
����������
�������

Citation: Jovanovic, D.; Antonijevic,

M.; Stankovic, M.; Zivkovic, M.;

Tanaskovic, M.; Bacanin, N. Tuning

Machine Learning Models Using a

Group Search Firefly Algorithm for

Credit Card Fraud Detection.

Mathematics 2022, 10, 2272. https://

doi.org/10.3390/math10132272

Academic Editors: Yong-Hyuk Kim

and Fabio Caraffini

Received: 5 June 2022

Accepted: 23 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Tuning Machine Learning Models Using a Group Search Firefly
Algorithm for Credit Card Fraud Detection

Dijana Jovanovic 1 , Milos Antonijevic 2 , Milos Stankovic 2 , Miodrag Zivkovic 2 , Marko Tanaskovic 2

and Nebojsa Bacanin 2,*

1 College of Academic Studies Dositej, 11000 Belgrade, Serbia; dijana.jovanovic@akademijadositej.edu.rs
2 Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia;

mantonijevic@singidunum.ac.rs (M.A.); mstankovic@singidunum.ac.rs (M.S.);
mzivkovic@singidunum.ac.rs (M.Z.); mtanaskovic@singidunum.ac.rs (M.T.)

* Correspondence: nbacanin@singidunum.ac.rs; Tel.: +381-653-093-224

Abstract: Recent advances in online payment technologies combined with the impact of the COVID-19
global pandemic has led to a significant escalation in the number of online transactions and credit card
payments being executed every day. Naturally, there has also been an escalation in credit card frauds,
which is having a significant impact on the banking institutions, corporations that issue credit cards,
and finally, the vendors and merchants. Consequently, there is an urgent need to implement and
establish proper mechanisms that can secure the integrity of online card transactions. The research
presented in this paper proposes a hybrid machine learning and swarm metaheuristic approach to
address the challenge of credit card fraud detection. The novel, enhanced firefly algorithm, named
group search firefly algorithm, was devised and then used to a tune support vector machine, an
extreme learning machine, and extreme gradient-boosting machine learning models. Boosted models
were tested on the real-world credit card fraud detection dataset, gathered from the transactions of the
European credit card users. The original dataset is highly imbalanced; to further analyze the perfor-
mance of tuned machine learning models, in the second experiment performed for the purpose of this
research, the dataset has been expanded by utilizing the synthetic minority over-sampling approach.
The performance of the proposed group search firefly metaheuristic was compared with other recent
state-of-the-art approaches. Standard machine learning performance indicators have been used for
the evaluation, such as the accuracy of the classifier, recall, precision, and area under the curve. The
experimental findings clearly demonstrate that the models tuned by the proposed algorithm obtained
superior results in comparison to other models hybridized with competitor metaheuristics.

Keywords: machine learning; credit card fraud; metaheuristic algorithms; swarm intelligence;
artificial intelligence; firefly algorithm; optimization; classification

MSC: 68T20

1. Introduction

Since the global pandemic of COVID-19 forced many economies to reevaluate the
traditional onsite working environment paradigm, there has been a significant increase
in e-commerce and online services based on credit card transactions. The bigger usage
of credit cards was followed by an increased number of credit card frauds. This kind
of criminal activity occurs when credit card authentication information is stolen with
the malicious goal to buy merchandise or services without the owner’s permission or to
withdraw money from it. For this reason, it is imperative to implement an effective system
to detect fraudulent activity regarding credit card transactions and protect both the users
and other institutions affected by this activity.

In this paper, the performance of machine learning (ML) algorithms for detecting
credit card frauds, that are compared on a real-world dataset generated from European

Mathematics 2022, 10, 2272. https://doi.org/10.3390/math10132272 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10132272
https://doi.org/10.3390/math10132272
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6797-9140
https://orcid.org/0000-0002-5511-2531
https://orcid.org/0000-0001-9064-7059
https://orcid.org/0000-0002-4351-068X
https://orcid.org/0000-0003-3592-0598
https://orcid.org/0000-0002-2062-924X
https://doi.org/10.3390/math10132272
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10132272?type=check_update&version=1

Mathematics 2022, 10, 2272 2 of 30

cardholders during September 2013 from credit card transactions across Europe, are ana-
lyzed. However, as can be expected from real-world data, the utilized dataset is extremely
imbalanced. In order to deal with the issue of the aforementioned class imbalance, and
for the purpose of this research, the use of the synthetic minority over-sampling technique
(SMOTE) [1] is proposed, and all methods were also validated against a balanced credit
card fraud synthetic dataset. The set of ML algorithms that were evaluated consisted of
support vector machine (SVM), extreme learning machine (ELM), and extreme gradient
boosting (XGBoost).

It is well-known that every ML model has to be tuned for the specific dataset [2].
This also implies the no free lunch (NFL) theorem, which states that there is no uni-
versal approach, nor set of parameters’ values that can render satisfying results for all
practical problems. Therefore, un-trainable ML parameters, known in the literature as
hyper-parameters, have to be tuned. Moreover, the process of training models can also
be an issue, especially for methods that fall into the group of artificial neural networks
(ANNs) [3]. Both mentioned ML challenges fall into the category of NP-hard optimization,
as it was previously shown they can be tackled with great success by metaheuristic-based
techniques [4–6].

Therefore, the research proposed in this manuscript first introduces an improved
version of widely used firefly algorithm (FA) metaheuristic [7]. The FA belongs to the
swarm intelligence family, which is itself a subset of nature-inspired algorithms. The above-
mentioned NFL theorem can be applied for optimization algorithms themselves. A single
metaheuristic algorithm that can obtain the best results for all optimization problems does
not exist. The FA was selected among other metaheuristics empirically, based on the promis-
ing results obtained by the original FA version throughout the conducted experiments
with various metaheuristic algorithms on this particular optimization problem. Another
reason for selecting FA is that it is a well-known metaheuristic that has been established as
a powerful optimizer. The proposed method is then used to optimize hyper-parameters of
SVM and XGBoost ML models for the practical credit card fraud dataset. Moreover, the
introduced metaheuristic was also employed for tuning the number of neurons, as well as
for training the ELM model.

The motivation behind this research lies in the fact that the performance of different
machine learning classifiers has not been properly investigated in the past for the credit
card fraud detection challenge. Additionally, it was also observed that the performance of
nature-inspired metaheuristics can be further investigated for ML tuning and training.

Therefore, besides the proposed approach, other recent state-of-the-art swarm intelli-
gence metaheuristics have also been implemented and adapted, and its performance for
tuning three ML models for the practical and important credit card fraud detection problem
was thoroughly analyzed. In this way, a comprehensive comparative analysis between
three ML methods and several metaheuristics is also provided in this manuscript.

Based on the above, the basic research question that guided the experimentation
provided in this paper is to test if it is possible to further improve the detection of malevolent
credit card activities by employing ML models and to further improve the classification
performance of SVM, ELM, and XGBoost methods by tuning them with swarm intelligence.

The main contributions of the proposed research can be summarized as follows.

• The development of the novel improved version of the well-known FA metaheuristic
that addresses the known drawbacks of the original implementation.

• The application of the devised algorithm for tuning three machine learning classifiers
for the particular task of fraud detection, with a goal to enhance the classifiers’ accuracy,
as well as other performance metrics.

• The comprehensive comparative analysis of different swarm intelligence metaheuris-
tics for ML tuning against practical credit card fraud challenge.

The obtained experimental results were subjected to rigid statistical tests to assess
their statistical significance and to establish the confidence in the proposed method’s
performance level.

Mathematics 2022, 10, 2272 3 of 30

The rest of the manuscript is structured as follows: Section 2 briefly introduces the
classifiers used in this research and exhibits a survey of swarm intelligence approaches and
a variety of their applications. The original FA, the proposed enhanced version, and the
ML swarm intelligence framework are presented in Section 3. The conducted experiments
are detailed and described in Section 4, together with the experimental setup, utilized
dataset, outcomes of the simulations, and comprehensive comparative analysis. Finally,
Section 5 winds up the manuscript and puts forward feasible directions for the research
that lies ahead.

2. Literature Review and Background

This section first briefly introduces the utilized machine learning classifiers, namely
SVM, ELM, and XGBoost. This is followed by a brief survey of swarm intelligence methods
and their various practical applications. Finally, the last part of this section discusses
various successful classifiers hybridized with swarm intelligence techniques.

2.1. Support Vector Machine

The SVM was proposed in 1995 by Cortes and Vapnik [8]. The SVM classifier is
extremely useful when dealing with simple, non-linear data with a high number of di-
mensions. Nevertheless, it is necessary to perform optimization of its hyper-parameters,
including the selection of the proper kernel function, which is an NP-hard computational
challenge. With the application of the non-linear transformation, the kernel function can
help in constructing the linear decision planes.

Assuming the dataset and the class labels of the S = x1, x2, x3,. . . xn and G = y1, y2, y3,
. . . yn, respectively, SVM searches for the optimal hyperplane H to separate two data-
samples and creates the longest interval r between these two samples. This ideal H
hyperplane can be stated with Equation (1):

WTx + b = 0, (1)

where biases are denoted with b, while W corresponds to the weight vector. The challenge
is to find optimal b and W, as given by Equation (2):

min(
‖w‖2

2
+ C

l

∑
i=1

ξi)

s.t.

{
yi(wxi + b) ≥ 1− ξi

ξ > 0

(2)

It is possible to reduce Equation (2) to satisfy the Karush Kuhn Tucker (KKT) criterion
through the application of Lagrange multipliers. Finally, the objective function can be
narrowed down to Equations (3) and (4):

maxa(
l

∑
i=1

ai −
1
2

l

∑
i=1

l

∑
j=1

yiyjaiaj(xi · xj)) (3)

s.t.
l

∑
i=1

yiai = 0, 0 ≤ ai ≤ C, (4)

where C is the penalty parameter of the error term. The increase of the C value will give
more significance to the range of gap, but it will also increase the danger of generalization,
as was observed by performing extensive simulations and analyzing outcomes.

The final linear discriminant function can be represented by Equation (5):

f (x) = sgn(
l

∑
i=1

a∗yi(xi · x) + b∗), (5)

Mathematics 2022, 10, 2272 4 of 30

where a∗ is the optimal value of a, and the best values of w∗ and b∗ can be calculated
as follows:

w∗ =
l

∑
i=1

a∗i xiyi

b∗ = −1
2

w∗(xr + xs),

(6)

where xr and xs are any pair of support vectors in the two classes.
Taking everything into account, the final classifier function can be formulated as

presented in Equation (7):

f (x) = sgn
{
(∑n

i=1 yiaik(xi · x)) + b∗
}

(7)

The kernel function can be utilized for splitting the nonlinear data in the linear fashion
through translation to a high-dimensional feature search space. The kernel function is
given by Equation (8):

k(xi, x) = (ϕ(xi), ϕ(x)) (8)

The Gaussian kernel function is commonly used to address nonlinear high-dimensional
data, and its formulation is given by Equation (9):

k(x, y) = exp(−γ‖x− y‖)2, (9)

where the γ parameter determines how much influence a single training instance has on
the final output.

Two most important hyper-parameters that influence the performance of the SVM
classifier are C, γ and the kernel type.

2.2. Extreme Learning Machine

Extreme learning machine (ELM) is an ML model that has drawn the attention of the
research community in recent years. It was initially presented by Huang et al. [9] for single-
hidden-layer feed-forward artificial neural networks (SLFNs). The algorithm has shown
better generalization performance compared to traditional feed-forward network-learning
algorithms while providing great learning speed and efficiency.

The input weights are randomly chosen by the algorithm, after which the output
weights of SLFN are analytically determined through a simple generalized inverse opera-
tion of the hidden layer output matrices by utilizing the Moore–Penrose (MP) generalized
inverse [10]. The classic gradient-based learning algorithms are only able to work for differ-
entiable activation functions. On the other hand, the ELM learning algorithm can be used
to train SLFNs with many non-differentiable activation functions. The ELM’s optimization
performance mostly depends on an adequate number of neurons in the hidden layer, which
is still an open question that ELM models are facing.

