulsive sig-
nals, including Ephrin/Eph receptors (Theve-

neau and Mayor 2011). As a consequence, cells

coordinate their polarity and respond to extra-
cellular signals as a group, but also retain the

remarkable ability of moving individually. Mes-

enchymal tumor cells develop ALCAM-positive
cell–cell junctions when moving through con-

fined space, and gain many properties of collec-

tive invasion, including shared migration path,
lateral cell–cell junctions, and alignment of

front–rear polarity and mitotic planes (Haeger

et al. 2014). But they also retain the ability to
rapidly detach in response to extracellular sig-

nals such as growth factors, altered tissue geom-

etry, or matrix metalloproteinase (MMP) avail-
ability (Wolf et al. 2007; Ilina et al. 2011).

Conceptually, collective networks retain prop-

erties of both collective and individual cell
movements, as well as multicellular streaming,

and further show a high level of stochasticity

(“noise”) in switching between individual and
collective behaviors, which render experimental

classification sometimes challenging and re-

quires quantitative analysis as well as mathe-
matical modeling (Huang et al. 2015). As a de-

fining characteristic for collective cooperativity,

the cells moving as a network can respondmore
efficiently to external signals when they are part

of groups rather than as individual cells (The-

veneau et al. 2010).

Leukocyte swarming and aggregation.When

activated, moving leukocytes show a strong ten-
dency to interact with each other, coordinate

their migration for “swarming” behaviors, and

aggregate. In activated lymphoblasts, aLb2 in-
tegrin/ICAM-1–dependent cell–cell junctions

transiently interact and coordinate their migra-

tion as cell pairs or small clusters of variable
stability (Gunzer et al. 2004; Malet-Engra et al.

2015). As moving myeloid leukocytes converg-

ing toward damaged or infected tissue regions,
chemoattractant guidance leads to highly coor-

dinated crowd behaviors with head-to-tail ori-
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entation and frequent cell–cell interactions,

which can eventually transit to firm clustering
that depends on b2 integrin availability (Waite

et al. 2011; Lammermann et al. 2013). Thus,

at the low end of cell–cell adhesion, indivi-
dually moving leukocytes may coordinate

their amoeboid movements with neighboring

cells by short-lived cell–cell junctions (seconds
to minutes), and rapidly transit toward con-

tact strengthening and aggregation into a

multicellular cluster. Depending on experimen-
tal context, such clusters may be immobile

and transiently close an interstitial wound

(Lammermann et al. 2013) or, under chemotac-
tic and free-space conditions, even show collec-

tive coordination and migration (Malet-Engra

et al. 2015).
In summary, for very different cell types

and biological contexts, the organization and

stability of cell–cell junctions, together with en-
vironmental parameters, determines the mor-

phological and functional types of collective

movement. Consequently, alteration of adhe-
sion and environmental parameters may im-

pose an adaptation response and significant

plasticity of collective behaviors.

TUNING COLLECTIVE MIGRATION:
VARIABILITY AND TRANSITIONS

The molecular variability of cell–cell junctions

and their different linkages to the cytoskeleton

not only explain distinct types of collective
movements; when regulated within the same

cell type, by extracellular chemical or physical

signals, collective migration may be induced or
modulated, with consequences for group be-

havior and tissue integrity and function.

Tissue Morphogenesis and Regeneration

Morphogenesis involves the complex and coor-

dinated rearrangement of tissues and massive

movement of cells. In particular, the initial for-
mation of the body shape, the early separation

of the principal tissue types, and the organiza-

tion of specific organs depend on different types
of collective cell migration. Similar morphoge-

netic processes are implicated in regeneration.

