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Vocal communicators discriminate conspecific vocalizations from other sounds and recognize the vocalizations of individuals.

To identify neural mechanisms for the discrimination of such natural sounds, we compared the linear spectro-temporal tuning

properties of auditory midbrain and forebrain neurons in zebra finches with the statistics of natural sounds, including song. Here,

we demonstrate that ensembles of auditory neurons are tuned to auditory features that enhance the acoustic differences between

classes of natural sounds, and among the songs of individual birds. Tuning specifically avoids the spectro-temporal modulations

that are redundant across natural sounds and therefore provide little information; rather, it overlaps with the temporal modulations

that differ most across sounds. By comparing the real tuning and a less selective model of spectro-temporal tuning, we found that

the real modulation tuning increases the neural discrimination of different sounds. Additionally, auditory neurons discriminate

among zebra finch song segments better than among synthetic sound segments.

For vocally communicating animals, auditory perception is crucial.
Juvenile birds and human infants selectively attend to, discriminate
among and learn to produce conspecific vocalizations1–4. Neural
mechanisms underlying the selective and precise perception of natural
sounds are not well understood. It is possible that selective auditory
tuning acts to match neural responsivity to the acoustics of biologically
relevant natural sounds. Such ‘matched-filter’ tuning may facilitate the
detection of stereotyped sounds in background noise5–7. Auditory
neurons may also be tuned such that the acoustic differences between
sounds are maximized in the brain, thereby facilitating auditory
discrimination. Here, we provide evidence that selective tuning for
spectro-temporal modulations serves as a neural mechanism for the
discrimination of natural sounds in the auditory system.

Vocalizations and other natural sounds are characterized by spectro-
temporal modulations, oscillations in power across frequency and
time8. Spectral modulations (cycles (cyc)/kHz) are oscillations in
power across a frequency spectrum (kHz) at particular times, such as
harmonic stacks. Temporal modulations (Hz) are oscillations in power
(amplitude) over time. This characterization of complex sounds has
been used to understand the response properties of high-level auditory
neurons that cannot be captured by frequency tuning curves9,10. It
has been proposed that tuning to spectro-temporal modulations, in
addition to frequency spectrum, is used to code communication
sounds7,11–14, including speech15,16. We used two quantitative analyses
to test the hypothesis that, in songbirds, tuning for spectro-temporal
modulations in auditory neurons spans the spectro-temporal compo-
sition of natural sounds in such a way as to facilitate differences in the

neural responses to different natural sound classes and individual
sounds. First, we calculated the linear spectro-temporal receptive fields
(STRFs) of single neurons and evaluated the relationship between the
ensemble tuning derived from these receptive fields and the spectro-
temporal modulations characterizing various natural sounds. Second,
we measured the neural discrimination of different natural sound
segments to test whether modulation tuning facilitates discrimination.

RESULTS

Modulation power spectra and spectro-temporal receptive fields

The spectro-temporal modulations contained in zebra finch song were
analyzed by decomposing the songs of 20 birds into their Fourier
components (Fig. 1a) and calculating a modulation power spectrum
(MPS; Fig. 1b)8, which shows signal power as a function of temporal
modulations and spectral modulations. Negative temporal modulations
distinguish upward (Fig. 1b, left half) versus downward (Fig. 1b, right
half) frequency modulations (FM sweeps). The song MPS shows that
zebra finch song contains a limited range of modulations; high
frequency spectral modulations occur at low temporal modulation
frequencies, and high temporal modulations occur at low spectral
modulation frequencies. For example, the harmonic stacks in zebra
finch songs are composed of relatively high spectral modulations but are
temporally continuous for up to 200 ms and therefore occur at low
temporal modulation frequencies. The power centered at temporal
modulations below 5 Hz and between 0.5 and 1.5 cyc/kHz spectral
modulation shows the power of the harmonic stacks often present in
zebra finch songs (Fig. 1a,b). A synthetic noise stimulus that was limited
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in spectral and temporal modulations (modulation-limited noise; see
Methods) was generated so that the maximum spectral and temporal
modulations matched those of song (Fig. 1b,c). The MPSs show that
modulation-limited noise was designed to contain the spectral and
temporal modulations in zebra finch song and other modulations by
more uniformly sampling the acoustic space bounded by the maximum
temporal and spectral modulations in song (Fig. 1c,d).