For a training sample set {(xj, tj)}N
j=1 with N samples and m classes, the SLFN with L

hidden nodes and activation function g(x) is expressed in equation [9]:

L

∑
i=1

βig(wj · xj + bi) = tj, j = 1, 2, . . . , N, (10)

where wi = [wi1, . . . , win]
T is the input weight, bi is the bias of the i-th hidden node,

βi = [βi1, . . . , βim]
T is the weight vector which is connecting the ith hidden node and the

output nodes, wi · xj denotes the inner product of wi and xj, and tj is network output with
respect to input xj. The Equation (10) can be expressed as:

Hβ = T, (11)

Mathematics 2022, 10, 2272 5 of 30

where

H =

 g(w1 · x1 + b1) . . . g(wL · x1 + bL)
... · · ·

...
g(w1 · xN + b1) . . . g(wL · xN + bL)


NxL

, β =

βT
1
...

βT
L


Lxm

, T =

 t1T

...
tNT


Nxm

(12)

In Equation (12), H represents the hidden-layer output matrix of the neural net-
work [11], while β is the output weight matrix.

2.3. The XGBoost Algorithm

In order to optimize the objective function, XGBoost algorithm uses the additive
training method. This means that each step in the optimization process is dependent on
the result from the previous step. The equation for expressing the t-th objective function of
XGBoost model is presented below:

Fo
i = ∑n

k=1 l
(

yk, ŷi−1
k + fi(xk)

)
+ R(fi) + C, (13)

where the loss term of the t-th iteration is denoted as l, C represents a constant term, and R
is the regularization parameter of the model, which can be described as:

R(fi) = γTi +
λ
2 ∑T

j=1 w2
j (14)

In general, the larger the values of customization parameters γ and λ are, the simpler
is the structure of the tree. The first g and the second h derivatives of the model can be
described with the following equations:

gj = ∂ŷi−1
k

l
(

yj, ŷi−1
k

)
(15)

hj = ∂2
ŷi−1

k
l
(

yj, ŷi−1
k

)
(16)

The solution can be obtained from the next formulas:

w∗j = − ∑ gt
∑ ht+λ (17)

Fo
∗ = −1

2

T

∑
j=1

(∑ g)2

∑ h + λ
+ γT, (18)

where Fo
∗ represents the score of loss function, and w∗j denotes the solution of weights.

2.4. Swarm Intelligence

Swarm intelligence represents the group of optimization algorithms inspirited by
the conduct and habits of various sorts of animals in nature [12,13]. Swarm intelligence
metaheuristics were modeled by very intelligent food foraging, hunting, and mating tech-
niques expressed by large groups of otherwise rather simple individuals, such as insects,
birds, and fish. Consequently, a significant number of metaheuristics emerged and the
most notable examples include particle swarm optimization (PSO) [14], artificial bee colony
(ABC) [15], firefly algorithm (FA) [7], bat algorithm (BA) [16], elephant herding optimiza-
tion (EHO) [17], whale optimization algorithm (WOA) [18], dragonfly algorithm (DA) [19],
and other popular algorithms [20–24]. Several more recent algorithms also emerged in
the last five years, and among the most significant representatives include salp swarm
algorithm (SSA) [25], harris’ hawks optimization (HHO) [26], monarch butterfly optimiza-
tion (MBO) [27], emperor penguin optimizer (EPO) [28], and grasshopper optimization
algorithm (GOA) [29].

This family of metaheuristic approaches has been extensively utilized to address
numerous practical real-world problems with NP-hard complexity from the domain of

Mathematics 2022, 10, 2272 6 of 30

heterogeneous real-world domains. Some notable examples of this kind of applications
include cloud-edge computing and task scheduling [30,31], wireless sensors networks
(WSNs) challenges such as node localization and prolonging the overall lifetime of the
network [32,33], healthcare applications and pollution estimation [34], ANNs challenges
including feature selection and hyperparameters’ optimization tasks [3,35–38], cryptocur-
rency trends estimations [39], computer-guided illness detection [40–42], and lastly the
occurring COVID-19 global epidemic-associated applications [43–46].

2.5. Machine Learning Model Tuning by Swarm Intelligence Metaheuristics

The detailed overview of the recent literature shows that the swarm intelligence
approaches were not utilized enough to optimize the machine learning models and that
there is a lot of open space for research in this direction. This comes as surprise to some
extent, especially because metaheuristics have been successfully exploited for numerous
other application domains.

One successful swarm intelligence application from this domain worth mentioning is
presented in [47], where the implementation of a pair of swarm intelligence algorithms to
tune the input weights and biases of ELM (ABC-ELM and IWO-ELM) are implemented.
Ref. [48] introduced a hybridized PSO-ELM classifier and validated it for flash flood
prediction with very promising results. The SSA-based optimization of ELM was proposed
in [49] and put to the test against other contemporary models on 10 standard benchmark
datasets, and it proved to be superior in terms of classifier accuracy obtained through
simulations. The fruit fly optimization (FFO) algorithm was used in [50] to enhance the
SVM performance with significant success. Ref. [39] analyzed the performance of the
SVM tuned by enhanced SCA for cryptocurrency trends predictions. Comparisons with
traditional models have shown that SCA-based SVM outclassed all competitors for this
particular task.

2.6. Credit Card Fraud Detection Overview

Detecting frauds in credit card transactions is an extremely important task, especially
after the COVID-19 outbreak that drastically added to the already increasing number
of daily online transactions. The problem with the fraud detection task is the highly
imbalanced dataset. Ref. [51] provides an experimental study of various approaches
including ANN, SVM, LR, KNN, and NB, among others. The conclusions from this
research are clear—although these approaches can be used for solving slightly imbalanced
datasets, in cases of extremely imbalanced datasets (such as credit card detection), the
obtained results and "high" accuracy can be very misleading, due to the large number
of false-positive results, and consequently allow a significant number of frauds to pass
without detection. A combination of the supervised and unsupervised learning methods
was considered in [52], where the authors implemented and assessed different granularity
levels to define an outlier score, however, with unconvincing results. Their conclusions
indicate that additional work is required, in terms of various clustering algorithms and
feature sets, to validate the proposed method.

The approach proposed in [53] utilized an optimized light gradient-boosting machine
to deal with the credit card fraud detection task. The authors have compared their method
to the results obtained by other state-of-the-art approaches, including NB, KNN, SVM, and
random forest, and were able to conclude that their approach outperforms others on two
real-world datasets. Nevertheless, the problem with extremely imbalanced datasets could
lead to missed fraud detection. AdaBoost and the majority voting approach were utilized
by [54] to address this task, with mixed and varying results. Similar to previous approaches,
this method also obtains a near-perfect detecting rate of non-fraud entries; however, it also
struggles with fraudulent transactions, again due to the extremely skewed dataset.

The method proposed in [55], which also inspired the research presented in this pa-
per, examines how different machine learning models perform on the credit card dataset
that was put into use in this paper as well. The SMOTE method was utilized to address
the imbalanced data, and combined traditional classifiers, including random forest, lin-

Mathematics 2022, 10, 2272 7 of 30

ear regression, SVM, and XGBoost with the AdaBoost technique to examine the impact
on classifier accuracy were examined. However, this research did not employ swarm
metaheuristics to tune the classifiers.

3. Proposed Method

In this section, the basic FA approach is described first, and afterward, motivations
for its improvements along with inner workings details of the proposed enhanced method
are provided.

3.1. Original Firefly Algorithm

The firefly algorithm [7] is a swarm intelligence model inspired by the social behavior
of fireflies. In the FA metaheuristic, the model for the fitness functions is based on the
firefly’s brightness and attraction. In order to simplify a complex system of flashing
behavior of the insects, the authors applied several approximation rules. The attraction
between the units depends on the brightness, which is determined by the objective function
value. The implementation for the problem of minimization is given in equation [7]:

I(x) =

{
1
/

f (x) , if f (x) > 0
1+

∣∣ f (x)
∣∣ , if f (x) ≤ 0,

(19)

in which I(x) denotes the attractiveness, and f (x) represents the objective function value
at location x.

Furthermore, when the distance is increasing, the intensity of the light is falling, which
results in less attraction value [7]:

I(r) =
I0

1 + γ× r2 , (20)

where I(r) is the intensity of the light at the range r, γ represents the light absorption
coefficient parameter, and I0 is the intensity of light at its source. Most FA implementa-
tions combine the effects of the inverse square law for distance and γ to approximate the
following Gaussian form [7]:

I(r) = I0 · e−γ×r2
(21)

Each firefly unit has attractiveness level β which is directly proportional to the level of
the firefly’s light factoring in the distance.

β(r) = β0 · e−γ×r2
, (22)

in which β0 is attractiveness at distance r = 0. The authors of the original FA suggest that
Equation (22) is often swapped for the following equation [7]:

β(r) = β0
/ (

1 + γ× r2
)

. (23)

Based on Equation (23), the search equation for the random individual i, which is
moving in iteration t + 1 to a new location xi towards another firefly j with a greater fitness
value is [7]:

xt+1
i = xt

i + β0 · e
−γ×r2

i,j(xt
j − xt

i) + αt(κ − 0.5), (24)

where α denotes the randomization parameter, κ represents uniform distribution random
number, and ri,j is the distance between fireflies i and j. The values for β0 and α that provide
good results are 1 and [0, 1], respectively. The ri,j parameter is Cartesian distance and is
calculated as follows:

ri,j =
∣∣∣∣ xi − xj

∣∣∣∣= √∑D
k=1

(
xi,k − xj,k

)2
, (25)

where the parameter D represents the number of parameters of a particular problem.

Mathematics 2022, 10, 2272 8 of 30

3.2. Motivation and Proposed Improved Group Search Firefly Algorithm

Previous findings suggest that the basic FA exhibits relatively efficient exploitation,
while its exploration abilities can be improved [56–58]. Notwithstanding that many suc-
cessful implementations of enhanced/hybridized FA’s version can be found in the modern
literature [31,59], space for its improvements still exists. This stems from the fact that the
FA’s search equation, which conducts efficient intensification, can be effectively combined
with novel mechanisms, as well as with procedures from other metaheuristics, in a wide
variety of ways, and the practical potential for improvements is unlimited.

The enhanced FA’s version proposed in this manuscript tries to overcome the cons
of the original implementation by adopting the disputation operator from the recently
proposed social network search (SNS) algorithm [60]. This operator practically conducts
search process within a chosen group of solutions from the population; therefore, in this
study instead of “disputation”, the term “group search” is used.

The disputation phase in the SNS denotes a state where social network users are
explaining and defending some views on a given subject with others. Additionally, users
may form groups to discuss particular topics. In this way, users are influenced by being
able to see various opinions on the same topic. In this phase, a random number of users are
observed as commentators or members belonging to a group, and new views are obtained
using Equation (26) [60]:

xi new = xi + rand(0, 1)× (M− AF× xi)

M =
∑Nr

t xt

Nr
AF = 1 + round(rand),

(26)

where xi is the vector denoting the view of i− th user, rand(0, 1) is a random vector within
range [0, 1], and M is the mean of the views of the commentators. The AF represents the
admission factor, used to indicate the insistence that the users hold of their opinions while
discussing it with others, and it can take only 1 or 2 integer values. Function round() is
used to round the input to the nearest integer, while rand is an arbitrary number [0, 1].
Parameter Nr denotes the number of users commenting or the group size. It can have any
integer value between 1 and N, where N denotes the total number of network’s users.

Parameter AF is the search step size, and it controls the balance between intensification
and diversification. When the AF is adjusted to 2, the exploration is more emphasized,
while the value of 1 helps the disputation procedure to conduct more intensive exploita-
tion. In [60], it is explained in many details how the disputation operator executes both
exploration and exploitation processes.

However, the method proposed in this research employs a slightly different dispu-
tation operator than the one in the SNS metaheuristic; therefore, as pointed out above,
instead of disputation, the term “group search” is used throughout this study.

In the SNS approach, the first operand in the AF expression Equation (26) is fixed and
set to 1, therefore the AF can only take values of 1 or 2. However, according to conducted
empirical studies for the purpose of this research, it is better to set a larger step size at the
beginning, this emphasizes exploration, and then gradually decrease it over the course of a
run, favoring intensification over diversification. Moreover, to enable fine-tuned search, it
is better to allow AF to take continuous value.