A fundamental morphogenetic process that

allows tissues to develop and remodel and that
depends on the regulation of cell–cell adhe-

sions is the epithelial-to-mesenchymal transi-

tion (EMT). In response to extracellular trig-
gers, including cytokines, growth factors, and

metabolic stress, EMT induces the down-regu-

lation of E-cadherin but up-regulates N-cad-
herin, which lowers cell–cell adhesion strength

and apical-basal cell polarity, and favors migra-

tory and invasive properties (Thiery et al. 2009).
Traditionally, full EMT has been considered es-

sential for the migration as it was thought that

only mesenchymal, but not epithelial cells, were
able to migrate. However, recent work indicates

that EMTshould be considered as a spectrum of

intermediary phases, ranging from full EMT to
partial, or even quite subtle states of EMTwith

very variable effects on cell mobility and migra-

tion type (Fig. 2) (Nieto et al. 2016). Well-stud-
ied examples of collective cell migration during

development, which are initiated byormaintain

some degree of EMT, include the migration of
border cells in Drosophila, the lateral line pri-

mordium in zebrafish, and the neural crest in

amphibian and zebrafish (Mayor and Etienne-
Manneville 2016). The precursors of all these

tissues are epithelial cells that undergo an

EMT to initiate their migration; the degree
and pattern of collective cooperation during

migration thereafter reflects varying cell–cell

junction organization and dynamics main-
tained by varying coexistence of epithelial and

mesenchymal programs (Fig. 2). The zebrafish

lateral line primordium represents collective cell
migration, which retains both epithelial and

mesenchymal characteristics as a default state

(Fig. 2A,B) (Ghysen and Dambly-Chaudiere
2004). Cells of the primordium express E-cad-

herin and show foci of the TJ protein ZO1 and

aPKC at the center of the tightly packaged pri-
mordium (Revenu et al. 2014), similar to ma-

ture epithelium. On the other hand, cells par-

ticularly located at the edge of this cell group
display typical mesenchymal characteristics,

such as reduced apicobasal polarity and the

presence of highly dynamic actin-rich lamelli-
podia-like protrusions at the basal interactions

to the tissue (Lecaudey et al. 2008; Hava et al.
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2009). Thus, within the same moving cell
group, different interaction types are found,

with strong cell–cell adhesions at the center of

the migrating cluster and more mesenchymal
cells with weaker adhesions but higher actin-

mediated mobility at the periphery and in lead-

er cells.
Branching morphogenesis in the lactating

mammary gland and cell movements during

gut homeostasis are also seemingly equivalent
to the initial branching morphogenesis ob-

served during development, as both processes

require E-cadherin-mediated cell–cell cohesion
for collective sprouting and tubule elongation;

depletion of E-cadherin interferes with the in-

tegrity of these tissues, with E-cadherin defi-
cient cells being excluded (Shamir and Ewald

2015). The leading front of the tube, which

drives collective mobility, undergoes a loosen-
ing (but not ablation) of cell junction stability,

for example, by maintaining a partial EMT

in which E-cadherin-based junctions gain
flexibility and increase their turnover; concur-

rently cells in the rear position, which form

the extending tube, retain stable cell–cell junc-
tions and apicobasal polarity, and gradually

downscale their migration ability (Shamir and

Ewald 2015). Likely, similar reprogramming of
leader cells toward loosened junction organiza-

tion is active during neoplastic invasion of

Leader cell

cluster

Leader cell

Epithelial

E-cadherin

Mesenchymal

Other junctions

(N-cadherin, IgCAMs, etc.)

Collective detachment

Individualization

Stochastic?

Promigratory stimulus?

Altered tissue geometry?

Full

EMT

Partial

EMT

Stable epitheliumA D

B

E

C

Collective network migration

Moving epithelium

sheet

Figure 2. EMT spectrum tuning the modes of collective and individual-cell migration. (A) Resting epithelial
tissue. (B) Partial EMT in the leading cells can retain cell–cell junctions and promote epithelial sheet migration.
(C) Cluster migration after group detachment from themain tissue. Migrating clusters canmaintain apicobasal
polarity, strong and stable cell adhesion mediated mainly by E-cadherin, or undergo further mesenchymal
plasticity. (D, E) Full EMT leads to reduced cell adhesion, associated with down-modulated E-cadherin and
increased N-cadherin expression, followed by loss of apicobasal polarity, acquisition of front–back polarity and
increased individual motility. Transient junctions allow for collective network migration (D), and complete
resolution of cell–cell junctions favors individualization and single-cell migration (E). EMT, epithelial-to-
mesenchymal transition; IgCAMs, immunoglobulin-like cell-adhesion molecules.
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breast cancer cells (Cheung et al. 2013; Cheung

and Ewald 2014). Thus, tuning cell–cell junc-
tion stability regulates the degree of collective

dynamics.