We examined the responses of 273 single neurons in the adult male
zebra finch auditory midbrain region mesencephalicus lateralis dorsalis
(MLd), primary auditory forebrain (field L) and a secondary auditory
forebrain region (caudal mesopallium; CM) to modulation-limited
noise (Fig. 2a). CM was studied because it has been implicated in the

perception of familiar sounds17. Normalized reverse correlations
between stimulus spectrograms and neural responses (spike trains)
were used to obtain STRFs for individual neurons (Fig. 2b)18,19. An
STRF describes the linear relationship between a sound and the neural
responses to that sound. In the STRF, a spike occurs at time 0, and the
x-axis shows time preceding the spike. The y-axis shows spectral
frequency (in kHz). Red indicates the sound that is reliably associated
with excitation and blue indicates an absence of sound that is reliably
associated with spiking. The pattern shows the presence and absence of
specific frequencies that maximally drive a neuron. The mirror image
of the STRF can be thought of as the spectrogram of the sounds that
best drive a neuron. In this way, a neuron’s characteristic frequency,
temporal response pattern, excitatory and inhibitory spectral band-
widths, spike latency and temporal precision can be measured. The
STRF in Figure 2b shows a neuron that has onset characteristics and is
driven by lower spectral frequencies. The linear portions of responses,
those that are captured by the STRF, ranged between 30 and 89% of the
total response, depending on the cell and brain region.

To calculate the modulation tuning of a neuron, a two-dimensional
Fourier transform was applied to each STRF to yield the modulation
transform function (MTF). Each MTF (Fig. 2c, center) plots the
modulation tuning of a neuron in terms of spectral and temporal
modulations. The axes are the same as the MPS for sounds (Fig. 1b,c).
To obtain the modulation tuning of the neuronal ensembles in each
brain region, MTFs for single neurons were averaged for all cells in a
brain region to yield the ensemble modulation transfer function
(eMTF; Fig. 2c, right). Using this approach, the modulations that
characterize classes of sounds and the modulation tuning of auditory
neurons can be directly compared.

Selective modulation tuning

In response to modulation-limited noise, eMTFs for MLd, field L and
CM showed that the ascending auditory system acts as a low-pass filter
by selectively tuning to low spectral modulations. Figure 3a shows the
eMTFs obtained from responses to modulation-limited noise with the
80% power contour line from the modulation-limited noise MPS
superimposed in black. This contour outlines the modulations that
are prevalent in modulation-limited noise (Fig. 1c). Field L shows
broader modulation tuning than do MLd and CM because the tuning
properties of cells in field L are more complex and varied than in MLd
or CM; field L contains multiple cell types and at least five subregions.
MLd STRFs showed that most midbrain neurons had strong onset
characteristics and simple frequency tuning (single-frequency peaks),
with a wide variety of best frequencies across neurons. Individual MTFs
were correspondingly simple, showing little tuning for upward versus
downward frequency sweeps or spectral modulations. Field L STRFs
showed more multiple frequency peaks, more complex excitatory and
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Figure 1 Spectro-temporal modulations in song and modulation-limited (ml)

noise. (a) A spectrogram of zebra finch song with example spectro-temporal

modulation patterns below. Red indicates high intensity and blue indicates

low intensity. (b) A modulation power spectrum (MPS) shows the spectral and

temporal modulations in song. The outer and inner black contour lines

delineate the modulations contained in 80% and 50% of the modulation

power, respectively. The dashed box indicates the borders of the highest

spectral and temporal modulations in song (defined by the 80% contour line)

and the defined borders of the modulations included in modulation-limited

noise. (c) The MPS of modulation-limited noise, with example modulations

below. The modulations circled in black (below) are those that also occur

in song. The other modulations are not contained in song (see arrows).

(d) A spectrogram of the modulation-limited noise. Arrows in b,c indicate the

specific points on the MPSs that correspond to the example modulations.
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inhibitory tuning and a wider variety of tuning patterns than did MLd
STRFs. CM neurons that were linear enough to characterize using
STRFs showed tuning properties that were similar to those of MLd
cells. Despite the tuning differences across MLd, field L and CM,
spectral modulation tuning in all three auditory regions was limited to
low frequencies, even though a much wider range of spectral modula-
tions was present in the stimulus. The spectral modulation filter
(Fig. 3b, left) illustrates the progressive decrease in tuning strength
from low to high spectral modulation frequencies. In contrast to the
low-pass spectral modulation tuning, temporal modulation tuning was
band-pass; neurons were selectively responsive to modulation frequen-
cies between 5 and 55 Hz, with peak gain occurring at frequencies bet-
ween 25–35 Hz. The temporal modulation filter (Fig. 3b, right) shows
tuning gain across temporal modulation frequencies. The gains for
positive and negative modulations were very similar and were therefore
averaged. In all three brain regions, a steep decrease in tuning gain
occurs between B25 and 0 Hz and a decrease on the high frequency
side occurs between 35 and 55 Hz, resulting in band-pass tuning.