Therefore, instead of determining the step size AF according expression Equation (26),
the proposed method adapts one more control parameter—the group search parameter
(gsp), which is dynamic in nature, and the following equation is used for calculating AF in
each iteration:

AF = gsp + round(rand), (27)

where the gsp dynamically shrinks in each iteration t according to the following expression,
where T denotes the maximum number of iterations in the run:

gsp = gsp− t
T

(28)

Mathematics 2022, 10, 2272 9 of 30

Parameter gsp has an influence on the exploration and exploitation balance by estab-
lishing the step size. In the early rounds, the exploration should be dominant; therefore,
this parameter has a larger value (in executed experiments, the starting value was set
to 2, but it is dynamically decreased over the iterations). Conversely to the SNS algo-
rithm, the proposed method uses a fine-grained step size AF, therefore enabling a better
directed search.

Additionally, the suggested method adopts two modes of group search. The first mode
(mode 1) conducts the search within the group of Nr randomly chosen solutions from the
population, while the second mode (mode 2) defines the group as Nb best solutions from
the population. Nr and Nb are random numbers between 1 and N, and they are recalculated
in each iteration. Both modes utilize Equation (26), while the step size is calculated as
shown in Equation (27).

Group search mode 2 is executed in later iterations for performing fine-tuned searches
around the current best solutions, with the assumption that the algorithm has converged to
the optimum region of the search space. The point in algorithm’s execution when mode 1
is switched to mode 2 is determined by the change mode trigger cmt control parameter,
which depends on the termination condition argument.

Most of the previous FAs’ enhanced implementations tackle inadequate exploration
drawbacks by incorporating mechanisms that can improve diversification in early itera-
tions [31,61]. However, the method proposed in this study tries an alternate approach.
Again, based on empirical findings, if the initial population generated by the FA is near
optimum regions, then efficient FA’s search procedure is able to converge fast towards an
optimum solution. Conversely, the whole population will converge towards sub-optimum
domains of the search space. Therefore, in order to give a chance to the basic FA’s search
and not to significantly increase the computational time complexity, instead of triggering
the group search in early iterations, the method proposed in this study fires this procedure
after the gss (group search start) iterations.

In all iterations, where the conditions for group search triggering are satisfied, a new
solution xnew is generated, and then the greedy selection between it and the current worst
solution xworst is performed.

Inspired by the introduced group search procedure in the basic FA, the proposed
method is named group search FA (GSFA). As was shown, the GSFA introduces three new
control parameters, out of which one is dynamic. The values of all three parameters depend
on the termination condition, which can be either T or the maximum number of fitness
function evaluation FFEs. The values for these parameters, which are used in simulations,
are determined empirically, and they are shown in Table 1.

Table 1. Specific GSFA parameters’ settings.

Parameter Expression Description

gsp gsp = gsp− t
T dynamic group search parameter, starting value 2

gss gss = T
2 group search start

cmt cmt = gss + T
3 change mode trigger

One more thing that is worth mentioning is that the proposed GSFA does not employ a
dynamic randomization parameter α, as was suggested in some of the previous studies [58].
Experiments with a dynamic randomization parameter were also conducted, and it was
concluded that if dynamic α is employed, then the search process in the early iterations
(before the group search is triggered) would converge too fast towards the unpromising
solution; therefore, at the end of a run, worse solutions would be produced.

The computation complexity of the original FA algorithm in terms of FFEs can be
retrieved from [62]. When compared to the basic FA, the complexity of the proposed GSFA
is higher for only (T− gss) FFEs, because, after the group search is triggered, only one new

Mathematics 2022, 10, 2272 10 of 30

solution is generated in each iteration. This was taken into consideration in the comparative
analysis to maintain fair comparison conditions.

Finally, the GSFA pseudo-code is depicted in Algorithm 1.

Algorithm 1 The GSFA pseudo-code.

Define global parameters N and T
Generate the initial population of solutions xi, (i = 1, 2, 3, . . . N)
Define basic FA control parameters
Define specific GSFA control parameters
Set initial values of dynamic parameters
while t < T do

for i = 1 to N do
for j = 1 to i do

if Ij < Ii then
Move the firefly j in the direction of the firefly i in D dimension
Attractiveness changes with distance r as exp[−γr]
Evaluate the new solution, replace the worst solution with better one and update
intensity of light

end if
end for

end for
Sort population according to fitness in descending order and determine solution with
index -1 (xworst)
if t > gss then

if t < cmt then
Generate new solution xnew by group search mode 1 operator

else
Generate new solution xnew by group search mode 2 operator

end if
Perform greedy selection between xnew and xworst

end if
All solution are ranked in order to find the current best solution

end while
Output the global best solution x∗

Post-process results and perform visualization

4. Experimental Findings, Comparative Analysis, and Discussion

This section opens with description of the dataset that was employed in the simula-
tions, along with the experimental setup details. Afterwards, this section brings forward the
outcomes of the simulations with extensive comparative analysis and findings discussion.

4.1. Datasets Used in Experiments

All simulations were executed against the credit card fraud dataset, which is freely
available on the Kaggle repository via the following link: https://www.kaggle.com/
datasets/mlg-ulb/creditcardfraud, accessed on 20 May 2022. This dataset consists of trans-
actions generated by credit cards in Europe in September 2013 during the time span of
two days. The dataset represents a binary classification challenge composed of only two
target variables (classes)—the positive class, which denotes fraudulent transactions and the
negative class that represents regular transactions. Moreover, the dataset is extremely asym-
metrical (imbalanced) containing only 492 fraud instances out of 284,807 total transactions.
Therefore, the positive class (frauds) represent only 0.172% of the dataset.

The dataset is composed of 30 numerical features, where attributes F1, F2, . . . F28 are
obtained by applying the principal component analysis (PCA), while F29 and F30, which
represent time and amount, respectively, were not transformed with the PCA. The time

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

Mathematics 2022, 10, 2272 11 of 30

refers to the number of seconds elapsed between the first and each other transaction in the
dataset, while the amount is the value of every transaction.

In the first set of experiments, the original credit card fraud dataset, as it is hosted
on the Kaggle, is used, and the goal of these experiments was to establish how tuned ML
models perform on highly imbalanced data. However, since it is also important to validate
the performance of ML models for balanced datasets, the SMOTE methodology [1] has
been applied to tackle the extreme disproportion of class instances in the observed dataset
in the second set of experiments. The SMOTE operates by generating new entries of the
given class through data-point connection with K-nearest neighbors. In this way, additional
synthetic entries are generated without replicating them directly from the minority class
instances, thus avoiding the over-fitting issue throughout model training. In the proposed
study, the minority class (class 1 in this example) was over-sampled to the number of
instances of the majority category (class 0 in this example); therefore, the dataset, which in
addition to the original also contains a synthetic data point for the minority class, is almost
twice as large as the original one.

It needs to be noted that the experimental setup for SVM simulations had to be
different, due to the specific properties of the model. In the case of SVM, a smaller dataset
has been used, as the model operates very slowly. This was tackled by creating a reduced
dataset with the size of only 0.5% of the original dataset that was fed to other models while
keeping the original class distribution (by using the stratification strategy). The SMOTE
dataset for SVM was generated as a random sampling 0.25% of the original SMOTE dataset;
therefore, both datasets for SVM consist of approximately 14,216 instances. To differentiate
between the employed datasets, the small dataset used to validate SVM performance is
denoted with the suffix ‘small’.

In the case of SVM and ELM experiments, the normalization technique was also used.
However, since the XGBoost operates on a decision tree basis, normalization has not been
performed in that case. A total of 70% of each dataset was used for training, while the
remaining 30% was utilized for testing of all models.

The number of instances and class distribution of all four datasets used in this study
are shown in Figure 1.

normal (class 0) fraud (class 1)
Classes

0

50,000

100,000

150,000

200,000

250,000

N
um

be
r o

f i
ns

ta
nc

es

99.83%

0.17%

Credit Card Fraud original dataset - distribution of classes

normal (class 0) fraud (class 1)
Classes

0

50,000

100,000

150,000

200,000

250,000

N
um

be
r o

f i
ns

ta
nc

es

50.00% 50.00%
Credit Card Fraud SMOTE dataset - distribution of classes

normal (class 0) fraud (class 1)
Classes

0

2000

4000

6000

8000

10,000

12,000

14,000

N
um

be
r o

f i
ns

ta
nc

es

99.82%

0.18%

Credit Card Fraud small dataset - distribution of classes

normal (class 0) fraud (class 1)
Classes

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r o

f i
ns

ta
nc

es

50.00% 50.00%
Credit Card Fraud small SMOTE dataset - distribution of classes

Figure 1. Distribution of classes and number of instances in four employed datasets.

Additionally, the correlation between the features time and amount, which were not
subjected to the PCA, with the hue set to class, for original and small datasets, is shown in

Mathematics 2022, 10, 2272 12 of 30

Figure 2. In order to emphasize the fraudulent transactions, the marker size for class 1 is
set as four times bigger than the size for class 0.

Figure 2. Scatter plot—time vs. amount for original and small datasets.

4.2. Experimental Setup, Proposed Encoding Scheme, and Flow-Chart Diagram

As noted previously, all three ML models were tuned by the proposed GSFA meta-
heuristic. In the case of the first utilized model, namely the SVM, three hyper-parameters
were subjected to optimization, two of them are continuous, while one is of the integer data
type. The optimized SVM parameters, along with respective lower and upper bounds, are
as follows:

• C, boundaries: [2−5, 215], type: continuous,
• γ, boundaries: [2−15, 23], type: continuous, and
• kernel type, boundaries: [0, 3], type: integer, where value 0 denotes polynomial (poly),

1 marks radial basis function (rbf), 2 represents sigmoid, and finally 3 represents linear
kernel type.

For the ELM model, both the number of neurons (nn) in the hidden layer and the
values of the weights and biases between the input and hidden layers were subjected to
the optimization process. The lower and upper bounds for weights and biases were set as
−1 and 1, respectively, while the search space boundary for the nn was set as the interval
[30, 150]. The nn is an integer, while the weights and biases may take any continuous value
from the specified range.

Moreover, since nn is ELM’s hyper-parameters, while the optimization of weights and
biases is the ELM’s training process, in the case of ELM, metaheuristics were used for both
hyper-parameters’ optimization and training.

Finally, the set of XGBoost hyper-parameters that were subjected to optimization
consists of the following:

• learning rate (η), boundaries: [0.1, 0.9], type: continuous,
• min_child_weight, boundaries: [0, 10], type: continuous,
• subsample, boundaries: [0.01, 1],type: continuous,
• collsample_bytree, boundaries: [0.01, 1], type: continuous,
• max_depth, boundaries: [3, 10], type: integer and
• gamma, boundaries: [0, 0.5], type: continuous.

The number of parameters for softprob objective function (’num_class’:self.no_classes) is
also passed as the parameter to XGBoost. All other parameters are fixed and take default
XGBoost values.

All observed models were implemented in the Python programming language, by
employing standard machine learning libraries: scikit-learn, scipy, numpy as pandas. For
other models’ hyper-parameters, the default values from the scikit-learn Python library
were used. The SVM and XGBoost models were adopted from scikit-learn; however, the
ELM was coded from scratch because this model is not available in this package.

In all implementations, a standard solutions’ encoding scheme was used. Every
metaheuristic solution is represented as an array (vector) of size l, where l is the number of
hyper-parameters that were optimized. Therefore, the l for the SVM and XGBoost solutions’
are 3 and 6, respectively.

Mathematics 2022, 10, 2272 13 of 30

However, in the case of ELM, l depends on the determined value for the nn hyper-
parameter, and, if the f s denotes the size of input feature vector, it can be derived as:
1 + nn · f s + nn. The first component of the ELM metaheuristic solution represents the
number of neurons (integer); subsequent nn components are biases (continuous), while
remaining nn · f s parameters are weights.

A flow-chart diagram of proposed methodology used in simulations is depicted in
Figure 3.

(a) (b)
Figure 3. Flow-chart diagram of proposed methodology in this study. (a) The SVM/ELM/XGBoost
GSFA flow chart. (b) Fitness calculation.