As an example of a very transient EMT
followed by epithelial collective migration, Dro-

sophila border cells initiate their delamination

from the epithelium by down-regulation of DE-
cadherin for a short time period (few hours)

(Fig. 2C) (Montell et al. 2012). A network of

transcription factors, including Jing, SIX4,
Yan, Similar (also known as HIF1a), Hindsight

(HNT), and Jun-related antigen, is activated

and controls the levels of DE-cadherin during
border cell delamination and migration (Mon-

tell et al. 2012). Levels of DE-cadherin need to

be precisely regulated and deviations impair
border cell migration; consequently, after ini-

tially reducing DE-cadherin levels during de-

lamination, moving border cell clusters still
maintain substantial levels of both DE-cadherin

and its binding partner armadillo (b-catenin)

between neighboring border cells to maintain
collective migration as a cluster (Peifer 1993;

Niewiadomska et al. 1999; Sarpal et al. 2012).

As an example for even stronger mesenchy-
mal properties with few epithelial features re-

tained, in many species the neural crest under-

goes EMT to initiate migration (Thiery et al.
2009; Theveneau and Mayor 2012b). In addi-

tion, after delamination a collective network-

type migration is retained whereby loosely con-
nected individually moving cells and more

tightly connected clustered cells both depend

on cell–cell interactions for their migration
(Fig. 2D) (Teddy and Kulesa 2004; Carmona-

Fontaine et al. 2008). A complex genetic net-

work is activated in the neural crest that leads
to and maintains EMT. A BMP4-Wnt1 signal-

ing pathway activates a set of transcription fac-

tors, including Snail1/2, Sox5/9/10, Foxd3 and
Ets1, that modify the expression of cell–cell and

cell–matrix adhesion molecules (Sauka-Speng-

ler and Bronner-Fraser 2008; Theveneau and
Mayor 2012c). Thus, although neural crest

shows all the hallmarks of mesenchymal cells,

they obviously form transient AJs (Scarpa et al.
2015). The endocytosis of N-cadherin at the AJs

is essential for neural crest migration in vivo, as

it confers sufficient fluidity on the cell cluster

for it tomigrate under physical constrains (Kur-
iyama et al. 2014). This increase in tissue fluid-

ity allows a dynamic exchange of neighbors

while retaining cell–cell interaction.
In conclusion, collective cell migration dur-

ing morphogenesis involves a wide spectrum of

cell adhesion strength, with highly cohesive cell
sheets and clusters at one end and relatively

loose groups of cells at the other end. By spa-

tially and temporally tuning cell–cell junction
stability, a range of collective migration modes

and patterns with different levels of cell–cell

cohesiveness is achieved to build tissue.

Cancer Invasion and Metastasis

Collective invasion is an important strategy for

local tissue infiltration, as well asmetastatic eva-

sion in epithelial tumors such as breast cancer,
squamous cell carcinoma, colon cancer, and

others, as well as in mesenchymal tumors (Ilina

and Friedl 2009; Cheung and Ewald 2016). Sim-
ilar to morphogenesis, the phenotypic and

junctional organization of moving cancer cell

groups varies greatly (“collective plasticity”).
In experimental live-cell models, all types of

collective movements can be adopted by tumor

cells including (1) cohesive sheets or strands,
typically detected in epithelial cancers; (2) iso-

lated clusters detached from the primary/met-

astatic lesion such as epithelial tumors and
melanoma; (3) neuronal-like networks of con-

nected cells, detected in neuroectodermal tu-

mors, such as glioblastoma; or (4) as “jammed”
collective cohorts induced by spatially narrow

tissue boundaries (confinement) of otherwise

transiently/loosely connected (single) cells in
experimental melanoma and sarcoma models

(Friedl et al. 1995, 2012; Nguyen-Ngoc and

Ewald 2013). Similarly, histological examina-
tion of both patient lesions and mouse models

in vivo shows that the collective invasion pat-

terns develop striking morphological and mo-
lecular variability, depending on tumor type

and the tissue that is invaded (Weigelin et al.