To investigate the relationship between the selective modulation
tuning and the modulations that characterize zebra finch song, we
compared the ensemble tuning observed in response to modulation-
limited noise, shown by the eMTF, with the MPS for zebra finch song,
for all three brain regions (Fig. 3c). The tuning pattern (color) generally
fits within the contour lines showing the modulations that are present
in song, although more precisely in MLd and CM than in field L, where
neural tuning is more complex. The low-pass spectral modulation
tuning matches zebra finch song in that most of the power in song
occurs at low spectral modulations (Figs. 1b and 3d,e). The correlation
coefficients between the eMTFs and the MPS for zebra finch songs were

0.62, 0.47 and 0.53 for MLd, field L and CM, respectively (Fig. 3c). The
correlation coefficients between the spectral modulation tuning and the
spectral modulations in zebra finch song were 0.89, 0.73 and 0.94 for
MLd, L and CM, respectively. This general match between selective
tuning for low spectral modulations and the prevalence of low spectral
modulation power in song supports a matched-filter coding hypoth-
esis, in the spectral domain.

Temporal modulation tuning showed a different pattern. The
modulations to which the most tuning gain was devoted were not
the most strongly represented temporal modulations in song. While the
tuning power peaked at 25–35 Hz and decreased at lower frequencies
(Fig. 3b, right), the power in the song MPS peaked at the low
frequencies and decreased with increasing frequency (Fig. 3d,e). The
correlations between temporal modulation tuning and the temporal
modulations in song were negative. Correlation coefficients for MLd, L
and CM were �0.56, �0.45 and �0.93, respectively (Fig. 3c). For
sensory coding, one optimal coding strategy is to whiten the response
with a gain function that is the inverse of the stimulus power20.
Whitening leads to maximal entropy in the response and the highest
degree of neural discrimination for a stimulus. The observed tuning is
consistent with this strategy; tuning increases the gain of frequencies
that are represented with lower power in natural sounds. Perfect
whitening would result in a correlation coefficient of �1. The temporal
tuning may therefore facilitate the discrimination among similar
sounds that contain those frequencies, such as segments of song.

Coding efficiency and discrimination among sounds

To examine the functional significance of the observed temporal
modulation tuning for discrimination among different types of sounds
such as song and other natural sounds, we compared the ensemble
tuning to the spectro-temporal modulations in three classes of natural
sounds: zebra finch song, speech and environmental sounds (see
Methods, Fig. 3d). Although these sounds differ in power at temporal
modulation frequencies between B4 and 50 Hz (red arrows), they all
contain high power at low spectro-temporal modulations. The power
distributions across spectral modulation frequencies are highly similar
across classes (Fig. 3e, left), showing high power at low frequencies and
rapid decreases in power as frequency increases. The three sound classes
differ in the distribution of power across temporal modulation fre-
quencies (Fig. 3e, right). At frequencies between 4 and 20 Hz, each
sound class shows a different power distribution (red arrow).

Because the lowest-frequency spectro-temporal modulations are
present at high power across the three natural sound classes, a neural
coding strategy that facilitates sound discrimination might attenuate
the representation of these common sounds and focus on sounds with
modulations that distinguish one class of sounds from another. To test
this, we calculated the modulation frequencies that were present in high
power (common) across all three natural sound classes and compared
them to the neural modulation tuning in each brain region. We
extracted the modulations that contribute 50% of the total power in
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Figure 2 Recording sites and analysis of neural tuning. (a) Single-unit

recordings were made in the auditory regions MLd, field L and CM.

(b) A model spectro-temporal receptive field (STRF), showing the linear

time-frequency tuning of a single neuron. STRFs were obtained by reverse

correlations between stimulus spectrograms and responses (PSTHs).