Based on the above image, tuning all three machine learning models represent mixed
continuous and integer NP-hard challenges. The fitness of the GSFA solution is simply the
classification error rate obtained for the test dataset; therefore, the problem is formulated as
a minimization challenge.

4.3. Comparative Analysis and Discussion

In all experiments, the obtained outcomes of all three models optimized by the sug-
gested GSFA metaheuristic were compared to the results generated by other well-known
swarm algorithms that were also implemented for the SVM, ELM, and XGBoost model
tuning under the same conditions, as described in Section 4.2. The competitor algorithms
include the original FA [7], BA [63], ABC [15], since cosine algorithm (SCA) [64], MBO [27],
HHO [26], EHO [17], WOA [18], and SNS [60]. All metaheuristics were implemented
independently in this research and adjusted (in terms of controls’ parameters setup) as
in the original publications that were mentioned beforehand. For the easier summary of

Mathematics 2022, 10, 2272 14 of 30

results presented in tables, the machine learning model prefix is placed in front of the
methods’ names used for hyper-parameters optimization, e.g., SVM-GSFA denotes the
results obtained by SVM classifier tuned with the proposed GSFA method.

The simulations were executed with 20 solutions in the population (N = 20) and
15 iterations in each run (T = 15) for each metaheuristic method, except for the GSFA and
FA. Since the FA in each iteration in average case performs 2 · N solutions’ evaluations,
in this case N was set to 10. Additionally, due to the slightly higher complexity of the
proposed GSFA over the basic FA, the GSFA was tested with only nine solutions. This
reduction of the population for the FA and GSFA methods was required to set firm grounds
for fair comparisons. Specific GSFA parameters (gsp, gss and cmt) were set according to
Table 1.

All swarm algorithms were also implemented in Python, and Intel® Core™ i9-11900K
Processor with 64 GB of RAM and Windows 11 O.S. was used as a simulation platform. All
employed datasets were relatively large, and the cache argument for SVM and XGBoost
models in scikit-learn environment was set to 32 GB to improve the computation speed. On
the other hand, the ELM is implemented by using the cupy instead of numpy library for
operations with matrices, because the cupy supports execution on GPU, and, in this case,
NVIDIA Geforce GTX 1080 GPU with 8 GB of memory is employed for such computations.

Due to the stochastic nature of swarm approaches, all methods were executed in 50
independent runs, and best, worst, mean, and median accuracies along with standard
deviation are recorded. However, accuracy may not be an objective metric, especially
for imbalanced datasets; therefore, precision, recall, and f1-score per class and micro-
averaged are also shown along with receiver operating characteristic area under the curve
(ROC AUC). It is noted that, in all results tables, the best-achieved metrics are denoted in
bold style.

Table 2 depicts the outcomes of the experiments with the SVM model without the
SMOTE technique employed. As was already mentioned, the SVM model is specific due
to its slow operation, and the reduced dataset was used. In this particular scenario, the
SVM-GSFA achieved the best accuracy result, while the SVM-ABC obtained slightly better
mean and median values. However, neither SVM-GSFA, nor SVM-ABC exhibited best
robustness, which can be noticed from std metrics, while SVM-WOA, SVM-HHO and
SVM-SCA did not show results variation over different runs.

On the other hand, Table 3 shows the outcomes of the simulations with the ELM
model against the dataset without SMOTE. In this scenario, the novel ELM-GSFA model
outperformed all other hybrid ELM frameworks for all performance indicators, including
best, worst, mean, and median classification accuracy, as well as the stability of results
expressed with standard deviation. Table 4 puts forward the outcomes of the experiments
with XGBoost classifier on real dataset (without SMOTE). Similarly to the previous sce-
nario, the XGBoost-GSFA achieved the best accuracy results for all utilized metrics and
outperformed all other competitor methods.

Table 5 presents the outcomes of the experiments with SVM model on synthetic
dataset. In this case, the SVM-GSFA and SVM-WOA were tied for the best accuracy result
(96.9519%), while the SVM-GSFA achieved better mean and median values, as well as
better stability than opponent algorithms. For the next scenario, Table 6 shows the results
of the simulations for the ELM model with the SMOTE dataset. In this scenario, the ELM-
FA model outperformed all other hybrid ELM solutions for all performance indicators,
including best, worst, mean, and median classification accuracies, as well as the standard
deviation, while the novel ELM-GSFA obtained second-best results. Finally, Table 7 puts
forward the findings of simulations with XGBoost classifier with synthetic data generated
by SMOTE technique. The XGBoost-GSFA and XGBoost-ABC were tied for the best and
median accuracy results, while XGBoost-GSFA finished first for worst, mean and standard
deviation indicators.

Mathematics 2022, 10, 2272 15 of 30

Table 2. SVM Credit Card Fraud small NO SMOTE—general metrics.

Metrics SVM-GSFA SVM-FA SVM-BA SVM-ABC SVM-SCA SVM-MBO SVM-HHO SVM-EHO SVM-WOA SVM-SNS

best (%) 99.9552 99.9064 99.8830 99.9532 99.9064 99.8361 99.9064 99.9064 99.9064 99.9064

worst (%) 99.9064 99.8596 99.8596 99.9064 99.9064 99.8127 99.9064 99.8127 99.9064 99.8596

mean (%) 99.9220 99.8752 99.8674 99.9298 99.9064 99.8283 99.9064 99.8752 99.9064 99.8908

median (%) 99.9064 99.8596 99.8596 99.9298 99.9064 99.8361 99.9064 99.9064 99.9064 99.9064

std 0.000270 0.000270 0.000135 0.000234 0.000000 0.000135 0.000000 0.000541 0.000000 0.000270

Table 3. ELM Credit Card Fraud NO SMOTE—general metrics.

Metrics ELM-GSFA ELM-FA ELM-BA ELM-ABC ELM-SCA ELM-MBO ELM-HHO ELM-EHO ELM-WOA ELM-SNS

best (%) 99.9462 99.9111 99.9345 99.9345 99.9169 99.9333 99.9181 99.9263 99.9192 99.9111

worst (%) 99.9427 99.8841 99.9134 99.8947 99.9029 99.8982 99.8947 99.9075 99.9075 99.8947

mean (%) 99.9442 99.8947 99.9207 99.9058 99.9105 99.9099 99.9081 99.9160 99.9160 99.9029

median (%) 99.9438 99.8917 99.9175 99.8970 99.9111 99.9040 99.9099 99.9151 99.9157 99.9029

std 0.000018 0.000123 0.000095 0.000192 0.000059 0.000163 0.000109 0.000077 0.000136 0.000070

Table 4. XGBoost Credit Card Fraud NO SMOTE—general metrics.

Metrics XGBoost-GSFA XGBoost-FA XGBoost-BA XGBoost-ABC XGBoost-SCA XGBoost-MBO XGBoost-HHO XGBoost-EHO XGBoost-WOA XGBoost-SNS

best (%) 99.9707 99.9684 99.9672 99.9684 99.9661 99.9672 99.9661 99.9672 99.9661 99.9661

worst (%) 99.9696 99.9649 99.9625 99.9661 99.9649 99.9649 99.9649 99.9649 99.9661 99.9637

mean (%) 99.9704 99.9668 99.9649 99.9668 99.9653 99.9664 99.9657 99.9657 99.9661 99.9649

median (%) 99.9707 99.9672 99.9649 99.9661 99.9649 99.9672 99.9661 99.9649 99.9661 99.9649

std 0.000007 0.000018 0.000023 0.000014 0.000007 0.000014 0.000007 0.000014 0.000000 0.000012

Mathematics 2022, 10, 2272 16 of 30

Table 5. SVM Credit Card Fraud small with the SMOTE—general metrics.

Metrics SVM-GSFA SVM-FA SVM-BA SVM-ABC SVM-SCA SVM-MBO SVM-HHO SVM-EHO SVM-WOA SVM-SNS

best (%) 96.9519 96.5064 95.1700 96.2954 96.2954 95.1465 95.1700 96.9285 96.9519 95.1700

worst (%) 96.8039 96.2704 94.0674 96.0005 95.9408 94.6151 94.1505 96.2706 96.4701 94.3300

mean (%) 96.8643 96.3557 94.4115 96.0875 96.0431 94.8514 94.4080 96.6505 96.6271 94.9307

median (%) 96.8504 96.3691 94.5049 96.0651 96.0251 94.8352 94.3261 96.5141 96.7155 94.9480

std 0.001050 0.007410 0.056500 0.002150 0.008980 0.010500 0.045500 0.007450 0.006660 0.074500

Table 6. ELM Credit Card Fraud with the SMOTE—general metrics.

Metrics ELM-GSFA ELM-FA ELM-BA ELM-ABC ELM-SCA ELM-MBO ELM-HHO ELM-EHO ELM-WOA ELM-SNS

best (%) 97.1716 97.3140 96.6270 97.0186 96.5133 96.4165 96.6229 96.6364 96.1867 96.5695

worst (%) 97.1046 97.2455 96.4971 97.0046 96.3211 96.3961 96.4708 96.5071 95.8648 96.3695

mean (%) 97.1440 97.2669 96.5881 97.0126 96.3971 96.4055 96.5207 96.6044 96.0175 96.4710

median (%) 97.1595 97.261 96.5794 97.0069 96.4671 96.4087 96.4981 96.5951 96.0266 96.4898

std 0.000321 0.000355 0.004440 0.000456 0.000059 0.000429 0.084200 0.025200 0.023600 0.003450

Table 7. XGBoost Credit Card Fraud with the SMOTE—general metrics.

Metrics XGBoost-GSFA XGBoost-FA XGBoost-BA XGBoost-ABC XGBoost-SCA XGBoost-MBO XGBoost-HHO XGBoost-EHO XGBoost-WOA XGBoost-SNS

best (%) 99.9842 99.9766 99.9818 99.9842 99.9830 99.9683 99.9818 99.9812 99.9766 99.9818

worst (%) 99.9841 99.9740 99.9786 99.9803 99.9810 99.9642 99.9793 99.9762 99.9743 99.9756

mean (%) 99.9841 99.9750 99.9800 99.9836 99.9823 99.9662 99.9800 99.9795 99.9757 99.9794

median (%) 99.9841 99.9751 99.9801 99.9841 99.9824 99.9669 99.9801 99.9786 99.9756 99.9786

std 0.000001 0.000020 0.000095 0.000034 0.000034 0.000072 0.000084 0.000085 0.000067 0.000105

Mathematics 2022, 10, 2272 17 of 30

For better visual representation, convergence speed graphs for all swarm intelligence
algorithms used in the analysis and for all three ML models are shown in Figure 4. From the
presented graphs, it is clear that the GSFA outperforms all other metaheuristics, including
the original FA in all cases except ELM simulations with the SMOTE dataset, in terms of
convergence speed. Additionally, the GSFA manages to converge substantially faster than
the SNS algorithm.

0 2 4 6 8 10 12 14
Iterations

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Ob
je

ct
iv

e

SVM Credit Card Fraud Small convergence graphs
SVM-GSFA
SVM-FA
SVM-BA
SVM-ABC
SVM-SCA
SVM-MBO
SVM-HHO
SVM-EHO
SVM-WOA
SVM-SNS

0 2 4 6 8 10 12 14
Iterations

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

Ob
je

ct
iv

e

SVM Credit Card Fraud Small SMOTE convergence graphs
SVM-GSFA
SVM-FA
SVM-BA
SVM-ABC
SVM-SCA
SVM-MBO
SVM-HHO
SVM-EHO
SVM-WOA
SVM-SNS

0 2 4 6 8 10 12 14
Iterations

0.0006

0.0007

0.0008

0.0009

0.0010

0.0011

0.0012

Ob
je

ct
iv

e

ELM Credit Card Fraud convergence graphs
ELM-GSFA
ELM-FA
ELM-BA
ELM-ABC
ELM-SCA
ELM-MBO
ELM-HHO
ELM-EHO
ELM-WOA
ELM-SNS

0 2 4 6 8 10 12 14
Iterations

0.0275

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

Ob
je

ct
iv

e

ELM Credit Card Fraud SMOTE convergence graphs
ELM-GSFA
ELM-FA
ELM-BA
ELM-ABC
ELM-SCA
ELM-MBO
ELM-HHO
ELM-EHO
ELM-WOA
ELM-SNS

0 2 4 6 8 10 12 14
Iterations

0.00030

0.00032

0.00034

0.00036

0.00038

0.00040

Ob
je

ct
iv

e

XGBoost Credit Card Fraud convergence graphs
XGBoost-GSFA
XGBoost-FA
XGBoost-BA
XGBoost-ABC
XGBoost-SCA
XGBoost-MBO
XGBoost-HHO
XGBoost-EHO
XGBoost-WOA
XGBoost-SNS

0 2 4 6 8 10 12 14
Iterations

0.0002

0.0003

0.0004

0.0005

Ob
je

ct
iv

e

XGBoost Credit Card Fraud SMOTE convergence graphs
XGBoost-GSFA
XGBoost-FA
XGBoost-BA
XGBoost-ABC
XGBoost-SCA
XGBoost-MBO
XGBoost-HHO
XGBoost-EHO
XGBoost-WOA
XGBoost-SNS

Figure 4. Convergence speed graphs of swarm algorithms for SVM, ELM, and XGBoost models for
original and synthetic (SMOTE) credit card fraud datasets.