2012; Bronsert et al. 2014).
Consistent with cellular diversity of collec-

tive invasion programs, a range of cell–cell
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adhesion mechanisms supports collective inva-

sion of cancer cells. Epithelial tumors invade
collectively, with duct-like patterns and E-cad-

herin andb-catenin positive cell–cell junctions,

with or without lumen formation, and with or
without up-regulation of EMTmarkers, includ-

ing Twist and Zeb1 (Cheung et al. 2013; Bron-

sert et al. 2014). Furthermore, both E- and
N-cadherin can orchestrate AJs and cell–cell

interactions in cancer cells (Bronsert et al.

2014; Zucchini et al. 2014). Besides cadherins,
Ig superfamily members and ephrins/EpH re-

ceptor systems were implicated in mediating

more labile or transient cell–cell interactions
in cancer cells (Cavallaro and Christofori

2004; Haeger et al. 2014; Krusche et al. 2016).

As well, connexins may enable communication
throughGJs between connected tumor cells and

their inhibition reduces collective migration in

prostate cancer cells (Zhang et al. 2015). Similar
to morphogenetic and homeostatic migration,

collectives ofmigrating cancer cells display lead-

er cells that engage with surrounding tissue
structures via Rac-driven filopodal protrusions

and integrin-mediated substrate adhesion (He-

gerfeldt et al. 2002; Yamaguchi et al. 2015).
Collectively moving cancer cells retain a range

of actin dynamics, substrate adhesions, and

ECM remodeling functions, which typically
are shared and coordinated between neighbor-

ing cells, generate tissue alignment and remod-

eling as an integrated process; these combined
parameters can furtherdefine the degree of cell–

cell cohesion and individualization as an inte-

grated function of cell–cell junction stability,
MMPactivity and tissue organization, and space

(Scott et al. 2010; Friedl et al. 2012; Te Boekhorst

et al. 2016).
In recapitulation of morphogenesis pro-

grams, EMTsignaling enhances cancer invasion

and metastatic progression of epithelial cancers
by reprogramming cell–cell junctions (Kalluri

and Weinberg 2009). EMTweakens or fully dis-

solves cell–cell junctions between cancer cells,
including AJs, desmosomes, and TJs. EMTalso

up-regulates the expression of stromal proteas-

es, which cleave cadherins; deregulates integrin
adhesion systems, for example, by switching b1

to b3 integrin expression and enhancing aV

integrin signaling; and can redirect Rho-medi-

ated actomyosin contractility from cell–cell
junctions toward cell–matrix interactions (Kal-

luri and Weinberg 2009; Parvani et al. 2013;

Truong et al. 2014). These molecular repro-
gramming events result in deregulated cell–

cell contacts, loss of apicobasal polarity, includ-

ing degeneration of the lumen of otherwise
ductal and glandular structures, gain of front–

rear polarity, and ultimately favor the gradual

transition from epithelial to mesenchymal mi-
gration modes (Bryant et al. 2014).

In addition to tumor cell individualization

caused by full EMT, which allows for single-cell
dissemination and metastasis, recent cell-based

and modeling work indicates that EMT also

contributes to collective invasion with a high
likelihood of mixed behaviors after EMT, in-

cluding intermediate (e.g., metastable or hy-

brid) phenotypes such as detached collective
or loosely connected migrating groups (Jolly

et al. 2015). With such EMT-associated repro-

gramming, or partial EMT, moving tumor cell
clusters may still maintain cell–cell contacts

but simultaneously undergo a differentiation

switch toward embryonic features (Jolly et al.
2015; Nieto et al. 2016). Thus, similar to mor-

phogenesis, the adaptability of collective inva-

sion programs allows a range of coping strate-
gies for cancer invasion and metastasis in

different tissue environments (discussed in Te

Boekhorst and Friedl 2016).