(c) Modulation tuning of single neurons was measured by calculating

modulation transfer functions (MTFs) from STRFs. Ensemble modulation

tuning of all neurons within one brain region was calculated by averaging the
MTFs for single neurons to obtain the ensemble MTF (eMTF). For illustrative

purposes, hypothetical STRFs and MTFs are shown.
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each sound class (outlined by the inner black contour lines on the
MPSs in Fig. 3d), and then further extracted only the frequencies that
are shared across all three sounds classes (see Methods). Figure 4a
shows these high-power, common modulations as a red (maximum
power) region on an MPS with a blue background (zero power). The
sounds represented by these common modulations can be thought of
as slowly oscillating, broadband segments. Figure 4d shows high-
magnification eMTFs for tuning in MLd, field L and CM. The white
contour line surrounding the modulations that are common across
natural sounds is superimposed over the eMTFs. The band-pass nature
of the temporal modulation tuning results in little tuning for the
modulations that are most highly represented (common) across sound
classes. The degree of filtering of these common sounds by selective
tuning was quantified by calculating the maximum possible overlap
between the tuning and the range of common natural sounds and
comparing that to the actual overlap. Given that no overlap (that is,
complete neural attenuation) would be 100% filtering and maximally
effective at avoiding the common sounds, the actual neural tuning
achieved 38%, 34% and 45% of the maximum possible attenuation in
MLd, field L and CM, respectively. These plots and analyses demon-
strate that the tuning avoids these common modulations.

Is the avoidance of these common modulations a good coding
strategy for the discrimination of natural sounds? Although the low

spectro-temporal modulation frequencies had high power in all natural
sounds, it is still possible that these modulations would be informative
if they varied greatly across the different natural sounds. To quantify
which modulations would be most informative for discrimination, we
calculated the coefficient of variation (c.v.) across the MPSs of song,
speech and environmental sounds (natural sounds, Fig. 4b). This c.v.
shows the spectro-temporal modulations that vary the most in terms of
relative power across sound classes. The high-power regions (red) show
the modulations that are most variable, and the low-power regions
(blue) show which modulations vary the least. The high-power,
common modulations described above are the least variable across
the sound classes and can therefore be considered redundant. High
variability is found for the high spectral modulations (Fig. 4b) and for
an intermediate range of temporal modulations (Fig. 4b,c). The high
spectral modulation region of the c.v. corresponds to the harmonic
stacks in song and formants in speech and the absence of these
modulations in environmental sounds. The intermediate range of
temporal modulations corresponds to a range of frequencies (between
5 and B25 Hz) that are both characteristic and variable in the natural
sounds (Fig. 3e, right). The relationship between the modulation
tuning of the neurons and the variability in the modulations compos-
ing natural sounds is illustrated in Figures 4d,e. The eMTFs and the c.v.
are compared for the spectral modulation range in which the neural

Field L 

S
pe

ct
ra

l m
od

ul
at

io
n

(c
yc

/k
H

z)

MLd CM
a

2

1

0

b
1.0

0.8

0.6

0.4

0.2

0
0.4 0.8 1.2 1.6 2.00

Spectral modulation (cyc/kHz)

N
or

m
al

iz
ed

 g
ai

n

10 20 30 40 500

Temporal modulation (Hz)

1.0

0.8

0.6

0.4

Field L 
CM

MLd

Temporal modulation (Hz)

S
pe

ct
ra

l m
od

ul
at

io
n 

(c
yc

/k
H

z)

2

1

0

Temporal modulation (Hz)

c

Spectral modulations Temporal modulations

Field L MLd CM

eMTFs to ml noise with ml noise MPS contour

eMTFs to ml noise with song MPS contour

e
1.0

0.8

0.6

0.4

0.2

0

Spectral modulation (cyc/kHz)

N
or

m
al

iz
ed

 p
ow

er

Temporal modulation (Hz)

1.0

0.8

0.6

0.4

0.2

0

Spectral modulations Temporal modulations

2

1

0

Temporal modulation (Hz)

d Song Speech Env. sounds

0.2 0.4 0.6 0.8 1.00 250

r = 0.53 
r(s) = 0.94
r(t) = –0.93

r = 0.47
r(s) = 0.73
r(t) = –0.45

r = 0.62
r(s) = 0.89
r(t) = –0.56

10 155 20

Song
Speech
Env. sounds

Unbiased
response

100500–50–100100500–50–100100500–50–100

100500–50–100 100500–50–100 100500–50–100

100500–50–100100500–50–100100500–50–100
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of negative and positive temporal modulations were averaged. For