Tables 8–10 provide additional detailed results for other significant machine learning
performance metrics, including per-class and micro-averaged precision, recall, and F1 Score,
along with ROC AUC for the experiments where models were employed without SMOTE
technique. On the other hand, Tables 11–13 present the same metrics for the simulations
where models were tested against the dataset with the SMOTE approach.

Mathematics 2022, 10, 2272 18 of 30

Table 8. SVM Credit Card Fraud small NO SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

SVM-GSFA 99.9532 0.999765 0.875000 0.999532 0.999765 0.875000 0.999532 0.999765 0.875000 0.999532 1.00 1.00

SVM-FA 99.9064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 1.00 1.00

SVM-BA 99.8830 0.999063 0.800000 0.998690 0.999765 0.500000 0.998830 0.999414 0.615385 0.998695 1.00 1.00

SVM-ABC 99.9532 0.998251 0.002015 0.996385 0.535413 0.500000 0.535346 0.696993 0.004014 0.695695 0.52 0.56

SVM-SCA 99.9064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 1.00 1.00

SVM-MBO 99.8361 0.998127 0.000000 0.996258 0.999765 0.000000 0.997893 0.998946 0.000000 0.997075 0.50 0.50

SVM-HHO 99.9064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 1.00 1.00

SVM-EHO 99.9064 0.999297 0.833333 0.998986 0.999765 0.625000 0.999064 0.999531 0.714286 0.998997 1.00 1.00

SVM-WOA 99.9064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 1.00 1.00

SVM-SNS 99.9064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 0.999531 0.750000 0.999064 1.00 1.00

Table 9. ELM Credit Card Fraud NO SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

ELM-GSFA 99.9462 0.999648 0.875000 0.999441 0.999812 0.788732 0.999462 0.999730 0.829630 0.999448 1.00 1.00

ELM-FA 99.9111 0.999274 0.851064 0.999027 0.999836 0.563380 0.999111 0.999555 0.677966 0.999020 1.00 1.00

ELM-BA 99.9345 0.999637 0.816176 0.999332 0.999707 0.781690 0.999345 0.999672 0.798561 0.999338 1.00 1.00

ELM-ABC 99.9345 0.999555 0.852459 0.999310 0.999789 0.732394 0.999345 0.999672 0.787879 0.999320 1.00 1.00

ELM-SCA 99.9169 0.999332 0.858586 0.999098 0.999836 0.598592 0.999169 0.999584 0.705394 0.999095 1.00 1.00

ELM-MBO 99.9333 0.999578 0.834646 0.999304 0.999754 0.746479 0.999333 0.999666 0.788104 0.999314 1.00 1.00

ELM-HHO 99.9181 0.999402 0.827273 0.999116 0.999777 0.640845 0.999181 0.999590 0.722222 0.999129 1.00 1.00

ELM-EHO 99.9263 0.998338 0.000000 0.996679 1.000000 0.000000 0.998338 0.999168 0.000000 0.997508 0.50 0.50

Mathematics 2022, 10, 2272 19 of 30

Table 9. Cont.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

ELM-WOA 99.9192 0.999391 0.841121 0.999128 0.999801 0.633803 0.999192 0.999596 0.722892 0.999136 1.00 1.00

ELM-SNS 99.9111 0.999274 0.851064 0.999027 0.999836 0.563380 0.999111 0.999555 0.677966 0.999020 1.00 1.00

Table 10. XGBoost Credit Card Fraud NO SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

XGBoost-GSFA 99.9707 0.999754 0.968000 0.999701 0.999953 0.852113 0.999707 0.999853 0.906367 0.999698 1.00 1.00

XGBoost-FA 99.9684 0.999742 0.960000 0.999676 0.999941 0.845070 0.999684 0.999842 0.898876 0.999674 1.00 1.00

XGBoost-BA 99.9672 0.999730 0.959677 0.999664 0.999941 0.838028 0.999672 0.999836 0.894737 0.999661 1.00 1.00

XGBoost-ABC 99.9684 0.999742 0.960000 0.999676 0.999941 0.845070 0.999684 0.999842 0.898876 0.999674 1.00 1.00

XGBoost-SCA 99.9661 0.999719 0.959350 0.999652 0.999941 0.830986 0.999661 0.999830 0.890566 0.999648 1.00 1.00

XGBoost-MBO 99.9672 0.999730 0.959677 0.999664 0.999941 0.838028 0.999672 0.999836 0.894737 0.999661 1.00 1.00

XGBoost-HHO 99.9661 0.999719 0.959350 0.999652 0.999941 0.830986 0.999661 0.999830 0.890566 0.999648 1.00 1.00

XGBoost-EHO 99.9672 0.999742 0.952381 0.999663 0.999930 0.845070 0.999672 0.999836 0.895522 0.999663 1.00 1.00

XGBoost-WOA 99.9661 0.999730 0.952000 0.999651 0.999930 0.838028 0.999661 0.999830 0.891386 0.999650 1.00 1.00

XGBoost-SNS 99.9661 0.999719 0.959350 0.999652 0.999941 0.830986 0.999661 0.999830 0.890566 0.999648 1.00 1.00

Mathematics 2022, 10, 2272 20 of 30

Table 11. SVM Credit Card Fraud small with the SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

SVM-GSFA 96.9519 0.945285 0.996530 0.970913 0.996717 0.942335 0.969520 0.970320 0.968675 0.969497 0.99 0.99

SVM-FA 96.5064 0.943228 0.989151 0.966195 0.989681 0.940459 0.965064 0.965896 0.964191 0.965043 0.99 0.99

SVM-BA 95.1700 0.911891 1.000000 0.955956 1.000000 0.903422 0.951700 0.953915 0.949261 0.951587 0.99 0.98

SVM-ABC 96.2954 0.931381 0.999494 0.965446 0.999531 0.926394 0.962954 0.964253 0.961557 0.962905 1.00 1.00

SVM-SCA 96.2954 0.931381 0.999494 0.965446 0.999531 0.926395 0.962954 0.964253 0.961557 0.962905 1.00 1.00

SVM-MBO 95.1465 0.536780 0.533067 0.534923 0.506567 0.563057 0.534818 0.521236 0.547652 0.534447 0.54 0.53

SVM-HHO 95.1700 0.911891 1.000000 0.955956 1.000000 0.903422 0.951700 0.953915 0.949261 0.951587 0.99 0.98

SVM-EHO 96.9285 0.946054 0.995054 0.970560 0.995310 0.943272 0.969285 0.970057 0.968472 0.969264 0.99 0.99

SVM-WOA 96.9519 0.946875 0.994568 0.970727 0.994841 0.944210 0.969519 0.970265 0.968735 0.969500 0.99 0.99

SVM-SNS 95.1700 0.911891 1.000000 0.955956 1.000000 0.903422 0.951700 0.953915 0.949261 0.951587 0.99 0.98

Table 12. ELM Credit Card Fraud with the SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

ELM-GSFA 97.1716 0.961894 0.982012 0.971931 0.982475 0.960909 0.971716 0.972076 0.971346 0.971712 1.00 1.00

ELM-FA 97.3140 0.967921 0.978501 0.973200 0.978837 0.967418 0.973140 0.973349 0.972928 0.973139 1.00 1.00

ELM-BA 96.6270 0.966703 0.965835 0.966270 0.965957 0.966584 0.966270 0.966330 0.966209 0.966270 0.99 0.99

ELM-ABC 97.0186 0.958294 0.982770 0.970506 0.983294 0.957020 0.970186 0.970633 0.969724 0.970180 0.99 0.99

ELM-SCA 96.5133 0.948796 0.982790 0.965755 0.983493 0.946692 0.965132 0.965833 0.964403 0.965119 0.99 0.99

ELM-MBO 96.4165 0.949218 0.980219 0.964685 0.980966 0.947291 0.964165 0.964831 0.963474 0.964154 0.99 0.99

ELM-HHO 96.6229 0.952841 0.980501 0.966641 0.981165 0.951227 0.966229 0.966796 0.965642 0.966220 0.99 0.99

Mathematics 2022, 10, 2272 21 of 30

Table 12. Cont.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

ELM-EHO 96.6364 0.957048 0.976114 0.966560 0.976708 0.955974 0.966364 0.966778 0.965939 0.966359 0.99 0.99

ELM-WOA 96.1867 0.958182 0.965630 0.961898 0.966062 0.957654 0.961867 0.962106 0.961626 0.961866 0.99 0.99

ELM-SNS 96.5695 0.960938 0.970575 0.965746 0.971011 0.960357 0.965695 0.965948 0.965439 0.965694 0.99 0.99

Table 13. XGBoost Credit Card Fraud with the SMOTE—detailed metrics.

Metrics

Metaheuristic Accuracy (%) Precision 0 Precision 1 M.Avg.
Precision Recall 0 Recall 1 M.Avg.

Recall F1 Score 0 F1 Score 1 M.Avg.
F1 Score

M.Avg.
ROC AUC

M.Avg.
PR AUC

XGBoost-GSFA 99.9842 0.999988 0.999695 0.999842 0.999696 0.999988 0.999842 0.999842 0.999841 0.999842 1.00 1.00

XGBoost-FA 99.9766 0.999965 0.999565 0.999766 0.999567 0.999965 0.999766 0.999766 0.999765 0.999766 1.00 1.00

XGBoost-BA 99.9818 0.999988 0.999648 0.999818 0.999649 0.999988 0.999818 0.999819 0.999818 0.999818 1.00 1.00

XGBoost-ABC 99.9842 0.999965 0.999718 0.999842 0.999719 0.999965 0.999842 0.999842 0.999841 0.999842 1.00 1.00

XGBoost-SCA 99.9830 0.999965 0.999695 0.999830 0.999696 0.999965 0.999830 0.999830 0.999830 0.999830 1.00 1.00

XGBoost-MBO 99.9683 0.999941 0.999425 0.999684 0.999427 0.999941 0.999683 0.999684 0.999683 0.999683 1.00 1.00

XGBoost-HHO 99.9818 0.999965 0.999671 0.999818 0.999672 0.999965 0.999818 0.999819 0.999818 0.999818 1.00 1.00

XGBoost-EHO 99.9812 0.999965 0.999660 0.999812 0.999661 0.999965 0.999812 0.999813 0.999812 0.999812 1.00 1.00

XGBoost-WOA 99.9766 0.999930 0.999601 0.999766 0.999602 0.999930 0.999766 0.999766 0.999765 0.999766 1.00 1.00

XGBoost-SNS 99.9818 0.999977 0.999659 0.999818 0.999661 0.999976 0.999818 0.999819 0.999818 0.999818 1.00 1.00

Mathematics 2022, 10, 2272 22 of 30

The yielded detailed metrics provide significant insights into the algorithms’ perfor-
mance, especially for imbalanced datasets such as credit card fraud without the SMOTE
technique. From the reported metrics, it can be unequivocally confirmed that, on average,
when all models are taken into account, the proposed GSFA algorithm proved that it is able
to achieve the best classification performance for a minority class (class 1 in this example).