CONCLUDING REMARKS

Cell–cell junctions emerge as central regulators

of the type, efficiency, and fate of collective cell

movements. Here, we have proposed an integra-
tive view to frame collective cell functions that is

distinguished by modular and often gradual

cell–cell adhesion regulation. We hope that
this perspectivemay facilitate the understanding

of multicellular dynamics with mixed pheno-

types, which are frequently observed in wet-lab-
oratory experiments and also in mathematical

modeling (Jolly et al. 2015; Te Boekhorst et al.

2016). By modulating the composition of cell–
cell adhesions, collective movements are adap-

tive in time and space in response to soluble and
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structural tissue-derived signals, as well as geo-

metric tissue properties (Haeger et al. 2015; Te
Boekhorst et al. 2016). Thus, similar to single-

cellmigrationmodes, which can switch between

different types of mesenchymal and amoeboid
movements, collective migration modes can in-

terconvert and adapt to local and global signals.

Based on their range of stability, cell–cell
junctions may be classified as (1) stable, cohe-

sive with disabled cell position change, (2) sta-

ble, but dynamic, allowing cells to move relative
to neighbors without resolving the junction, (3)

partially stable, allowing transient detachment

and reintegration, and (4) short lived and par-
tially repulsive. Emergent collective behaviors,

that is, the ability of a cell group to perform

tasks beyond the abilities of a single cell, are
reached as long as cell–cell junctions suffice to

coordinate behavior across scale. Examples are

collective chemotaxis and durotaxis, which al-
low cell groups to respond to more shallow

chemical or physical gradients for directional

migration (Malet-Engra et al. 2015; Sunyer
et al. 2016). The gradual range of kinetic states

complicates simple classifications as “collec-

tive” movement versus multicellular streaming
versus predominantly single-cell dynamics.

Typical collective cell migration is considered

when stable cell–cell junctions support supra-
cellular coordination of cytoskeletal activity

across multiple cell bodies and even passive

cell transport as part of group behaviors (Friedl
et al. 2012). Likewise, emergent collective be-

haviors can also be observed when cell–cell

junctions are transient junctions, particularly
in chemotactic gradient sensing and signal in-

tegration. Thus, multicellular streaming behav-

ior depends on the active movement of every
cell but still retains multiple reciprocal cell–

cell interactions, which are limited in duration

and stability but enable collective gradient sens-
ing (Theveneau et al. 2010; Ellison et al. 2016).

Last, individually moving cells may still engage

with other cells in short-lived junctions, which
may or may not induce repulsion and direc-

tional change, and thereby retain cooperative

input from neighboring cells (Ellison et al.
2016). As a special case, an otherwise loosely

connected cell may upscale cooperativity as

part of, for example, a cell-jamming transition

when cells are confined in tissue space, and
thereby adopt emergent behaviors, including

persistent intercellular adhesion and signal in-

tegration (Haeger et al. 2014; Sarkar et al.
2016). Thus, different junction states and envi-

ronmental conditions enable unique sets of

emergent mechanical and signal integration
beyond single cell behavior. Future classifica-

tion of different types of collective versus sin-

gle-cell behaviors will depend on careful dis-
section of each functional module associated

in a junction-, cell-type-, and tissue-specific

context.
Conceptual frameworks based on classify-

ing types of collective movements and their

links to single-cell migration and other types
of tissue dynamics, such as tissue folding and

convergent extension, will further allow us to

integrate molecular signaling concepts, for ex-
ample, on EMT or stemness, with varying de-

grees of cell–cell cooperation. Based on their

central function in defining the shape, molecu-
lar composition, and duration of cell–cell co-

operation, multiscale analysis integrating si-

multaneously engaged junction mechanisms
and their signaling cross talk will be required

to delineate which individual and cooperative

functions guide or compromise collective deci-
sion-making and outcome.
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