clarity, only gain from 0 to 50 Hz is shown. Each line shows the

gain distribution for one brain region. The black line indicates the
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(black arrow) but differ at mid-frequency modulations (red arrow).
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the MPSs in d.
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tuning is observed (that is, a range that is limited to between 0 and
0.15 cycles/kHz). In Figure 4d, the black boxes from the c.v. plots are
superimposed on the eMTFs to compare regions of tuning with the
temporal modulations that most distinguish one class of natural
sounds from another (that is, the most variable modulations). The
temporal frequency range of higher variability is in the area of
intermediate gain and the highest slope in the temporal modulation
tuning (Fig. 4e). In this intermediate frequency range, the largest
change in ensemble tuning gain is obtained for a given change in
temporal modulation frequency in the stimulus. By contrast, the low
variability for the redundant modulations can be seen as a blue band
running down the center of the c.v. plot (Fig. 4c) and a trough in the
line plot of the c.v. of the temporal modulations (Fig. 4e, gray line). The
lack of variability in power at these frequencies matches the lack of
tuning for those frequencies (Fig. 4e, black line). In this way, neurons
avoid tuning for the very low frequencies that vary least among natural
sounds and have high gain slope for modulations that vary the most.
Large neural gain is also observed for higher temporal frequencies that,
nonetheless, vary little across different natural sounds. These higher
temporal frequencies could, however, be informative for discrimination
within a sound class and, because they have little power, would need to
be amplified as predicted by the whitening hypothesis.

Effects of modulation tuning on neural discrimination

Midbrain and forebrain neurons process sounds efficiently by selec-
tively filtering out redundant modulations and showing high gain
sensitivity for variable modulations, a mechanism that may promote
the neural discrimination of natural sound classes such as songs, speech

and environmental sounds. The neural tuning
gain also seems to whiten the modulation
spectra of specific classes of natural sounds,
which may also facilitate discrimination. To
further investigate the relationship between
modulation tuning and the neural discrimina-

tion of sounds, we generated a model of neural tuning that did not
show band-pass temporal modulation tuning (see Methods). The
observed (band-pass) and model (non–band-pass) eMTFs are shown
in Figure 5a. Responses to example natural sounds were predicted
using both the observed (real) and the model modulation tuning
patterns and analyzed for neural discriminability. The responses
yielded by the real tuning pattern showed larger dynamic ranges and
higher frequencies than responses yielded by the model tuning pattern,
suggesting that the selective modulation tuning observed in responses
to modulation-limited noise facilitates the discrimination of different
sounds (Fig. 5b).

To quantify the potential advantage of band-pass temporal modula-
tion tuning, we calculated a measure of neural discrimination based on
the normalized distance between the neural responses obtained for two
different 100-ms segments of sound (see Methods). In this case, the
neural response was the ensemble linear response obtained by convol-
ving the stimulus with an ensemble STRF obtained from the eMTF,
either the band-pass (real) eMTF or the Gaussian (model) eMTF. The
real band-pass tuning results in significantly greater neural discrimina-
tion than does the non–band-pass model (Fig. 5c). This effect was
observed both for discrimination of sounds across natural sound
classes (top) and for individual sounds within a class (bottom). This
analysis does not show that the observed band-pass tuning is the
optimal tuning. But it demonstrates that the observed tuning pattern is
advantageous for discriminating among sounds across and within
classes because higher frequency modulations are emphasized, result-
ing in responses with larger bandwidth (Fig. 5b). Across the natural
sounds that we examined, the intermediate temporal frequencies vary
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modulation-limited noise. (a) An MPS showing the
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natural sounds (song, speech, environmental

sounds) showing the modulation frequencies with

the highest variability across sounds. These
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at mid-range temporal modulations (black boxes).

(c) A higher-magnification view of the c.v. showing
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the modulation tuning in three classes of natural
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across sound classes (black) superimposed for
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the most. These frequencies are amplified relative to lower frequencies
by the tuning gain function. The advantage of high gain sensitivity
(high-slope) for these intermediate, informative frequencies has not
been explored in this model of the ensemble response. It is possible that
high gain sensitivity could result in differential recruitment of the
number of neurons for different classes of sounds.

Neural discrimination of song versus synthetic sounds

The match between the observed modulation tuning and the informa-
tive modulations in natural sounds suggests that zebra finch auditory
neurons should be better at discriminating among natural sounds
relative to synthetic sounds, which lack natural modulation and phase
spectra. We tested this prediction by comparing the neural discrimina-
tion of modulation-limited noise and of zebra finch song segments (see
Methods). Modulation-limited noise is ‘unnatural’ in that the modula-
tion power spectrum is approximately flat within the band limits
(Fig. 1c), and the modulation phase spectrum is random, resulting in
uniform variability across modulation frequencies (measured with c.v.,
data not shown). For each neuron, we recorded responses to both
modulation-limited noise and song. The average spike rates in
responses to these stimuli did not differ (data not shown). We
estimated the discriminability of the neuronal ensembles in each
brain region for zebra finch song segments and modulation-limited
noise segments using the normalized distance measure. We also

separated the linear fraction of the response from the entire response to
show that the linear tuning described by the STRFs facilitates the
discrimination of natural sounds (Fig. 6).