The generated confusion matrices for the original credit card fraud dataset by tuned
SVM, ELM, and XGBoost models with GSFA, FA, and SNS algorithms are shown in Figure 5,
while precision–recall (PR) curve graphs for GSFA and arbitrary chosen approaches for
synthetic dataset are depicted in Figure 6.

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

4263 1

1 7

SVM-GSFA Credit Card Fraud small confusion matrix

500

1000

1500

2000

2500

3000

3500

4000

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

4262 2

2 6

SVM-FA Credit Card Fraud small confusion matrix

500

1000

1500

2000

2500

3000

3500

4000

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

4262 2

2 6

SVM-SNS Credit Card Fraud small confusion matrix

500

1000

1500

2000

2500

3000

3500

4000

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85284 16

30 112

ELM-GSFA Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000,

,

,

,

,

,

,

,

,

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85286 14

62 80

ELM-FA Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000,

,

,

,

,

,

,

,

,

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85286 14

62 80

ELM-SNS Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000,

,

,

,

,

,

,

,

,

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85296 4

21 121

XGBoost-GSFA Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000,

,

,

,

,

,

,

,

,

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85295 5

22 120

XGBoost-FA Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000

,

,

,

,

,

,

,

,

,

cla
ss0

cla
ss1

Predicted label

class0

class1

Tr
ue

 la
be

l

85295 5

24 118

XGBoost-SNS Credit Card Fraud confusion matrix

10000

20000

30000

40000

50000

60000

70000

80000,

,

,

,

,

,

,

,

,

Figure 5. Confusion matrices for SVM, ELM, and XGBoost models tuned by GSFA, FA, and SNS for
original credit card fraud dataset.

Mathematics 2022, 10, 2272 23 of 30

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

SVM-GSFA Credit Card Fraud small precision vs. recall curve

class0 AP:1.00
class1 AP:0.82
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

SVM-FA Credit Card Fraud small precision vs. recall curve

class0 AP:1.00
class1 AP:0.64
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

SVM-ABC Credit Card Fraud small precision vs. recall curve
class0 AP:1.00
class1 AP:0.00
Micro AP:0.56
AP micro AP:0.56

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ELM-GSFA Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.70
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ELM-ABC Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.71
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

ELM-HHO Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.60
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

XGBoost-GSFA Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.87
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

XGBoost-HHO Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.88
Micro AP:1.00
AP micro AP:1.00

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

XGBoost-EHO Credit Card Fraud precision vs. recall curve

class0 AP:1.00
class1 AP:0.87
Micro AP:1.00
AP micro AP:1.00

Figure 6. Precision–recall curves for SVM, ELM, and XGBoost models tuned by GSFA and arbitrary
chosen approaches for synthetic credit card fraud dataset

Lastly, the hyper-parameters’ values for the tuned SVM, ELM, and XGBoost mod-
els, generated in the best run for each applied optimization algorithm, are shown in
Tables 14–16, respectively. It should be noted that Table 15 depicts just the number of
neurons nn parameter that obtained the best results, as showing all weights and biases
parameters would not be feasible.

Table 14. Best SVM parameters’ values obtained by the analyzed algorithms.

Method/Parameters
No SMOTE With SMOTE

C γ Kernel Type C γ Kernel Type

SVM-GSFA 1816.0411 0.0492 1 0.031 0.1015 0
SVM-FA 16316.8042 3× 10−5 0 0.031 1.6601 1
SVM-BA 32768 0.1172 2 2106.3912 7.6593 0
SVM-ABC 6064.1918 0.0142 1 8512.3559 3× 10−5 2
SVM-SCA 15,430.8553 3× 10−5 0 8591.6538 3× 10−5 2
SVM-MBO 14,167.7370 1.9988 2 631.3854 5.1329 0
SVM-HHO 22,160.9077 3× 10−5 0 500.4590 2.3178 0
SVM-EHO 0.031 2.3360 0 2425.9645 0.0234 0
SVM-WOA 22,320.8262 3× 10−5 0 0.0353 0.0912 0
SVM-SNS 32,768 3× 10−5 0 8277.7914 0.6790 0

Mathematics 2022, 10, 2272 24 of 30

Table 15. Best ELM number of neurons in hidden layer obtained by the analyzed algorithms.

Method/ No SMOTE With SMOTE
Parameters Number of Neurons Number of Neurons

ELM-GSFA 88 67
ELM-FA 60 74
ELM-BA 30 85
ELM-ABC 85 86
ELM-SCA 53 150
ELM-MBO 97 135
ELM-HHO 50 48
ELM-EHO 56 79
ELM-WOA 64 133
ELM-SNS 64 90

Table 16. Best XGBoost parameters’ values obtained by the analyzed algorithms.

Method/ No SMOTE
Parameters eta min_child_weight Subsample colsample_bytree max_depth Gamma

XGBoost-GSFA 0.6109 5.3438 0.6276 0.7093 8.0268 0.4437
XGBoost-FA 0.8330 7.1837 0.9261 0.7303 3.7943 0.1307
XGBoost-BA 0.7028 6.7516 0.6247 0.6904 5.7910 0.3833
XGBoost-ABC 0.8340 7.7698 0.5957 0.7957 6.2033 0.0021
XGBoost-SCA 0.5143 1.5846 1 0.7242 6.6324 0.4547
XGBoost-MBO 0.6572 3.9720 0.5423 0.7891 5.3727 0.1232
XGBoost-HHO 0.6329 2.2029 0.9299 0.9118 7.8752 0.5
XGBoost-EHO 0.6274 10 1 0.6247 5.1698 0.5
XGBoost-WOA 0.5940 5.5582 0.5548 0.6715 6.0848 0.4435
XGBoost-SNS 0.6841 1 0.9168 1 5.8061 0.1113

With SMOTE
Parameters eta min_child_weight Subsample colsample_bytree max_depth Gamma

XGBoost-GSFA 0.8753 5.5543 0.9998 0.7219 9.5889 0.3941
XGBoost-FA 0.7744 5.7581 0.9646 0.4266 8.9161 0.0730
XGBoost-BA 0.8889 1 1 0.4705 9.9235 0.3647
XGBoost-ABC 0.8581 3.9509 0.7588 0.3775 10 0.0874
XGBoost-SCA 0.9 1 0.9368 0.5866 10 0
XGBoost-MBO 0.7940 2.1121 0.4077 0.7334 8.7939 0.2791
XGBoost-HHO 0.8227 5.0387 0.9566 0.4330 9.6767 0.4883
XGBoost-EHO 0.9 3.9113 0.8527 0.7699 10 0.5
XGBoost-WOA 0.8606 2.5538 0.9666 0.9613 9.5649 0.1993
XGBoost-SNS 0.9 1 0.8993 0.5963 10 0.0858

4.4. Statistical Tests

Since the experimental outcomes are typically not sufficient to state that one algorithm
has better performance when compared to other competitors, contemporary computer
science practice requires researchers to establish whether or not the obtained improvements
are statistically significant. In the research suggested in this manuscript, 10 methods
(including proposed GSFA) were validated for SVM, ELM, and XGBoost tuning against
the original (highly imbalanced) and synthetic, generated using the SMOTE technique
(balanced) on credit card fraud datasets. Therefore, 10 methods were compared against
6 problem instances, which falls into the domain of multiple approaches for multi-problem
analysis [65].

According to the recommendations from the literature [65–67], statistical tests in
such scenarios may be conducted by constructing a results sample for each approach
by taking averages of the measured objectives over multiple independent runs for each
problem. However, this approach may have disadvantages when the measured variable has
outliers that do not follow a normal distribution, which may lead to deceptive conclusions.
According to a literature survey, whether the average objective function value should be
taken for the purpose of statistical tests when comparing stochastic methods still remains
an open question [65].

Mathematics 2022, 10, 2272 25 of 30

For the purpose of comparing 10 methods for 6 problem instances, despite the above-
noted potential disadvantages, the objective function (classification error rate) was averaged
over 50 independent runs is used in statistical tests. However, this decision was rendered
based on the conducted Shapiro–Wilk [68] test for single-problem analysis [65] in the
following way: for each algorithm and every problem, a data sample is constructed by
taking the results obtained in each run, and respective p-values are calculated for every
method–problem pair. The obtained p-values for this test are shown in Table 17.

Table 17. Shapiro–Wilk test results for single-problem analysis.

Methods

Problem GSFA FA BA ABC SCA MBO HHO EHO WOA SNS

SVM 6.15× 10−1 4.24× 10−1 7.05× 10−1 4.37× 10−1 8.29× 10−1 6.02× 10−1 7.40× 10−1 4.40× 10−1 1.23× 10−1 4.23× 10−1

SVM Smote 8.06× 10−1 7.49× 10−1 5.82× 10−1 4.92× 10−1 3.05× 10−1 5.93× 10−1 8.08× 10−1 3.63× 10−1 3.33× 10−1 4.51× 10−1

ELM 6.37× 10−1 5.32× 10−1 6.52× 10−1 5.30× 10−1 8.42× 10−2 6.05× 10−1 5.55× 10−1 2.84× 10−1 2.85× 10−1 8.52× 10−2

ELM Smote 1.56× 10−1 9.46× 10−2 4.52× 10−1 6.95× 10−1 1.34× 10−1 1.12× 10−1 8.58× 10−2 3.50× 10−1 7.92× 10−1 3.10× 10−1

XGB 7.98× 10−1 4.24× 10−1 9.52× 10−2 7.35× 10−1 7.29× 10−1 7.49× 10−1 5.32× 10−1 6.93× 10−1 6.07× 10−1 7.43× 10−1

XGB Smote 3.94× 10−1 3.84× 10−1 1.75× 10−1 5.23× 10−1 4.01× 10−1 5.69× 10−1 6.66× 10−1 7.24× 10−1 5.21× 10−1 5.62× 10−1

The results from Table 17 indicate that all p-values are higher than the threshold
significance level α = 0.05, yielding the conclusion that the null hypothesis cannot be
rejected; therefore, the data samples for all method–problem pairs originate from a normal
distribution, and it is safe to use average objective in the statistical tests.

From this point, we proceeded with multi-problems multiple methods statistical
analysis, and the data sample for each method was constructed by taking the average
objective function value over 50 independent runs for each problem instance.

First, the safe use of the parametric tests conditions, which include independence,
normality, and homoscedasticity of the variances of the data, were checked [69]. The
condition of independence was satisfied, because each run was executed independently
starting with unique pseudo-random number seed. To check normality, the Shapiro–Wilk
test [68] was used again. The results for every method are reported in Table 18.

Table 18. Shapiro–Wilk test results for multiple problem analysis.

Methods

GSFA FA BA ABC SCA MBO HHO EHO WOA SNS

p-value 3.20× 10−3 8.34× 10−3 9.71× 10−3 6.81× 10−3 3.28× 10−3 9.19× 10−3 8.90× 10−3 2.32× 10−3 4.58× 10−3 8.34× 10−3

Finally, to check homoscedasticity based on means, Levene’s test [70] is employed,
and the p-value of 0.64 is obtained, which follows that the homoscedasticity is satisfied.
However, the rendered p-values from the Shapiro–Wilk test for all methods are smaller
than α = 0.05 (Table 18), yielding the conclusion that the safe use of parametric tests is
not satisfied, and we proceeded with non-parametric tests. In all non-parametric tests, the
proposed GSFA was established as the control method.

Consequently, the Friedman test [71,72] and a wo-way variance analysis by ranks
were utilized to establish the significance of the proposed GSFA performance over other
algorithms. The use of this test for multiple methods—multi-problem analysis along with
associated Holm post-hoc procedure—was suggested in [66]. The Friedman test results are
reported in Table 19. Moreover, the Friedman aligned test was also conducted, and these
findings are shown in Table 20.

Mathematics 2022, 10, 2272 26 of 30

Table 19. Friedman test ranks for the compared algorithms.

Functions GSFA FA BA ABC SCA MBO HHO EHO WOA SNS

SVM 1 7.5 9 2 4 10 4 7.5 4 6
SVM Smote 1 4 9 5 6 8 10 2 3 7
ELM 1 10 2 8 4 6 7 3 5 9
ELM Smote 2 1 4 6 9 8 5 3 10 7
XGB 1 2.5 9.5 2.5 8 4 6.5 6.5 5 9.5
XGB Smote 1 7 4 2 3 10 9 8 6 5

Average Ranking 1.17 5.33 6.25 4.25 5.67 7.67 6.92 5.00 5.50 7.25
Rank 1 4 7 2 6 10 8 3 5 9

Table 20. Friedman aligned test ranks for the compared algorithms.

Functions GSFA FA BA ABC SCA MBO HHO EHO WOA SNS

SVM 9 46.5 49 11 13 50 13 46.5 13 24
SVM Smote 1 5 59 7 8 58 60 2 3 57
ELM 10 48 16 43 35 38 40 21 36 44
ELM Smote 6 4 42 52 55 54 51 15 56 53
XGB 20 25.5 32.5 25.5 31 27 29.5 29.5 28 32.5
XGB Smote 17 37 22 18 19 45 41 39 34 23

Average Ranking 10.50 27.67 36.75 26.08 26.83 45.33 39.08 25.50 28.33 38.92
Rank 1 5 7 3 4 10 9 2 6 8

The findings from Table 19 statistically suggest that the proposed GSFA method ob-
tained superior performance in comparison to other algorithms by achieving an average
rank value of 1.17. The second-best result was achieved by ABC, with an obtained average
rank of 4.25. The original FA accomplished an average ranking of 5.33; therefore, the
superiority of the proposed GSFA over original method is obvious. Additionally, the Fried-
man statistics (χ2

r = 21.27) are greater than the χ2 critical value, with 9 degrees of freedom
(16.9), at significance level α = 0.05, and the Friedman p-value is 4.55× 10−8, inferring
that significant differences in results between different methods exist. Consequently, it
is possible to reject the null hypothesis (H0) and state that the proposed GSFA obtained
performance were significantly different from other competitors. Similar conclusions can
be derived from the Friedman aligned test results.

Additionally, as stated in reference [73], which indicates that the Iman and Davenport’s
test [74] could give results with more precision than the χ2, this test was performed as
well. The Iman and Davenport’s test result is 3.25× 100, which is significantly larger than
the critical value of the F-distribution (2.09× 100). Additionally, the Iman and Devenport
p-value is 5.32× 10−2, which is smaller than the level of significance. Finally, it is concluded
that this test also rejects H0.

Due to the fact that both tests rejected the null hypothesis, the non-parametric post-hoc
Holm’s step-down procedure was applied, and the outcomes are given in Table 21. In
this process, the observed algorithms are sorted in respect of their p values and evaluated
to α/(k − i), where k and i denote the degree of freedom (k = 9 for this research) and
the algorithm number, respectively, after sorting in respect to the p value in ascending
order (corresponding to rank). This research utilizes α values of 0.05 and 0.1 in this experi-
ment. The findings from Table 21 clearly indicate that the suggested GSFA significantly
outperformed all competitors at both significance levels.

Mathematics 2022, 10, 2272 27 of 30

Table 21. Results of the Holm’s step-down procedure.

Comparison p-Value Rank 0.05/(k − i) 0.1/(k − i)

GSFA vs. MBO 1.00× 10−4 0 0.005556 0.011111
GSFA vs. SNS 2.51× 10−4 1 0.006250 0.012500

GSFA vs. HHO 5.02× 10−4 2 0.007143 0.014286
GSFA vs. BA 1.82× 10−3 3 0.008333 0.016667

GSFA vs. SCA 5.02× 10−3 4 0.010000 0.020000
GSFA vs. WOA 6.59× 10−3 5 0.012500 0.025000

GSFA vs. FA 8.57× 10−3 6 0.016667 0.033333
GSFA vs. EHO 1.42× 10−2 7 0.025000 0.050000
GSFA vs. ABC 3.89× 10−2 8 0.050000 0.100000

5. Conclusions

The research presented in this paper proposed a novel variant of the famous FA
algorithm, named GSFA metaheuristic, with an aim to address the notable drawbacks of
the original implementation. The introduced GSFA approach adopts a disputation operator
from the recently proposed SNS metaheuristic.

The suggested GSFA was paired with three standard ML models, namely the SVM,
ELM, and XGBoost models, to perform hyper-parameter optimization. This challenge is
still an open question in the ML domain, because every ML model has to be tuned for a
specific dataset.

The suggested hybrid model’s performance was verified against the credit card fraud
detection dataset, which includes transactions gathered across Europe in 2013. The em-
ployed dataset is highly disproportional, as the majority of entries represent valid transac-
tions, and just a small portion mark the fraudulent actions.

The performances of the proposed GSFA-optimized SVM, ELM, and XGBoost were
compared to nine other metaheuristics-optimized variants of ML models. The competitor
metaheuristics encompassed well-known algorithms, such as the original implementation
of FA, BA, ABC, SCA, MBO, HHO, EHO, WOA, and SNS. The experiments were conducted
in two phases: first with the original imbalanced dataset and second with a synthetic
dataset generated by SMOTE technique. The SMOTE was utilized to generate additional
synthetic minority instances and to mitigate the high level of disproportion between the
classes. The outcomes of the executed simulations indicate the superior performances of the
proposed GSFA for most of the test instances. Finally, rigid statistical tests were performed
to confirm the significance of the obtained test results.

Therefore, in the proposed research, it was shown that the FA metaheuristic can be
further improved and that the tuned SVM, ELM, and XGBoost models achieve decent
performance for a highly challenging and important credit card fraud dataset.

However, the proposed study also has some limitations. First,the GSFA metaheuristic
employs three additional control parameters that need to be adjusted for each particular NP-
hard challenge. Moreover, the performance of the algorithm needs to be further evaluated
for other NP-hard challenges.

The future trials of the suggested GSFA algorithm will include further testing on
supplementary real-life credit card datasets. Another direction for validating the proposed
GSFA is to apply it and test it on other NP-hard problems, falling into the domains of cloud
computing, cryptocurrencies forecasting, and image processing and classification.

Author Contributions: Conceptualization, D.J., N.B. and M.A.; methodology, N.B., M.Z. and M.T.;
software, M.Z. and N.B.; validation, M.A.; formal analysis, M.Z.; investigation, D.J. and M.S.; re-
sources, M.A., M.T. and M.S.; data curation, M.Z., D.J. and N.B.; writing–original draft preparation,
D.J. and M.A.; writing–review and editing, M.S., M.T. and M.Z.; visualization, N.B.; supervision, M.S.;
project administration, M.A. and M.T.; funding acquisition, N.B., M.T. and M.S. All authors have read
and agreed to the published version of the manuscript.

Mathematics 2022, 10, 2272 28 of 30

Funding: This research was supported by the Science Fund of the Republic of Serbia, Grant 6524745
AI-DECIDE.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elreedy, D.; Atiya, A.F. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class

imbalance. Inf. Sci. 2019, 505, 32–64. [CrossRef]
2. Nematzadeh, S.; Kiani, F.; Torkamanian-Afshar, M.; Aydin, N. Tuning hyperparameters of machine learning algorithms and deep

neural networks using metaheuristics: A bioinformatics study on biomedical and biological cases. Comput. Biol. Chem. 2022,
97, 107619. [CrossRef] [PubMed]

3. Bacanin, N.; Bezdan, T.; Venkatachalam, K.; Zivkovic, M.; Strumberger, I.; Abouhawwash, M.; Ahmed, A. Artificial Neural
Networks Hidden Unit and Weight Connection Optimization by Quasi-Refection-Based Learning Artificial Bee Colony Algorithm.
IEEE Access 2021, 9, 169135–169155. [CrossRef]

4. Bacanin, N.; Bezdan, T.; Tuba, E.; Strumberger, I.; Tuba, M. Optimizing Convolutional Neural Network Hyperparameters by
Enhanced Swarm Intelligence Metaheuristics. Algorithms 2020, 13, 67. [CrossRef]

5. Al-Andoli, M.; Tan, S.C.; Cheah, W.P. Parallel stacked autoencoder with particle swarm optimization for community detection in
complex networks. Appl. Intell. 2022, 52, 3366–3386. [CrossRef]

6. Gajic, L.; Cvetnic, D.; Zivkovic, M.; Bezdan, T.; Bacanin, N.; Milosevic, S. Multi-layer Perceptron Training Using Hybridized
Bat Algorithm. In Computational Vision and Bio-Inspired Computing; Smys, S., Tavares, J.M.R.S., Bestak, R., Shi, F., Eds.; Springer:
Singapore, 2021; pp. 689–705.

7. Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O.,
Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 169–178.

8. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
9. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In

Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541), Budapest, Hungary,
25–29 July 2004; Volume 2, pp. 985–990. [CrossRef]

10. Serre, D. Matrices: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2002.
11. Huang, G.B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003,

14, 274–281. [CrossRef]
12. Raslan, A.F.; Ali, A.F.; Darwish, A. 1—Swarm intelligence algorithms and their applications in Internet of Things. In Swarm

Intelligence for Resource Management in Internet of Things; Intelligent Data-Centric Systems; Academic Press: Cambridge, MA, USA,
2020; pp. 1–19. [CrossRef]

13. Rostami, M.; Berahmand, K.; Nasiri, E.; Forouzandeh, S. Review of swarm intelligence-based feature selection methods. Eng.
Appl. Artif. Intell. 2021, 100, 104210. [CrossRef]

14. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks,
Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

15. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.
[CrossRef]

16. Yang, X.; Hossein Gandomi, A. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012,
29, 464–483. [CrossRef]

17. Wang, G.G.; Deb, S.; Coelho, L.d.S. Elephant Herding Optimization. In Proceedings of the 3rd International Symposium on
Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015; pp. 1–5. [CrossRef]

18. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
19. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
20. Dorigo, M.; Birattari, M. Ant Colony Optimization. In Encyclopedia of Machine Learning; Springer US: Boston, MA, USA, 2010; pp.

36–39. [CrossRef]
21. Mucherino, A.; Seref, O. Monkey search: A novel metaheuristic search for global optimization. AIP Conf. Proc. 2007, 953, 162–173.

[CrossRef]
22. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
23. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
24. Yang, X.S. Flower Pollination Algorithm for Global Optimization. In Unconventional Computation and Natural Computation;

Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249.
25. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

http://doi.org/10.1016/j.ins.2019.07.070
http://dx.doi.org/10.1016/j.compbiolchem.2021.107619
http://www.ncbi.nlm.nih.gov/pubmed/35033837
http://dx.doi.org/10.1109/ACCESS.2021.3135201
http://dx.doi.org/10.3390/a13030067
http://dx.doi.org/10.1007/s10489-021-02589-8
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/IJCNN.2004.1380068.
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.1016/B978-0-12-818287-1.00003-6
http://dx.doi.org/10.1016/j.engappai.2021.104210
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.asoc.2007.05.007
http://dx.doi.org/10.1108/02644401211235834
http://dx.doi.org/10.1109/ISCBI.2015.8
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008
http://dx.doi.org/10.1007/s00521-015-1920-1
http://dx.doi.org/10.1007/978-0-387-30164-822
http://dx.doi.org/10.1063/1.2817338
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

Mathematics 2022, 10, 2272 29 of 30

26. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

27. Wang, G.G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2019, 31, 1995–2014. [CrossRef]
28. Dhiman, G.; Kumar, V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowl.-Based Syst. 2018,

159, 20–50. [CrossRef]
29. Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization

problems. Appl. Intell. 2018, 48, 805–820. [CrossRef]
30. Bezdan, T.; Zivkovic, M.; Tuba, E.; Strumberger, I.; Bacanin, N.; Tuba, M. Multi-objective Task Scheduling in Cloud Computing

Environment by Hybridized Bat Algorithm. In Proceedings of the International Conference on Intelligent and Fuzzy Systems,
Istanbul, Turkey, 24–26 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 718–725.

31. Bacanin, N.; Zivkovic, M.; Bezdan, T.; Venkatachalam, K.; Abouhawwash, M. Modified firefly algorithm for workflow scheduling
in cloud-edge environment. Neural Comput. Appl. 2022, 34, 9043–9068. [CrossRef] [PubMed]

32. Zivkovic, M.; Bacanin, N.; Tuba, E.; Strumberger, I.; Bezdan, T.; Tuba, M. Wireless Sensor Networks Life Time Optimization Based
on the Improved Firefly Algorithm. In Proceedings of the 2020 International Wireless Communications and Mobile Computing
(IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 1176–1181.