The responses of all neurons to an individual song are shown in a
neurogram (Fig. 6a). Each row shows the response of one neuron. The
STRF for each neuron was convolved with the stimulus to obtain the
linear prediction of the response, shown as a linear neurogram. To mea-
sure neural discrimination, we calculated the average noise-normalized
distance between two neurograms of randomly chosen pairs of song
segments (Fig. 6b; see Methods). This normalized distance was calcu-
lated for the linear neurograms and the neurograms of the entire
responses. The process was repeated for modulation-limited noise.

In all three brain regions, the neurogram distance was significantly
higher for song than for modulation-limited noise (Fig. 6c, left). This
result agrees with an information theoretic analysis of these data21.
Moreover, we show here that the increased discrimination for natural
sounds can, at least in part, be explained by the linear tuning properties
of the neurons; the linear fraction of the response shows the same trend
as the entire response and contributes significantly to the difference in
discriminability between the stimulus types.

DISCUSSION

Efficient neural coding strategies that extract meaningful signal from
noise and reduce stimulus redundancies are predicted by behavioral
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studies; vocalizations are perceived and understood in widely varying
environments and with significant information removed13,15,22.
Our findings indicate that the discrimination of natural sounds
through linear spectro-temporal modulation tuning promotes efficient
coding in four ways: (i) tuning in midbrain and forebrain neurons
selectively filter spectral modulations such that only the lower spectral
modulation frequencies that typify natural sounds are encoded,
(ii) modulation tuning attenuates low spectro-temporal modulation
frequencies that are redundant across natural sounds, (iii) temporal
modulation tuning overlaps in its region of maximal gain sensitivity
(slope) with the temporal modulation frequencies that vary the most
among the classes of natural sounds that we examined and (iv) the
ensemble temporal tuning whitens the temporal modulation power
function, increasing the bandwidth of the neural response to signals
from within a natural sound class. Although the data do not match
the theoretical principles perfectly, the linear modulation tuning
showed several efficient coding patterns that seem to facilitate the
encoding of natural sounds. The two analyses that we used, comparing
neural discrimination using the real tuning and a model of tuning
that lacked the band-pass temporal tuning gain and using distance
measures to quantify neural discrimination, support the suggestion
that the observed tuning is beneficial for discriminating among natural
sounds. The modulation tuning we found in zebra finches is similar
to that found in the inferior colliculus (IC) and auditory cortex of

cats14,23. In mammals and birds, spectral modulation tuning is low-
pass and temporal modulation tuning is band-pass. This ensemble
tuning property may therefore be a general property of vertebrate
auditory systems and, as shown here, reflect a coding strategy for the
efficient representation of spectro-temporal modulations found in
natural sounds.

Discrepancies between the theoretical principles of efficient sensory
coding and these data exist. Our analysis of natural sounds suggests
that sounds defined by low temporal and high spectral modula-
tion frequencies could be informative for the discrimination of
different vocalizations. Such sounds are the tonal aspects of vocaliza-
tions (for example, harmonic stacks in zebra finch song and formants
in speech). Although such sounds could be highly informative,
we found that they were poorly sampled by the linear ensemble tuning.
It is possible that the non-linear fraction of the response, which is not
captured by the STRF, could be sensitive to these modulations.
Non-linear tuning for higher spectral and temporal modulations has
been observed in the cat inferior colliculus14 and in the primate
auditory cortex24,25. And our findings suggest that the non-linear
fractions of responses are useful for the discrimination of natural
sounds (Supplementary Figs. 1 and 2). Another possibility is that,
in zebra finches, the discrimination of songs relies more heavily
on temporal than on spectral structure. Behavioral studies
suggest that temporal cues are highly informative in recognizing
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vocalizations13,15. Most zebra finch auditory neurons show strong
onset characteristics and therefore encode temporally modulated
signals well26–28.

The finding that field L neurons are more complexly tuned than are
MLd neurons raises the question of how that tuning complexity
develops. MLd cells show less tuning for spectral modulations and
more precise tuning for temporal modulations than do field L cells. This
corresponds well with what is known of these cells from other studies.
MLd cells are highly responsive to temporally complex sounds, show
strong onset responses and respond to white noise and tones with a high
degree of temporal accuracy26,27. Cells in field L are more selective and
complexly tuned than in MLd28–30. Receptive field properties typically
increase in complexity as sensory information progresses away from the
periphery. Most well-known is the transition from geniculate to simple
and complex receptive fields in the visual cortex31. Here, also, it is likely
that convergent inputs from more simply tuned thalamic cells and other
regions of field L create complex auditory receptive fields. The auditory
system contains strong descending projections, which may have a role
in the development of tuning complexity32.

We have previously shown that natural power and phase in the
modulation spectrum of song is important for information coding in
the auditory system21. Preserving the natural distribution of envelope
amplitude33,34 or frequency power spectrum35 also leads to higher
information rates. This research indicates that neural responses to
multiple stimulus parameters yield efficient representations of natural
sounds. Here, we have offered a mechanism for this increase in
information coding by demonstrating how selective neural tuning for
spectro-temporal modulations is advantageous for the encoding of
natural sounds.

METHODS
Stimuli. The modulation-limited noise was synthesized by combining 100

ripples. Ripples are broadband sounds that are the auditory equivalent of

sinusoidal gratings; their amplitude envelopes oscillate sinusoidally across the

spectral and temporal domains (Fig. 1a,c)8,35. We sampled a uniform distribu-

tion of ripples in a spectro-temporal rectangle that covered the range of

modulations found in song: temporal modulations o50 Hz; spectral modula-

tions o2 cyc/kHz21. Modulation-limited noise stimuli were 2 s in duration.

Two-second samples of song from forty zebra finches were recorded using

standard procedures, band-pass frequency filtered at 250 and 8,000 Hz and

stored as .wav files. Peak power was balanced between stimuli. Stimuli were

presented at 70 dB sound pressure level (SPL; peak).

The modulation power spectra (MPS) for song and modulation-limited

noise were calculated by taking the two-dimensional Fourier transform of the

auto-correlation matrix of the sound spectrogram8. A jack-knifing procedure

yielded the s.d. of the MPS. The coefficient of variation (c.v.) is the s.d. divided

by the mean. A time window of ± 300 ms was used to calculate the stimulus

auto-correlation and to estimate the cross-correlation between the stimulus and

the responses in the estimation of the STRF. We used the c.v. to quantify the

MPS variability because, given neural noise proportional to the MPS power, the

c.v. shows the discriminating modulations that yield the higher signal to noise

ratio in the modulation tuned neurons. Speech samples were 20 randomly

selected sentences from a speech test library36. Environmental sounds included

rustling leaves, fire, rain and rushing water recorded by M. Lewicki (Carnegie

Mellon University)37.

Electrophysiology. In vivo electrophysiological recordings were obtained using

standard extracellular recording procedures from urethane-anesthetized adult

male zebra finches. Stimuli were presented free-field in a sound-attenuation

chamber. Only single units that responded to both stimuli were included. Ten

trials of ten modulation-limited noise samples and 20 zebra finch song samples

were presented. Spikes were collected from up to two brain regions simulta-

neously at a sampling resolution of 1 ms. Responses from 91 MLd cells, 147

field L cells and 35 CM cells were obtained. Recording locations were confirmed

by identifying electrolytic lesions using standard histological procedures.

STRFs and MTFs. The linear modulation tuning of individual neurons was

measured by first calculating a spectro-temporal receptive field (STRF), a linear

model of the neuron’s time-frequency response16,18,19,35. The linear fraction of a

neuron’s response is given by convolving the neuron’s STRF with the spectro-

gram of the stimulus. The STRF was calculated using a generalized reverse

correlation method, in which the averaged spectrogram of the sound preceding

each spike is normalized by the auto-correlations in the stimulus18,19. Regular-

ization and cross-validation techniques were also used to prevent over-fitting

and to estimate the reliability of the STRF. The algorithms are available at

http://strfpak.berkeley.edu. The modulation transfer function (MTF) for a

neuron was calculated by taking the modulus of the two-dimensional Fourier

transform of the STRF. The MTF shows the tuning gain of the neuron as a

function of the spectral and temporal modulations present in the sound.

Ensemble modulation tuning for all the neurons in one brain region was

measured by averaging the MTFs for all cells to get a single ensemble

modulation transfer function (eMTF).

Analysis of tuning gain and stimulus power. The spectral and temporal

modulation filters were calculated by projecting the eMTFs into single vectors.