33. Bacanin, N.; Tuba, E.; Zivkovic, M.; Strumberger, I.; Tuba, M. Whale Optimization Algorithm with Exploratory Move for Wireless
Sensor Networks Localization. In International Conference on Hybrid Intelligent Systems; Springer: Berlin/Heidelberg, Germany,
2019; pp. 328–338.

34. Bacanin, N.; Sarac, M.; Budimirovic, N.; Zivkovic, M.; AlZubi, A.A.; Bashir, A.K. Smart wireless health care system using graph
LSTM pollution prediction and dragonfly node localization. Sustain. Comput. Inform. Syst. 2022, 35, 100711. [CrossRef]

35. Bezdan, T.; Stoean, C.; Naamany, A.A.; Bacanin, N.; Rashid, T.A.; Zivkovic, M.; Venkatachalam, K. Hybrid Fruit-Fly Optimization
Algorithm with K-Means for Text Document Clustering. Mathematics 2021, 9, 1929. [CrossRef]

36. Stoean, R. Analysis on the potential of an EA—Surrogate modelling tandem for deep learning parametrization: An example for
cancer classification from medical images. Neural Comput. Appl. 2018, 32, 313–322. [CrossRef]

37. Bacanin, N.; Bezdan, T.; Zivkovic, M.; Chhabra, A. Weight Optimization in Artificial Neural Network Training by Improved
Monarch Butterfly Algorithm. In Mobile Computing and Sustainable Informatics; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 397–409.

38. Bacanin, N.; Alhazmi, K.; Zivkovic, M.; Venkatachalam, K.; Bezdan, T.; Nebhen, J. Training Multi-Layer Perceptron with Enhanced
Brain Storm Optimization Metaheuristics. Comput. Mater. Contin. 2022, 70, 4199–4215. [CrossRef]

39. Salb, M.; Zivkovic, M.; Bacanin, N.; Chhabra, A.; Suresh, M. Support Vector Machine Performance Improvements for Cryp-
tocurrency Value Forecasting by Enhanced Sine Cosine Algorithm. In Computer Vision and Robotics; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 527–536.

40. Bezdan, T.; Milosevic, S.; Venkatachalam, K.; Zivkovic, M.; Bacanin, N.; Strumberger, I. Optimizing Convolutional Neural
Network by Hybridized Elephant Herding Optimization Algorithm for Magnetic Resonance Image Classification of Glioma Brain
Tumor Grade. In Proceedings of the 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia,
26–27 May 2021; pp. 171–176.

41. Basha, J.; Bacanin, N.; Vukobrat, N.; Zivkovic, M.; Venkatachalam, K.; Hubálovskỳ, S.; Trojovskỳ, P. Chaotic Harris hawks
optimization with quasi-reflection-based learning: An application to enhance CNN design. Sensors 2021, 21, 6654. [CrossRef]

42. Tair, M.; Bacanin, N.; Zivkovic, M.; Venkatachalam, K. A Chaotic Oppositional Whale Optimisation Algorithm with Firefly Search
for Medical Diagnostics. Comput. Mater. Contin. 2022, 72, 959–982. [CrossRef]

43. Zivkovic, M.; Bacanin, N.; Venkatachalam, K.; Nayyar, A.; Djordjevic, A.; Strumberger, I.; Al-Turjman, F. COVID-19 cases
prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 2021, 66, 102669. [CrossRef]

44. Bezdan, T.; Zivkovic, M.; Bacanin, N.; Chhabra, A.; Suresh, M. Feature Selection by Hybrid Brain Storm Optimization Algorithm
for COVID-19 Classification. J. Comput. Biol. 2022. [CrossRef]

45. Mohammed, S.; Alkinani, F.; Hassan, Y. Automatic computer aided diagnostic for COVID-19 based on chest X-ray image and
particle swarm intelligence. Int. J. Intell. Eng. Syst. 2020, 13, 63–73. [CrossRef]

46. Abd Elaziz, M.; Ewees, A.A.; Yousri, D.; Alwerfali, H.S.N.; Awad, Q.A.; Lu, S.; Al-Qaness, M.A. An improved Marine Predators
algorithm with fuzzy entropy for multi-level thresholding: Real world example of COVID-19 CT image segmentation. IEEE
Access 2020, 8, 125306–125330. [CrossRef]

47. Alshamiri, A.K.; Singh, A.; Surampudi, B.R. Two swarm intelligence approaches for tuning extreme learning machine. Int. J.
Mach. Learn. Cybern. 2018, 9, 1271–1283. [CrossRef]

48. Bui, D.T.; Ngo, P.T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm
intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [CrossRef]

49. Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A. Salp swarm algorithm: Theory, literature review, and application in
extreme learning machines. In Nature-Inspired Optimizers; Springer: Berlin/Heidelberg, Germany, 2020; pp. 185–199.

50. Gu, Q.; Chang, Y.; Li, X.; Chang, Z.; Feng, Z. A novel F-SVM based on FOA for improving SVM performance. Expert Syst. Appl.
2021, 165, 113713. [CrossRef]

51. Makki, S.; Assaghir, Z.; Taher, Y.; Haque, R.; Hacid, M.S.; Zeineddine, H. An experimental study with imbalanced classification
approaches for credit card fraud detection. IEEE Access 2019, 7, 93010–93022. [CrossRef]

http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1007/s00521-015-1923-y
http://dx.doi.org/10.1016/j.knosys.2018.06.001
http://dx.doi.org/10.1007/s10489-017-1019-8
http://dx.doi.org/10.1007/s00521-022-06925-y
http://www.ncbi.nlm.nih.gov/pubmed/35125670
http://dx.doi.org/10.1016/j.suscom.2022.100711
http://dx.doi.org/10.3390/math9161929
http://dx.doi.org/10.1007/s00521-018-3709-5
http://dx.doi.org/10.32604/cmc.2022.020449
http://dx.doi.org/10.3390/s21196654
http://dx.doi.org/10.32604/cmc.2022.024989
http://dx.doi.org/10.1016/j.scs.2020.102669
http://dx.doi.org/10.1089/cmb.2021.0256
http://dx.doi.org/10.22266/ijies2020.1031.07
http://dx.doi.org/10.1109/ACCESS.2020.3007928
http://dx.doi.org/10.1007/s13042-017-0642-3
http://dx.doi.org/10.1016/j.catena.2019.04.009
http://dx.doi.org/10.1016/j.eswa.2020.113713
http://dx.doi.org/10.1109/ACCESS.2019.2927266

Mathematics 2022, 10, 2272 30 of 30

52. Carcillo, F.; Le Borgne, Y.A.; Caelen, O.; Kessaci, Y.; Oblé, F.; Bontempi, G. Combining unsupervised and supervised learning in
credit card fraud detection. Inf. Sci. 2021, 557, 317–331. [CrossRef]

53. Taha, A.A.; Malebary, S.J. An intelligent approach to credit card fraud detection using an optimized light gradient boosting
machine. IEEE Access 2020, 8, 25579–25587. [CrossRef]

54. Randhawa, K.; Loo, C.K.; Seera, M.; Lim, C.P.; Nandi, A.K. Credit card fraud detection using AdaBoost and majority voting.
IEEE Access 2018, 6, 14277–14284. [CrossRef]

55. Ileberi, E.; Sun, Y.; Wang, Z. Performance Evaluation of Machine Learning Methods for Credit Card Fraud Detection Using
SMOTE and AdaBoost. IEEE Access 2021, 9, 165286–165294. [CrossRef]

56. Bezdan, T.; Cvetnic, D.; Gajic, L.; Zivkovic, M.; Strumberger, I.; Bacanin, N. Feature Selection by Firefly Algorithm with Improved
Initialization Strategy. In Proceedings of the 7th Conference on the Engineering of Computer Based Systems (ECBS 2021),
Novi Sad, Serbia, 26–27 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [CrossRef]

57. Bacanin, N.; Bezdan, T.; Venkatachalam, K.; Al-Turjman, F. Optimized convolutional neural network by firefly algorithm for
magnetic resonance image classification of glioma brain tumor grade. J. Real Time Image Process. 2021, 18, 1085–1098. [CrossRef]

58. Wang, H.; Zhou, X.; Sun, H.; Yu, X.; Zhao, J.; Zhang, H.; Cui, L. Firefly algorithm with adaptive control parameters. Soft Comput.
2017, 21, 5091–5102. [CrossRef]

59. Wang, J.; Liu, Y.; Feng, H. IFACNN: Efficient DDoS attack detection based on improved firefly algorithm to optimize convolutional
neural networks. Math. Biosci. Eng. 2022, 19, 1280–1303. [CrossRef]

60. Talatahari, S.; Bayzidi, H.; Saraee, M. Social Network Search for Global Optimization. IEEE Access 2021, 9, 92815–92863. [CrossRef]
61. Goldanloo, M.J.; Gharehchopogh, F.S. A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for

solving continuous optimization problems. J. Supercomput. 2022, 78, 3998–4031. [CrossRef]
62. Yang, X.S.; Xingshi, H. Firefly Algorithm: Recent Advances and Applications. Int. J. Swarm Intell. 2013, 1, 36–50. [CrossRef]
63. Yang, X.S. Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 2011, 3, 267–274. [CrossRef]
64. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
65. Eftimov, T.; Korošec, P.; Seljak, B.K. Disadvantages of statistical comparison of stochastic optimization algorithms. In Proceedings

of the Bioinspired Optimizaiton Methods and Their Applications, BIOMA, Bled, Slovenia, 18–20 May 2016; pp. 105–118.
66. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]
67. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’

behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]
68. Shapiro, S.S.; Francia, R. An approximate analysis of variance test for normality. J. Am. Stat. Assoc. 1972, 67, 215–216. [CrossRef]
69. LaTorre, A.; Molina, D.; Osaba, E.; Poyatos, J.; Del Ser, J.; Herrera, F. A prescription of methodological guidelines for comparing

bio-inspired optimization algorithms. Swarm Evol. Comput. 2021, 67, 100973. [CrossRef]
70. Glass, G.V. Testing homogeneity of variances. Am. Educ. Res. J. 1966, 3, 187–190. [CrossRef]
71. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937,

32, 675–701. [CrossRef]
72. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92.

[CrossRef]
73. Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020.
74. Iman, R.L.; Davenport, J.M. Approximations of the critical region of the fbietkan statistic. Commun. Stat. Theory Methods 1980,

9, 571–595. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2019.05.042
http://dx.doi.org/10.1109/ACCESS.2020.2971354
http://dx.doi.org/10.1109/ACCESS.2018.2806420
http://dx.doi.org/10.1109/ACCESS.2021.3134330
http://dx.doi.org/10.1145/3459960.3459974
http://dx.doi.org/10.1007/s11554-021-01106-x
http://dx.doi.org/10.1007/s00500-016-2104-3
http://dx.doi.org/10.3934/mbe.2022059
http://dx.doi.org/10.1109/ACCESS.2021.3091495
http://dx.doi.org/10.1007/s11227-021-04015-9
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1504/IJBIC.2011.042259
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1080/01621459.1972.10481232
http://dx.doi.org/10.1016/j.swevo.2021.100973
http://dx.doi.org/10.3102/00028312003003187
http://dx.doi.org/10.1080/01621459.1937.10503522
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1080/03610928008827904

	Introduction
	Literature Review and Background
	Support Vector Machine
	Extreme Learning Machine
	The XGBoost Algorithm
	Swarm Intelligence
	Machine Learning Model Tuning by Swarm Intelligence Metaheuristics
	Credit Card Fraud Detection Overview

	Proposed Method
	Original Firefly Algorithm
	Motivation and Proposed Improved Group Search Firefly Algorithm

	Experimental Findings, Comparative Analysis, and Discussion
	Datasets Used in Experiments
	Experimental Setup, Proposed Encoding Scheme, and Flow-Chart Diagram
	Comparative Analysis and Discussion
	Statistical Tests

	Conclusions
	References