For the spectral modulation filter, gain was summed across all temporal

frequencies at each spectral frequency to measure the total gain at each spectral

frequency. For the temporal modulation filter, gain was summed across all

spectral frequencies to measure the total gain per temporal frequency. The

procedure was also applied to the MPSs of the three natural sounds to compare

the power distribution of the tuned response with the stimulus power distribu-

tion such that a match or mismatch between tuning and stimulus could be

determined. To quantify the relationships between tuning and the modulations

in zebra finch song, we calculated the correlation coefficients between the eMTFs

for MLd, field L and CM and the MPS for song. Furthermore, we calculated the

correlation coefficients between the spectral modulation filters and the spectral

modulations in song. The process was repeated for the temporal modulation

filters and the temporal modulations in song.

The common modulations across natural sounds were defined as the

modulations present in high power across the three sound classes. To define

these, we increased the percentage of power encompassed by contour lines until

the contours for the three sound classes diverged at B50% of the total power in

each MPS. We therefore defined modulation frequencies as high-power and

shared across sound classes if they fell within the contours defining 50% of the

total power of the sound (Fig. 3d, inner contour lines). The modulations falling

within these contour lines were extracted from the MPSs and combined such

that modulations contained within the 50% contour of all three sounds were

retained, and those that were not common across the extracted portions of the

MPSs were discarded. The result was an MPS showing the high power

modulation overlap among all the natural sounds (Fig. 4a).

Analysis of ensemble STRFs and predictions. To quantify the effects of

ensemble linear tuning on the discrimination of natural sounds, we generated

an ensemble STRF and ensemble predictions. The ensemble STRF was obtained

by taking the inverse two-dimensional fast Fourier transform of the eMTF after

setting the phase to zero (cosine phase). This STRF was centered at f ¼ 4 kHz,

in the center of the hearing range of zebra finches. Predicted ensemble

responses were then obtained by convolving this ensemble STRF with the

spectrograms of the natural sounds. To compare the observed band-pass tuning

with the null hypothesis, we generated a model eMTF that had similar bounds

in its tuning but had low-pass temporal gain instead of band-pass temporal

gain. This low-pass eMTF was modeled with a two-dimensional Gaussian gain

function, with the peak centered at the origin (0 Hz, 0 cyc/kHz) and with

standard deviation parameters of 50 Hz and 0.2 cyc/kHz. The outputs for these

two predicted ensemble responses (from the real eMTF and model eMTF) were

scaled to have equal mean (5 spikes/s) and power (s.d. 1 spike/s).

Normalized distance measures of discrimination. The discriminability of a

response to two signals depends on the mean separation of the responses and

the spread, or noise, in the response. Discriminability is improved by increasing

the separation (stronger signal) and/or by decreasing the spread (noise). We
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quantified discriminability using a normalized distance measure similar to the

signal detection measure of d¢. d¢ is equal to two times the difference in means

between signals divided by the s.d. of the noise. The normalized distance, D¢, is

similar but uses the Euclidean distance between the time-varying responses to

two sound segments.

D0 ¼ 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNTBin

t¼1

ðRtðAÞ � RtðBÞÞ2

s2
c

vuut

Rt(A) and Rt(B) are the instantaneous ensemble neural responses for segments

A and B, respectively, measured in spikes/s. Segment lengths were 100 ms and

the time bins were 1 ms (NTbin ¼ 100). The s.d. of the noise was taken to be 1

for the observed and modeled response.

To quantify the actual neural discriminability obtained from the neurograms

(Fig. 6), we estimated the average D¢ for all single cells in one brain region. The

s.d. of the noise was estimated directly from the data by comparing the

difference between mean responses from post-stimulus time histograms

(PSTHs) obtained from half of the total number of trials. In this case, the

average measure of discriminability is

D0 ¼ 2 � 1

NCells

XNCells

c¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNTBin

t¼1

ðRtðAÞ � RtðBÞÞ2

s2
c

vuut

The neural responses are vectors over time (t) and cell number (c). A time bin

of 1 ms was used and the length of the segments was 100 ms. The time-varying

neural response was obtained using a variable width Gaussian smoothing21.

The variance in a neuron’s response, sc2, is given by the difference between a

single response and the average time-varying firing rate. This neural noise was

estimated by dividing the PSTH of ten trials into halves and obtaining, by

extrapolation to large number of trials, an unbiased measure of noise38. The

average discriminability for an ensemble of sounds and for a brain region was

determined by repeating this calculation for B100,000 random sound segment

pairs, for each stimulus type. The discrimination measure correlated only

weakly with spectrographic distances and normalizing by the spectrogram

distance did not change the results significantly (Supplementary Figure 2).

Note: Supplementary information is available on the Nature Neuroscience website.
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